
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 4, May-June 2007

Cite this article as follows: J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela
Menger: “Persistent Objects and Capabilities in Timor”, in Journal of Object Technology, vol. 6,
no. 4, May-June 2007, pp. 103.- 123 http://www.jot.fm/issues/issue_2007_05/article3

Persistent Objects and Capabilities in
Timor

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela Menger,
University of Ulm, Germany

Abstract
The paper describes how the idea of persistent objects is integrated into the Timor
programming language. The strategy adopted allows types to be instantiated at two
levels: as "files", i.e. objects accessible at the operating system level, and as local
objects within files, which resemble objects found in conventional object oriented
programs. File objects (with associated methods) can be instantiated and manipulated
via capabilities, which are accessible both internally and via the operating system. Local
objects are accessible via references, which are not visible at the operating system
level.

1 INTRODUCTION

Object oriented languages typically provide access to persistent data via standard library
routines (e.g. as in C++), sometimes in conjunction with special features (such as
Serializable in Java). Irrespective of the technique used, the basic assumption is that
information generated and used in programs is by default temporary, and special action
has to be taken to make it persist independently of program execution.

This approach reflects the assumption of conventional operating systems, which
distinguish between a computational virtual memory (in which data are temporary) and a
file system (which holds persistent data). This dichotomy in turn reflects a problem with
addressing in computer systems. In the 1960s the designers of Multics recognized the
disadvantages of this approach, emphasizing the overheads associated with transferring
information between the two kinds of memory, and proposed the concept of direct
addressability of data [4, 6]. Unfortunately their attempt to achieve this proved
complicated and inefficient and was therefore not taken over into the Unix system, unlike
many other Multics features.

A failure to support direct addressability has at least three kinds of negative
consequences. First, programmers must expend considerable additional effort when they
write programs which work with persistent data. Second, this additional code and the
unnecessary transfer of information between the two kinds of memory both create

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

undesirable run-time overheads. Third, programming languages which provide separate
facilities for handling temporary and persistent data are unnecessarily complicated by the
duplication. In this paper we describe how the designers of the Timor programming
language1 have attempted to eliminate or seriously reduce these problems.

The basis of the Timor approach is to reverse the assumption of most other
languages, i.e. it is assumed in Timor that information generated and used in programs is
by default persistent. This corresponds in principle to the approach adopted by the
persistent programming community, which has its origins in the key paper on orthogonal
persistence published by Atkinson et al. [2].

The orthogonal persistence approach eliminates the need for languages to provide
separate sets of constructs for handling temporary and persistent data. It also eliminates
additional programming effort at the application level for converting information between
temporary and persistent formats. However, this does not necessarily imply that the work
involved in the flattening of data is entirely eliminated, since in some approaches the
latter simply becomes the responsibility of support software (e.g. a run-time library). As
later sections of this paper will show, the Timor approach eliminates this also by using
direct addressing techniques. And these techniques in turn virtually eliminate the run-
time overheads incurred in conventional systems.

Many programmers who develop Timor software will scarcely need to be concerned
about issues raised by persistence. As the paper will show, writing a program which does
not produce or use persistent data will not require a knowledge of persistence concepts.
Developing generally useful software components – the facilitation of which is one of the
main aims of the language – will usually also not need any special knowledge of
persistence. Creating a new persistent "file" will require only a bare minimum of
additional knowledge, and using an existing file requires no knowledge of persistence.

Advocates of persistent programming might be surprised that we use the term file.
This reflects our view that persistent objects need some organization, and in this sense the
traditional concept of a file has been successfully used over many years. Users of
conventional file and database systems should have no substantial difficulties in adapting
to the Timor concept, provided that they combine the concept with the object oriented
way of thinking. A Timor file can be used in similar situations to files in conventional
systems. The fundamental difference is that it is defined in OO terms, i.e. it is an object
which has its own methods, and these can be invoked just like the methods of any
conventional OO object.

File objects are important for naming, for interfacing with operating systems, etc.
But they are also very relevant for the issue of garbage collection, especially in the
context of distributed objects. Timor allows files to be distributed freely (e.g. across the
Internet) and so it is important that garbage collection can take place on individual
entities: files are ideal for this purpose, as each file serves as a separate root of
persistence.

1 www.timor-programming.org

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 105

In section 2 we briefly describe relevant features of Timor (types, values, objects,
references, etc.) as if the language were not persistent. Then in section 3 the Timor
concept of persistent objects, and the related concept of capabilities, as "references" for
persistent objects, is introduced. Section 4 discusses the relationship between capabilities
(for file objects) and references (for local objects). Section 5 provides an overview of the
planned implementation. The paper concludes with a brief description of related work
(section 6) and a general conclusion (section 7).

Space restrictions prevent a full discussion of the related themes of process
organisation (including the issue of persistent processes) and the distribution of files over
remote computers. These issues are addressed in a companion paper, scheduled to appear
in the next issue of the Journal of Object Technology. In the present paper we can merely
hint that Timor supports persistent processes according to the in-process (procedure
oriented) model [20, 22] and a distribution concept that encompasses the idea that
persistent objects can be directly accessed over wide area networks.

2 THE BASIC TIMOR OBJECT MODEL

In contrast with the conventional OO class construct, Timor distinguishes between type
definitions and their implementations [11-13]. A Timor type definition (introduced by the
keyword type) can have several implementations (introduced by the keyword impl) and
it is possible that different instances of the same type can have different implementations,
even within a single program.

