

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 3, March - April 2007

Cite this column as follows: Mahesh Dodani: “Oh, What a Tangled Web We Weave!”, in Journal
of Object Technology, vol. 6. no. 3, March - April 2007, pp. 33 - 38
http://www.jot.fm/issues/issue_2007_03/column3

Oh, What a Tangled Web We Weave!
Mahesh H. Dodani, IBM Software, U.S.A.

1 ENTERPRISE 2.0?

“Situational applications are a way for people with domain expertise to create
applications in a very short time. Many IT shops have a backlog of small little projects
that their customers want. If it takes 3 weeks to get to a project, the need is gone before
the developer even starts coding. We want to give knowledge workers the tools to solve
their own problems.” – http://devzone.zend.com/node/view/id/678

As I have discussed in several earlier articles focusing on SOA, the key reason for its
popularity is as an enabler for enterprises that need to facilitate business innovation by
aligning to a flexible and agile IT. As I reported on the SOA state-of-the-art
(http://www.jot.fm/issues/issue_2006_11/column5), SOA has crossed the chasm and
become the mainstream IT approach for enterprises.

However, change happens! As enterprises have evolved and tapped into flexible and
innovative business models as well as their business ecosystems, they are facing the
following issues:

• The ability of enterprises to create partnerships quickly to extend their business
ecosystem has the side effect of requiring extensive integration work. Each of
these integration work requests usually requires many months to complete using
the current technologies and supporting products & tools.

• However, many of these business collaborations are short lived, and typically last
for a few months. Furthermore, the applications that are needed to support these
collaborations are needed just-in-time, have large variability in their requirements
for capabilities and data, and can usually be disposed off after the collaborations
are completed.

• External business data and applications that could significantly impact results is
constantly changing, and need to be integrated into the applications based on the
needs of the business collaboration or situation being addressed.

During the same time frame as the SOA evolution, Web 2.0 has been evolving at a very
fast pace to leverage the technologies that radically simplify the access to applications
and data combined with the ability to harness the collective intelligence of social
networks to build rich internet applications. Web 2.0 is best described in

 OH, WHAT A TANGLED WEB WE WEAVE!

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html?page=1 and is based on the following three broad patterns as shown in Figure 1:

• The first key pattern is software as a service. It enables end users to adopt
capabilities directly, and gain immediate benefits from it. Many Web 2.0 offerings
have a very low cost of entry – another distinguishing characteristic that levels the
playing field for small businesses. And of course they use the public
infrastructure, so anyone in the world can walk up and use it with a web browser.

• The second key pattern is the use of community mechanisms. Most Web 2.0
businesses use mechanisms to enable users to play a part in the service, adding
value as they use it. For example, eBay uses ratings to measure the reputations of
vendors, which leads to more trustworthy transactions. Others include all kinds of
social networking features that help people find each other. Tagging further helps
people filter information for relevance. There are diverse kinds of community
mechanisms – only a few are listed in Figure 1.

• The third pattern is the simplicity of the user experience and the various interfaces
by which developers can access data and capabilities. For end users, have seen
significant improvements in user interface design and responsiveness based on
AJAX (Asynchronous JavaScript and XML) methods. For developers, many
simple and highly scalable mechanisms have emerged, such as feeds, simple
extension mechanisms, and well-behaved HTTP-based APIs. Developers are
building all kinds of situational applications on top of services, remixing them in
various ways, without ever having to contact the service providers. The result is a
rich, decentralized Web 2.0 business ecosystem.