Types and Implementations

Timor types are defined in terms of makers (constructors) and instance methods. Each
instance method must be characterised either by the keyword op (designating an
operation, i.e. an instance method which may change the state of its instance) or by the
keyword enq (designating an enquiry, i.e. an instance method which cannot change the
state of its instance).

Types are defined strictly in accordance with the information hiding principle [21].
For programming convenience method pairs which set and get a value or reference can be
defined in type definitions as abstract variables. However (unless an optimising compiler
determines otherwise) an abstract variable is implemented as a pair of methods [13]. Here
is a type definition containing abstract variables:

type Person {
instance:
 String name, address; // abstract variables
 Date dateOfBirth;
 Person* spouse; // an abstract reference
}

The abstract variable name is a shorthand definition for the instance methods:

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

final op String name(String name);
final enq String name();

and the abstract reference spouse corresponds to the methods:
final op Person* spouse(Person* spouse);
final enq Person* spouse();

The other abstract variables have analogous definitions. Programmers can provide
explicit implementations of the methods representing abstract values; otherwise the
compiler provides an automatic implementation [13].

Timor does not directly support static methods or binary instance methods [5]. The
latter cannot be defined because instance methods cannot have parameters or return
values of their own type. The only exception – which does not create the problems
associated with binary methods - is the implicitly defined set method of an abstract
reference, as illustrated above. This mechanism provides the ability, for example, to
define linked lists.

An implementation normally contains code which implements a specific type.
Different implementations of a type can be used for different instances in the same
program. In addition to the sections contained in a type definition an implementation
usually includes a state section, in which the state variables of instances are defined.

Objects and Values

Timor distinguishes between objects, which can be regarded as independent, dynamically
created entities in a system, and values, which "belong to" or characterise individual
objects. For example in the above definition a Person instance is characterised by values
such as a name, a date of birth, an address, etc.

A type can be instantiated either as a value or as an object2. In both cases a maker
can be used and this returns a value. Hence the value returned by a maker can be directly
assigned to a value variable, e.g.

Person aPersonValue = Person.init();

But if a new dynamic object is needed, the value returned by the maker can be converted
by the new operator into an object, e.g.

Person* aPersonReference = new Person.init();

In this example the new operator creates a new object which is initialised as a copy of the
value3 produced by the maker, and returns a reference to it. The assignment operator
copies this to the reference variable aPersonReference.

The new operator need not be associated with the invocation of a maker. Any value
can in principle serve as an operand, e.g.

Person* aPersonReference = new aPersonValue;

In this case a new object is created whose value is a copy of aPersonValue.

2 Basic types (e.g. int, boolean) are first class types, in contrast with Java and many other
programming languages. Hence it is possible to instantiate these, like other types, as objects or values.
3 new in fact makes a copy of the value, but the compiler optimises away redundant copying.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 107

In accordance with the information hiding principle there is no operator (such as & in
C) which allows a reference to be generated for a value. Hence the methods of internal
values of an object cannot be called by clients of the object, but only by the object's own
instance methods. There is however a dereferencing operator which returns the value of
an object. For example, given an int object created as follows:

int* intRef = new int.init(3);

its value can be obtained for example as follows:
int i = *intRef;

The value of a user defined type can also be obtained using this operator:
Person p = *aPersonRef;

References and Access Restriction

References are logical entities which are intended to express relationships between
objects, e.g. Person* spouse. The syntax chosen for references (the type name
followed by an asterisk symbol *) resembles pointer syntax in C, but semantically there
are significant differences between a C pointer and a Timor reference. While a Timor
reference can be regarded as a pointer from one object to another, this expresses a logical
concept, not a physical memory relationship. Hence there are no operators which allow
references to be modified in the C style (e.g. by adding integer values). Furthermore
references are themselves not regarded as objects, so that references to references are not
possible. Many references can refer to the same object. Since Timor supports subtype
polymorphism, a reference for an object of a subtype can be assigned to a supertype
reference variable (and similarly a subtype value can be assigned to a supertype value
variable).

A reference variable can be restricted such that it can only be used to invoke a subset
of an object's methods. The restriction defines the subset of the methods which are
permitted. These can be defined as views [11]. Some standard views are predefined. For
example all defines all the instance methods of the type of a specific reference. This
may not appear to be a restriction, but in fact it is useful. For example the reference
variable

Person[:all:]* p;

is not quite equivalent to
Person* p;

because downcasts are not permitted on restricted references. Other standard views
include enq and op, which respectively define all the enquiries (reader methods) and all
the operations (writer methods) of a type. Individual views can be defined
(retrospectively where appropriate) which list particular methods of specific types.

The effect of restricting references is similar to that of reducing the access rights in
capabilities at the operating system level [19]. In this case the access rights are in effect
the rights to invoke particular methods. Access rights can never be increased, since a
more restricted reference cannot be assigned to a reference variable which is less

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

restrictive. This is also why downcasts are not permitted on restricted references. For a
more detailed description of restricted references see [17].

Deleting Objects

Like C++ Timor allows objects to be explicitly deleted, using an operator delete, which
takes a reference as its parameter. If an attempt is made to access a deleted object, an
exception is raised. In contrast with C++, the condition that an object has been deleted is
reliably detected by the run-time system (see section 5).

Because values associated with an object are private to that object, these can be
deleted with the object to which they belong. Similarly when a new value is assigned to a
value variable, the old value (however complex), can also immediately be deleted. These
possibilities reduce the need for garbage collection, but do not eliminate it entirely.

Parameter Passing

The Timor distinction between references and values has determined the nature of the
parameter passing mechanism. Each parameter is passed either as a value (i.e. a copy of a
value is passed/returned) or as a reference to an object, in which case a copy of a
reference (which can be restricted) is passed/returned. The latter is not equivalent to a
parameter passed by reference in the conventional sense, since references cannot be
generated for the internal values declared within an object.

Programs

The conventional notion of a program, i.e. an algorithm which is executed as a result of a
command to the operating system, and which on completion leaves behind no state
(except in so far as the programmer explicitly organises this by storing information in
files), has never fitted well with the OO paradigm. Languages such as Java and C++ rely
on special conventions such as "main" to allow them to be interfaced to the operating
system. Timor, in contrast, has no special program concept.

A Timor program is defined simply as a normal instance method of some type. As
for any Timor type, its state can be instantiated as a value or as an object, and the
corresponding instance method is invoked on this in the usual way. This also implies that
programs can be invoked not only at the OS level but also from within Timor programs.

A conventional program normally leaves no state behind. At the programming
language level his can easily be simulated in that the state is not assigned to a variable. In
the sequel the term "program" should be interpreted in this sense. Later in the paper it
will be explained how programs operate at the OS level. We now explain how a
"program" can be executed at the programming language level.

Because a type definition can include multiple instance methods, types can be
defined which in effect are collections of programs, e.g.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 109

type GamesCompendium {
instance:
 op void chess();
 op void draughts();
}

The chess program can be executed within some other program or object with an
expression such as:

GamesCompendium.init().chess();

In this case a new "value" of the type GamesCompendium is created for the duration of
the program execution. It is also possible to execute a program as an "object", e.g.

(new GamesCompendium.init()).chess();

Here a new state is instantiated as an object and then the instance method corresponding
to a program is invoked on this. Because the object is not assigned to a variable, the state
of the program no longer exists after the instance method execution ends. The persistence
concept which is developed in the following sections will be used to explain how an
extension of this idea allows an instance method of any type to be invoked at the OS level
as a program.

Other Timor Types

Timor's rich type system allows types to be defined in terms of the inheritance paradigm
[11, 12, 15] and/or as "adjectival" types [14, 16]. But since the methods of such types
(even the bracket methods of qualifying types) can be regarded as instance methods and
makers, they need not be discussed in detail here.

3 PERSISTENT OBJECTS

The basic Timor concepts described in the previous section correspond loosely to
concepts found in other object oriented languages, even if the details are often
significantly different. In contrast the Timor view of persistence differs radically from
that found in conventional object oriented languages. It has more in common with the
programming language style known as "orthogonal persistence" [2] which was first
presented in terms of the language PS-algol.

The starting point for understanding persistence in Timor is that everything is
persistent unless and until it is explicitly or implicitly deleted, or it becomes unreachable.
Hence there are no mechanisms for writing data to and/or reading data from conventional
files (although special types can be developed to achieve this, for example if an
application needs to interface with an existing file system).

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

Objects and Files

If data items can persist independently of the programs which use them, and if the same
data entity can be used by different programs, it is clear that particular items of persistent
data must be separately identifiable, in order that programs can indicate which data items
they need. There must also be a protection mechanism to ensure that only authorised
users and programs can gain access to persistent data items. These are features
conventionally provided in the file systems of operating systems. A conventional file
(hereafter called an OS file) is a named data container which can be protected. OO
languages generally use OS files as containers into which objects can be stored after they
have been flattened, i.e. converted into an "appropriate" format.

In contrast Timor implements the notion that a file is a persistent object which might
be, but is not necessarily implemented using an OS file. Like any other Timor object, it
has a state which can be accessed only via the methods defined for its type. Because any
kind of Timor type can be instantiated as a file object, all kinds of structural units (e.g.
programs, databases, subroutine libraries, etc.) can all be instantiated as files.

Capabilities

Like OS files, Timor file objects (hereafter referred to as "Timor files", or simply as
"files") need to be separately identifiable and need to be protected. For this purpose
Timor supports a special kind of reference, known as a capability. A Timor capability has
similar properties to those described in section 2 for references, except that it is visible
not only at the programming language level, but also at the OS level.

Capabilities in capability based operating systems consist primarily of a unique
identifier of the referenced object, together with a set of access rights. As we shall see in
the later discussion of implementations of Timor persistence (section 5), this structure
also forms the basis for Timor capabilities. The unique identifier within a capability must
provide a sufficient basis for locating a referenced file object, and in the context of
remote method invocations in the Internet this implies that such unique identifiers must
be very large.

The set of access rights within a capability defines the subset of the file's methods
which can be invoked by the holder of that capability. Different capabilities for the same
file can have different sets of access rights. Restrictions on access rights can be defined at
the Timor programming level using the same restriction mechanism as exists for normal
references (see section 2).

Syntactically capabilities resemble references. They are distinguished from
references by the use of a double asterisk. The relationship between capabilities and
references, and the reasons for distinguishing between them, are discussed in section 4.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 111

Instantiating Files and Local Objects

A file can be created from within a Timor program by invoking the create operator.
This functions analogously to the new operator, returning a capability for a new file
object. To create a file of type Person (see section 2) the programmer might write:

Person** p = create Person.init();

However, this would result in an overhead equivalent to the creation of an OS file.
Consequently it makes more sense, as in conventional systems, to bundle together a
number of person objects into a single file. In Timor terms this could be achieved simply
by using a collection type, e.g.