Figure 1: Web 2.0 Principle Patterns

Users add value
• Recommendations
• Social networking features
• Tagging
• User comments
• Community rights

managementWeb 2.0

So
ftw

ar
e

as
 a

SE
RVIC

E

SIMPLE user
interface and data

services

COMMUNITY

mechanisms

Service, not software
• User-driven adoption
• Value on demand
• Low cost of entry
• Public infrastructure

• Responsive UIs (Ajax)
• Feeds (Atom, RSS)
• Simple extensions
• Mashups (REST APIs)

Easy to use,
easy to remix

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 27

There are several wonderful examples of companies that have used Web 2.0 technologies
to provide rich internet applications, including Google Maps
(http://www.google.com/maps), Flickr photo sharing (http://www.flickr.com/), and
YouOS web operating system (https://www.youos.com/.) Several new businesses have
been built purely by integrating content and data using Web 2.0 technologies, including
Zillow (http://www.zillow.com/) for real estate sales, HousingMaps for rentals
(http://www.housingmaps.com/), and literally thousands of so-called mashups
(http://www.programmableweb.com/mashups.) Mashups are websites or Web 2.0
applications that use content from more than one source to create a completely new
service. Content used in mashups is typically sourced from a third party via a public
interface or API.

As you would expect these mashups and Web 2.0 technologies are converging with
the SOA approaches to handle the situational issues faced by enterprises. Note that the
Web 2.0 patterns shown in Figure 1 are also applicable to the enterprise. While retaining
full control over a private infrastructure, enterprises can still take full advantage of
community mechanisms and simple interfaces. Community mechanisms can help people
connect within a large organization and across geographic boundaries, just as they help
people connect across the public infrastructure. Simple interfaces promise to increase
adoption and help spur situational applications within the enterprises.

Enterprise situational applications are built to solve an immediate, specific business
problem. These applications are built by blending externally available services,
applications and data with enterprise specific content and services. Situational
applications are also information centric, focusing on manipulating static and increasingly
dynamic content. Situational applications development are accelerated by community-
based collaborations.

For the rest of this paper, we present enterprise level support for Web 2.0
technologies and capabilities and how they can be used to build situational applications.

2 ENTERPRISE WEB 2.0 TECHNOLOGIES

Let us start by outlining the main Web 2.0 technology attributes appropriate for the
enterprise as shown in Figure 2:

• AJAX, shorthand for Asynchronous JavaScript and XML, to facilitate information
and services to be mashed up into new interactive portals. AJAX is a web
development technique for creating interactive web applications. The intent is to
make web pages feel more responsive by exchanging small amounts of data with
the server behind the scenes, so that the entire web page does not have to be
reloaded each time the user requests a change. This is meant to increase the web
pages' interactivity, speed, and usability. The Ajax technique uses a combination
of technologies to achieve this usability including XHTML (or HTML) and CSS

 OH, WHAT A TANGLED WEB WE WEAVE!

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

for marking up and styling information, DOM accessed with a client-side
scripting language (such as JavaScript and Jscript) to dynamically display and
interact with the information presented, XMLHttpRequest object to exchange data
asynchronously with the web server, and XML for transferring data between the
server and client.

• A lightweight programming model that relies extensively on REST
(Representational State Transfer) to transmit domain-specific XML data over
HTTP. REST is an alternative to SOAP or other web services based programming
models, and can work without an additional messaging layer or session tracking
via HTTP cookies

• Changes are handled via RSS/ATOM feeds, which allow someone to link not just
to a page, but to subscribe to it and get notified every time that page changes.

• Wikis are an effective tool for mass collaborative authoring of content. They
allow users to easily add, remove, and otherwise edit and change available
content. This ease of interaction and operation makes a wiki an effective tool to
control unique, hard-to-recreate data sources that get richer as more people use
them.

Figure 2: Enterprise Web 2.0 Patterns

For enterprises to take advantage of these technologies, they need to leverage the
following capabilities:

• These applications must be able to manipulate content very effectively. The Web
is all about content - HTML, forms, images, audio, etc. Enterprise application
interfaces and data surface through Web pages and feeds. Mashups are an

ON P
REM

IS
E

se
rv

ice
s

SIMPLE user
interface and data

services

COMMUNITY

mechanisms

Service, not software
• User-driven adoption
• Value on demand
• Low cost of entry
• Controlled deployment

on private infrastructure

Enterprise

Web 2.0

Users add value
• Recommendations
• Social networking features
• Tagging
• User comments
• Community rights

management

Easy to use,
easy to remix
• Responsive UIs (Ajax)
• Feeds (Atom, RSS)
• Simple extensions
• Mashups (REST APIs)

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 29

additional, personal approach to integration that builds on content and
complements services.