List<:Person:>** personList = create List<:Person:>.init();

but it would be equally possible, and perhaps preferable, to define a new type which
provides suitable semantic functions, e.g.

type PersonDatabase {
instance:
 op PersonId newPerson(String name; Date dob)
 throws PersonAlreadyExists;
 // the type PersonId is discussed in section 4.
 enq String personName(PersonId p)
 throws PersonDoesNotExist;
 op void changeAddress(PersonId p, String address)
 throws PersonDoesNotExist;
 op void marry(PersonId p1, p2) throws PersonDoesNotExist;
 ...
 enq int personCount();
 enq PersonId oldestPerson();
}

The final methods in this example illustrate that it is often useful not only to collect
similar objects together for efficiency reasons but also to provide further methods which
treat the collection as a useful single entity for summarising or comparison purposes.
Similarly the marry method illustrates how a method which might in other OO
languages have been implemented as a binary method (for the type Person) can
naturally be implemented as a normal instance method of a client type of Person.

Given such a type this could be instantiated as a file, as follows:
PersonDatabase** pdb = create PersonDatabase.init();

But it could equally well be instantiated as a normal local object, e.g.
PersonDatabase* pdb = new PersonDatabase.init();

Programs and Files

As was described earlier, a "program" is simply a normal instance method of some type.
Executing a program therefore requires an instance of the type in which the instance
method is defined, and the activation of the corresponding method on this instance. To
activate a program in the conventional sense, i.e. at the OS level, the user instantiates the

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

type in which his program is defined as a file object and uses the OS to invoke the
appropriate method. On completion of the program's execution its file can (but need not)
be deleted4.

Persistence of Local Objects

Local objects are always created within some file object, which may be either an object
intended to persist independently of individual program activations (e.g. a Person-
Database file object) or an object created especially for executing a program. Hence the
persistence of a local object (in so far as it is not explicitly deleted) coincides with the
persistence of the file object in which is created. In this sense local objects are by default
persistent and no special steps need be taken by a programmer to make them persistent.

Deleting Files

Temporary files created within a Timor program can be automatically deleted by the
compiler (e.g. when the capability is not assigned to a capability variable), or they can be
deleted explicitly. To delete a data file explicitly from within the code of a Timor
program, the delete operator is used in association with a file capability (which must
have a delete access right set). When a file is deleted all its local objects are implicitly
deleted.

Qualifiers for Files

Just as dynamic qualifiers can be instantiated as and applied to local objects to provide
features such as monitoring, and especially protection [14], so also qualifying types can
be instantiated as file objects and can be similarly used to monitor and protect Timor
files.

As for local objects, the effect of qualifying a file object is that the method
invocations to and from it can be intercepted and examined in bracket methods, which
may, but need not, permit the call to proceed. Dynamic qualifiers applied at the file level
treat a file object as a single entity. Thus call-in bracket methods defined at the file level
are always applied directly to the instance methods of the file object itself as they are
invoked, while call-out bracket methods are applied whenever either the file object itself
or any of its local objects invokes methods of other file objects [18].

4 CAPABILITIES AND REFERENCES

A detailed discussion of how capabilities and references are related at the language level
has been postponed until this point in order that the implications of a decision can be
clearly evaluated. At least the following possibilities arise.

4 The individual steps of file instantiation, method invocation and file deletion can of course be
hidden behind a macro or graphic interface of the command interpreter.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 113

• Capabilities are the same as references.
• Capabilities are subtypes (or supertypes) of references.
• Capabilities and references are indirectly related, via a common supertype.
• There is no direct relationship between capabilities and references.

Linguistic arguments undoubtedly favour the first solution. The language would
(apparently) be simpler and more regular, programmers would not have to distinguish
between two separate but related concepts, and local objects could be used
interchangeably with files.

Why Capabilities are not simply References

Despite the apparent attractiveness of treating capabilities and references completely
uniformly, there are practical arguments which suggest that this is not feasible. Here are
two.

First, it must be possible to locate a file simply by providing a capability for it. How
this can be implemented will be discussed later; it is sufficient to note here that this aim is
only achievable if capabilities contain fully unique identifiers for files, which must (e.g.
in the context of the Internet) be very large numbers. It would be enormously inefficient
to expect every reference for every local object to hold such numbers.

Second, garbage collection of the local objects within a file object must take place on
the basis of locating references for these objects (as in conventional OO programs). If no
distinction were made between capabilities and references, garbage collection would
become a world-wide activity (and would unrealistically assume that all references are
available on line when garbage collection occurs).

These two points are sufficiently convincing, in our view, to make the distinction
between capabilities and local references important, leading to a two level object system
as we have outlined in earlier sections of this paper.

Why Methods of Local Objects cannot be Invoked from Other Files

Given a distinction between references and capabilities, the question arises whether
references to local objects can be allowed to escape from a file, i.e. can they be passed as
parameters to methods of other files and stored in these files. This would not necessarily
produce a garbage collection problem, since the garbage collecting of a file could be
defined as the removal of local objects which are not reachable via local references
within the file. (Ignoring external references to local objects would be equivalent to the
practice in the Internet that the validity of bookmarks for local objects at remote sites is
not guaranteed.)

However, if local references were allowed to escape, then they would have to be
modified (assuming that they were normally represented as local addresses) to indicate
that they should not be interpreted as local to their new environment.

The question would then arise whether such references to local objects of foreign
files could be used directly to invoke the methods of these remote local objects. The risk

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

that the objects might have been garbage collected is not a convincing counterargument,
because in a system which allows explicit deletion of objects, a programmer must always
expect the possibility that an object which he invokes does not exist. However, there are
two other arguments which have convinced us that this possibility is not viable.

The first of these is the information hiding principle. The concept that a file is an
object (rather than that it merely contains objects) implies that it should be possible to
change the implementation of this object without clients being affected. This is a notion
with far-reaching consequences. It not only implies that the implementations of internal
objects might also change, but also that in a more drastic internal reorganisation some
objects might not exist at all in their earlier form, being replaced for example by objects
of other types, with different method definitions. It is for precisely this reason (at a lower
level) that the decision was made that Timor should not support an address generating
operator (in the style of & in C++), which would have made it impossible to guarantee the
proper working of programs following the change in an implementation for a local object.

The second argument against allowing the methods of local objects of one file to be
invoked from within the context of another file involves the use of Timor's qualifying
types. If a file were protected or synchronised by a qualifier (e.g. an ACL qualifier or a
reader-writer qualifier [14]), it would be impossible to ensure that the effects of these
qualifiers could not be bypassed by going directly to a local object of the supposedly
protected or synchronised file.

Reconciling Information Hiding with References and Capabilities

For the reasons discussed in the last section Timor does not allow the local objects of a
file to be invoked directly from outside the file to which they belong. The consequence of
this rule is that references may not be used as parameters or return values for the methods
of inter-file calls. How can this be avoided?

The simplest way would be to distinguish between files and local objects in type
definitions. With such a distinction the methods of some types ("file types") would be
permitted to have only capabilities and values as parameters/return values, while the
methods of others ("local types") would be permitted only references and values. This
would have the linguistic advantage that static type checking could occur, since the types
of parameters/return values for methods of "file types" would have to be declared
statically as capabilities or values, but not references. The disadvantage of this solution is
that types would in some cases need to be doubly defined, which clearly violates the
principles laid down for orthogonal persistence [2].

Another possibility would be to define a capability for any type T as a subtype of a
reference for T, i.e. T** is a subtype of T*. This has the positive effect that within a
particular file context a capability can always be used where a reference is expected. This
comes closer to upholding the principles of orthogonal persistence. But it has a severe
disadvantage: each inter-object method invocation (including all normal method
invocations between local objects) would require a run-time check to ensure that local
references are not being passed to or returned from inter-file calls. (The apparent

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 115

alternative of allowing references to be passed as parameters/return values without
allowing them to be used outside the local context does not help, as this also requires run-
time checks.)

Defining capabilities as supertypes of references would have the consequence that
any reference could be used as a capability, which is clearly inappropriate.

A different possibility is to treat T** and T* simply as separate types, unrelated
except via Handle, the common supertype of all references and capabilities. This has the
disadvantage that a capability cannot be used as a reference. On the other hand it allows
static type checking in that the compiler can examine the methods of a type and
determine which of these are suitable as inter-file methods (i.e. which do not have
references as parameters/return values). Only the latter can then be permitted to invoke
methods of objects which are statically referenced by capabilities. (Since Handle has no
methods, method invocations must always be separately associated either with capability
or reference variables in this solution.)

This solution has at least two advantages: (a) it allows the parameters/return values
for the methods of all types to be defined in any combination of capabilities, references
and values (though only methods which avoid local references can be treated as public
file methods) and (b) static type checking is possible. However, it has the disadvantage
that within a particular file context a capability cannot always be used where a reference
is expected (as for the subtyping solution). To make this possible, for each Timor type T
there is a type designated as T***, known as a type handle for T. This is a subtype of
Handle and a supertype of the types representing the various modes which a T type can
take (i.e. a value, a reference and a capability), in the example T, T* and T**. For cases
where polymorphism is appropriate, the type handle T*** can be used. But where
methods are invoked via a T*** variable, dynamic type checking is necessary. However,
since we anticipate that professional designers will in many cases consciously design
types either as files or as local objects (just as they do in current systems) type handles
are likely to be used only infrequently. Hence their introduction is an attempt to achieve
efficiency and static type checking in most situations, but without ruling out
polymorphism where this may be useful.

The effect of this is not that only types with parameters specified as type handles can
be instantiated as files – any type can in principle be instantiated as a file. The limitation
is that methods of a type which is instantiated as a file can only be invoked provided that
they have references neither as parameters nor as their return value. Thus for example the
instantiation of Person as a file (see section 3) is valid, despite the fact that there are
methods for setting and getting the abstract reference spouse. However, an attempt to
call these methods via a type handle could lead to a run-time error.

Referencing Objects of Other Files

For programmers unfamiliar with the idea that local references cannot be used globally
(i.e. outside the context of the file to which they are local), the question arises how an
object local to one file object might be identified uniquely in another and then later not

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

only be found but referenced again in the file object to which it belongs. Put simply, how
can a method of PersonDatabase (section 3) pass out identifiers for its Person objects
to other programs/file objects and then later not only receive them as parameters to other
methods but also obtain local references for them?