• Services, not packaged software, with cost-effective scalability is the primary
manner in which content is made available and manipulated. Services must be
usable on-demand, and with ease using the technologies highlighted above.

• The power of communities must be harnessed in all aspects of developing and
maintaining the enterprise applications. Users must be treated and trusted as co-
developers, in a reflection of open source development practices. The open source
dictum, "release early and release often” should be adhered to; thus, allowing the
applications to be in perpetual beta mode.

Note that enterprise strength products and tools must support all of the above capabilities.
One way to enable such situational enterprise applications is via an application wiki.

Application Wikis are environments for collaborative, situational (ad-hoc) dynamic
content development with the following capabilities:

• They facilitate web solutions to be developed by non-programmers who are
domain experts - i.e. mash-ups, dashboards, etc.

• They use a mark-up based client development strategy, employing plug-in models
for easy extensibility.

• Thy allow scripters to easily weave together a “good enough” solutions.
• Combined runtime and lightweight assembly capabilities.

IBM QEDWiki (Quick and Easy Develop Wiki)
http://services.alphaworks.ibm.com/qedwiki/ is a browser-based tool used to create
simple enterprise mash-ups. A mash-up maker is a development environment for
enterprise mash-ups by assembling software components (or services) made available by
content providers. QEDWiki is a unique framework that provides both Web users and
developers with a single Web application framework for hosting and developing a broad
range of Web 2.0 applications. QEDWiki can be used to develop a wide range of Web
applications, including situational applications. QEDWiki also provides Web application
developers with a flexible and extensible framework for rapid prototyping applications.
Business users can quickly prototype and build ad-hoc situational applications. QEDWiki
provides mash-up developers with a framework for building reusable, tag-basedwidgets
or services. Business users who wish to create their own applications can use these
services (or widgets.)

One of the examples that is showcased for QEDWiki is a retail store enterprise mash-
up. Hardware store chains are affected by weather for example, rain means they need to
make sure their stores have plenty of Retail stores gutter repair supplies, and snow means
supplies of snow shovels and snow blowers. The showcased enterprise mash-up,
combines a service pulling data from the corporate ERP system to display each stores
inventory with a live feed weather service. As each store is highlighted, the mash-up
displays the weather for that store along with the relevant inventory. Managers can
quickly decide to transfer inventory between stores or place orders with vendors. By

 OH, WHAT A TANGLED WEB WE WEAVE!

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

exposing these feeds as web services to their vendors, the enterprise mash-up can be
extended to help them predict their needs as well. Services created for one need begin to
feed other needs as well. You can watch the video that shows the QEDWiki in action at
http://www.youtube.com/watch?v=ckGfhlZW0BY.

3 WHEN FIRST WE PRACTICE TO DECEIVE

Let me end this article on a cautionary note. The astute reader would have noticed that the
entire article focused primarily on the technology side of the equation of the Enterprise
2.0. However, if it is to succeed, we must focus on the more difficult sociology/culture
side of the equation. How do we change the mindset of the enterprise workers and users
to be able to develop and use these situational applications as part of their day-to-day
work? Our experience to date is that it is very difficult and time-consuming to get such
far-reaching cultural changes within an enterprise implemented in a controlled fashion.
However, as people use the same applications outside of their work environment and get
comfortable with the approach, we may be able to accelerate the adoption within the
enterprise. The key to this success is the realization that these situational applications are
constrained to handling a work effort just-in-time, and that they will most likely be
disposed after the work has completed. It may therefore be easier to motivate the users to
be empowered in defining the best way to support the work they are doing, and take
advantage of the short delta in skills needed to enable them. These are exciting times for
everyone in business – the ability to actively participate in developing the right tools for
the job!

About the author
Mahesh Dodani is a software architect at IBM. His primary interests
are in enabling communities of practitioners to design and build
complex business solutions. He can be reached at dodani@us.ibm.com.