In a more conventional database system this would be achieved by using a unique
attribute of the local object (e.g. name and date of birth or some other "key") and then
using an index to find the local object (e.g. record). This is in principle a sensible
approach and can be applied to Timor files. However, Timor provides globally unique
identifiers (over time and space), even for local objects (although these do not appear
directly in references). Each file object has a world-wide unique identifier which can be
obtained from within the file using the pseudo variable fileNum. Similarly each local
object within a file has an object identifier which is unique within the file, which can be
obtained by using the identify operator (in conjunction with a reference for the object).
As these identifiers are never reallocated to other files or objects within a file, it is
possible for a programmer to define a type (such as PersonId in section 3) with values
which uniquely identify objects (either directly or indirectly) and which can be passed out
of the file as values.

A file object can later generate a reference for this identifier (when it is passed back
in as a parameter), by maintaining an index which maps unique identifiers onto local
references, with individual entries created when identifiers are constructed, before they
are passed out. As indicated above, this approach is reminiscent of conventional database
systems which find individual records using an indexing mechanism.

Can a file method have a guarantee that global identifiers for its local objects, when
passed back to it as parameters, are genuine? The ultimate answer to this question must
be negative, as the Timor compiler has no control over the values of types passed into it
from programs not written in Timor. Hence if security is an issue, a global identifier of a
local object cannot be considered to have the same properties as a capability (or local
reference). Before converting a global identifier for a local object into a reference, the
receiving file object must therefore in appropriate cases carry out additional checks (just
as the acceptance of a bank card must be supplemented by a check of the PIN, for
example). A special language mechanism is not defined for achieving this, as it may be
appropriate in some applications for programmers to take arbitrary measures to ensure the
integrity of their parameters. Of course standard library routines can be implemented to
assist with such protective measures, e.g. via a mechanism such as the password
capability technique [1]. Standard components can also be developed to map identifiers
onto references, and to support the related indexing operations.

5 IMPLEMENTING TIMOR PERSISTENCE

Implementing Timor's persistence concepts in a conventional OS environment such as
Unix or Windows is clearly not a straightforward activity. However, its key features
(including persistent files, capabilities) map directly onto the SPEEDOS operating

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 117

system5 [7], which is a new operating system being developed as a parallel project to
Timor. Hence an implementation of the Timor persistence concepts in an environment
controlled by the SPEEDOS system is a relatively straightforward matter, and needs no
further discussion.

SPEEDOS Emulator

It is of course important that Timor programs can be executed in environments which run
under the control of conventional operating systems. To achieve this we plan that the
Timor run-time environment consists of two almost independent parts:

• a conventional run-time system for managing the usual run-time activities needed
by any programming language, and

• a SPEEDOS emulator, which emulates those parts of the SPEEDOS kernel
necessary for managing persistent files and capabilities and for executing inter-
file method calls, as well as providing operating system access to Timor
resources.

A SPEEDOS emulator is required on each system which supports Timor. From the
viewpoint of implementing the concepts described in this paper, its key features are as
follows:

• Memory mapped files are used as containers for file objects, thus avoiding the
need to transform data structures between different formats and in effect
providing a form of direct addressability.

• The ability to access directory modules, which can be viewed superficially as
types that map string names onto capabilities. Such directories can of course be
defined and implemented in Timor.

In order to make capabilities created in Timor accessible at the operating system level,
such a directory system, using a predefined directory format known to the SPEEDOS
emulator, will be used. Facilities will then also be provided by the emulator to access
such capabilities in order to execute programs, etc.

Capabilities

To provide effective protection, capabilities must identify files uniquely both over time
and over space. To achieve this uniqueness capabilities contain very large numbers (see
section 3) which can be interpreted in such a way that the object can be located. (How
this works in detail is not relevant to the present paper.)

In addition they must clearly define the file access permitted to the holder of the
capability. In contrast with conventional file systems (e.g. in Unix or Windows) the
access rights in capabilities are not expressed in terms of basic rights such as the
permission to read or write data, but as a set of permissions indicating the right to invoke
methods of the file object.

5 www.speedos-security.org

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

Organisation of File Containers

Each file container holds a local object list, which locates instance records of its internal
objects when references are evaluated. The first entry within the object list (i.e. object 0)
locates the instance record of the main object (e.g. the PersonDatabase instance).
References are not implemented as direct pointers but contain an indirection via the
object list. This means that when an object is explicitly deleted, its object list entry can be
so marked. If an attempt is made to access a deleted object, this is detected from its entry
in the object table and an exception is raised.

The state of a file consists of object 0 and any objects which can be reached directly
or indirectly from the object 0 instance record. Other objects in the object list can be
deleted and their space reclaimed. Because only one real pointer to an object exists (in the
object table), physical relocation of objects is simple.

Garbage Collection

Garbage collection can be considered at two levels. At the level of files (where pointers
are capabilities) it would be absurd to use conventional garbage collection techniques. It
is clear that a search of all possible Timor programs and files (worldwide in the Internet)
to find capabilities for other files, and then delete those files for which no capability
exists, would be a fruitless and exorbitantly expensive procedure (even if one could
guarantee that all files containing capabilities were actually available on line to search).
We therefore adopt the conventional view found in file systems, viz. that files are
explicitly deleted. No attempt is made to garbage collect on the basis of capabilities.

Garbage collection within individual files is a quite different matter. We have
already indicated that each file serves as a separate persistent root, and garbage collection
of an individual file, if this is inactive6, consists of locating all objects reachable from
object 0 and deleting the rest.

In general garbage collection activities are considerably reduced in comparison with
a language such as Java (a) because objects can be deleted explicitly and (b) because
Timor distinguishes between objects and values. If an object is deleted, all its values can
be deleted, because by definition there are no references to values. What remains when an
object is deleted is a single entry in the object table, which indicates the demise of the
object. Otherwise its entire state, and (recursively) the states of all its values, can be
deleted and the space explicitly reclaimed.

If a new (complex) value is assigned to a value variable of some object, it is always
possible to delete the old value and reclaim the space, since by definition there are no
references to value variables. Garbage collection within a file can therefore be confined
to locating objects (but not values within objects) for which no references exist.

6 For garbage collection of an active file, the references in the activation records of active threads must also
be taken into consideration.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 119

6 RELATED WORK

Most OO languages provide no direct support for persistence and for the protection of
persistent information. In contrast Java has basic extensions which assist with persistence
but not protection (which is provided in Timor via both capabilities and dynamic
qualifiers). We therefore now briefly consider persistence in Java.

In Java, unlike Timor, persistence is not automatic, but must be explicitly organised
by the programmer. For this purpose the Serializable interface can be used. This
removes from the programmer the burden of flattening objects, using a deep copy
approach, i.e. each object reachable from the specified object (provided that it also
extends the Serializable interface) is serialized, and the result can for example be
written out to a file and then later read back and the objects reconstructed. Changes made
to an object after it has been written out are not reflected in the file, i.e. such objects are
saved but are not really persistent in the Timor sense. Furthermore, if two objects O1 and
O2 which share a third object S are separately written out and read back in, the sharing
semantic is lost (because S is copied separately with O1 and O2). In contrast, the Timor
approach to persistence has no difficulties with semantics of shared objects, because
flattening never needs to happen.

Major objects in Java programs (equivalent to Timor files) cannot simply be defined
as persistent and their methods directly invoked from other (external) objects, as in
Timor. However Java provides a remote method invocation (RMI) mechanism which
allows Java programmers to achieve an apparently similar effect. Provided that a Java
object belongs to a class which extends Remote, something like a Timor "file" object can
be set up and its methods can be invoked from external objects. But because objects are
not naturally persistent, the object must have been activated before it can be invoked, i.e.
remote objects, unlike Timor files, are active entities with their own thread(s).

Classes that appear as parameters and return values of the methods of classes which
extend Remote have to be defined as Serializable, because these are always passed
as copies (even if this was not the intention of the programmer and even if this changes
the semantics of the class when an instance of the class is used locally). In practice this
corresponds loosely to Timor's decision not to allow references for local objects to appear
on a file interface. But if objects are passed by value in Timor, flattening is of course
unnecessary, and the semantics are quite clear and consistent.

Java provides no protection mechanisms for controlling access to major objects. In
contrast Timor allows capabilities which establish a client's right to invoke a file (i.e. a
remote object). Capabilities can restrict a client's access to a subset of the file's methods.
In addition, the mechanism for qualifying objects using bracket methods can be
arbitrarily programmed to provide access control lists, password checking and an endless
number of other protection checks.

Proposals have been made for adding persistence to Java (cf. [3, 9, 10]), based on the
concept of orthogonal persistence first proposed in [2]. With this approach a Java
programmer can identify a "root of persistence", such that all objects reachable from this

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

are automatically persistent. If a program terminates normally the persistent store is
automatically updated, but on abnormal termination the transaction associated with the
program aborts and the store is not updated.

According to a recent tutorial [24] Orthogonal Persistent Java (OPJ) now supports
persistence for remotely invocable objects. The main difference from standard RMI is
that remote objects are created once (as a root of persistence). However, a program is
needed to make such an object available for remote use (i.e. to export it by binding it to
an RMI registry), and its process then waits for incoming calls. Whenever the remote
system is restarted this exportation process must be repeated. Such remote objects behave
more like Timor files, but their persistence must be actively maintained, and the kind of
protection mechanisms supported by Timor are not available. References for internal
objects of a remote persistent object are passed by copying (see above for normal Java),
but it has been suggested that future work in this area could lead to the idea that such
objects are only partially copied [23]. But it is not clear how this could solve the semantic
problem mentioned above.

7 CONCLUSION

The paper presents a new concept for supporting persistent objects in programming
languages. Unfortunately space restrictions have prevented us from describing some
closely related concepts in detail. In addition to its support for persistent objects, Timor
also supports persistent processes, following the in-process or procedure-oriented model
(cf.[20, 22]). In addition it has a simple concept for managing the distribution of
persistent files (and processes) over remote computers. These themes, which affect a
number of issues discussed in the present paper (e.g. garbage collection, inter file calls),
are discussed in detail in a companion paper, which is scheduled to appear in the next
issue of the Journal of Object Technology.

One of the key applications for persistence is database systems, and in this respect
Timor provides further relevant features which are indispensable for a modern database
system.

Since the idea of transactions was first proposed, this technique has assumed a
central role in conventional database system design (cf. [8]). Timor does not support a
special transaction technique, because qualifying types [14] can be programmed to
provide transaction support on a general purpose basis, allowing different policies to be
adopted for individual systems (e.g. with an optimistic or a pessimistic approach) [17].

Conventional statically typed OO languages do not include a mechanism which
allows an object to continue to exist in the face of changes to its type, for example to
reflect role changes in the real world. For database applications such role changes are of
course essential. In Timor they can easily be modelled using attribute types dynamically.
The static use of attribute types is described in [16]; in a future paper we will show how it
is possible dynamically to add attributes to and remove them from individual objects in a
type safe manner.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

When support for transactions and for changing object roles is combined with the
persistence, distribution and protection concepts described in this paper, it becomes
evident that Timor can be viewed as an object oriented database language.

REFERENCES

[1] M. Anderson, R. D. Pose, and C. S. Wallace, "A Password-Capability
System," The Computer Journal, vol. 29, no. 1, Feb. 1986, pp. 1-8, 1986.

[2] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R.
Morrison, "An Approach to Persistent Programming," The Computer Journal,
vol. 26, no. 4, pp. 360-365, 1983.

[3] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence, "An
Orthogonally Persistent Java," ACM Sigmod Record, vol. 25, no. 4, 1996.

[4] A. Bensoussan, C. T. Clingen, and E. C. Daley, "The MULTICS Virtual
Memory: Concept and Design," Comm. ACM, vol. 15, no. 5, pp. 308-318,
1972.

[5] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. T.
Leavens, and B. Pierce, "On Binary Methods," Theory and Practice of Object
Systems, vol. 1, no. 3, pp. 221-242, 1995.

[6] R. C. Daley and J. B. Dennis, "Virtual Memory, Processes and Sharing in
MULTICS," Comm. ACM, vol. 11, no. 5, pp. 306-312, 1968.

[7] K. Espenlaub, "Design of the SPEEDOS Operating System Kernel," PhD
Thesis, Department of Computer Structures, University of Ulm, 2005.

[8] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
San Francisco. Morgan Kaufmann, 1993.

[9] M. J. Jordan, "Early Experiences with Persistent Java," The First International
Conference on Persistence and Java, Glasgow, 1996.

[10] M. J. Jordan, "A Comparative Study of Persistence Mechanisms for the Java
Platform," http://www.sunlabs.com/techrep/2004/smli_tr-2004-136.pdf, 2004.

[11] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code
Re-use in Timor," 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
2002, Conferences in Research and Practice in Information Technology, vol.
10, pp. 35-43.

[12] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common
Abstract Ancestor in Timor," Journal of Object Technology, vol. 1, no. 1, pp.
81-106, www.jot.fm/issues/issue_2002_05/article2, 2002.

PERSISTENT OBJECTS AND CAPABILITIES IN TIMOR

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

[13] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding
Seriously in an Object Oriented Context," Net.ObjectDays, Erfurt, Germany,
2003, pp. 51-65.

[14] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types
with Bracket Methods in Timor," Journal of Object Technology, vol. 3, no. 1,
pp. 101-121, www.jot.fm/issues/issue_2004_01/article1, 2004.

[15] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting Multiple and Repeated
Parts in Timor," Journal of Object Technology, vol. 3, no. 10, pp. 99-120,
www.jot.fm/issues/issue_2004_11/article1, 2004.

[16] J. L. Keedy, G. Menger, and C. Heinlein, "Diamond Inheritance and Attribute
Types in Timor," Journal of Object Technology, vol. 3, no. 10, pp. 121-142,
www.jot.fm/issues/issue_2004_11/article2, 2004.

[17] J. L. Keedy, K. Espenlaub, C. Heinlein, G. Menger, F. Henskens, and M.
Hannaford, "Support for Object Oriented Transactions in Timor," Journal of
Object Technology, vol 5, no. 2, March-April 2006, pp. 103-124
http://www.jot.fm//issues/issue_2006_03/article1.

[18] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Call-out Bracket
Methods in Timor," Journal of Object Technology, vol. 5, no. 1, 2006, pp. 51-
67, http://www.jot.fm/issues/issue_2006_01/article1.

[19] B. W. Lampson, "Protection," Proc. 5th Princeton Symposium on Information
Sciences and Systems, 1971.

[20] H. C. Lauer and R. M. Needham, "On the Duality of Operating System
Structures," ACM Operating Systems Review, vol. 13, no. 2, pp. 3-19, 1979.

[21] D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[22] K. Ramamohanarao, "A New Model for Job Management Systems," PhD
Thesis, Department of Computer Science, Monash University, 1980.

[23] S. Spence, "Distribution Support for PJama",
http://www.dcs.gla.ac.uk/~susan/perdis.html, 2004.

[24] Sun MicroSystems, "The OPJ Tutorial",
http://research.sun.com/forest/opj.tutorial.tutorial.html, 2000.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 123

About the authors

J. Leslie Keedy retired from the position of Professor and Head,
Department of Computer Structures, University of Ulm, Germany in
2005, where he previously led the Timor language design and the
Speedos operating system design groups. His email address is
keedy@jlkeedy.net. His biography can be visited at
http://www.jlkeedy.net/biography_short.php

Klaus Espenlaub completed his Ph.D. in Computer Science at the
University of Ulm in 2005. He is currently employed by InnoTek
Systemberatung GmbH. His research interests include secure
operating systems, protection mechanisms and computer architecture.
His email address is klaus@espenlaub.com.

Christian Heinlein has been working as a Scientific Assistant at the
University of Ulm, Germany, where he conducted the research project
APPLEs, that aims at developing “Advanced Procedural
Programming Languages,” which are both conceptually simpler and
more flexible than standard object-oriented languages. He can be
reached at christian.heinlein@uni-ulm.de. See also
www.informatik.uni-ulm.de/rs/mitarbeiter/ch/apples.

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. She recently retired from the Department
of Computer Structures at the University of Ulm. Her research
interests include programming language design and software
engineering. Her email address is gisela.menger@uni-ulm.de.

