
Vol. 6, No. 3, March–Aprile 2007

A Dynamic Operational Semantics for JVML

Nadia Belblidia
Computer Security Laboratory, Concordia Institute for Information Systems En-
gineering, Concordia University, Montreal, Quebec, Canada.
Mourad Debbabi
Computer Security Laboratory, Concordia Institute for Information Systems En-
gineering, Concordia University, Montreal, Quebec, Canada.

In this papera, we present a dynamic semantics for the Java Virtual Machine Language
(JVML). The semantics is specified in an operational style according to the syntactic
structure of JVML programs. In order to ascribe meanings to threading, the semantics
is made small-step and is structured in two layers: The first layer consists of judgements
that capture the semantics of sequential JVML programs in isolation. The second
layer consists of judgements that capture the parallel execution of JVML threads.
The semantics presented in this paper is a faithful and formal transcription of JVML
specification as described in [1]. Besides, we provide full account details for the
most technical and tricky aspects of JVML such as multi-threading, synchronization,
method invocations, exception handling, object creation, object’s fields manipulation,
stack manipulation, local variable access, modifiers, etc. The presented semantics
is, to the best of our knowledge, the first dynamic semantics of JVML that provides
semantics for that many features within the same framework.

aThis research is funded under the NSERC DND partnership program in collaboration
with DRDC Valcartier(Defence Research and Development Canada) and Bell Canada.

1 MOTIVATIONS AND BACKGROUND

Java is a very popular and appealing language to millions of software developers.
Moreover, it is largely deployed in the enterprize world since it powers a plethora of
applications and services. Its market share is rapidly increasing and nowadays it is
heavily present in the most prominent e-business platforms. Furthermore, Java is
omnipresent in mobile Internet-enabled devices such as cellular phones (more than
750 millions of Java-enabled units are already deployed). It is then of paramount
importance to measure and control the key quality attributes of the Java platform.
An essential step towards such an aim is to grasp the semantic underpinnings of the
Java platform, which is very well known to be subtle, complex, sophisticated and
highly technical. Therefore, there is a desideratum in compiling this semantics into
a structured, rigorous, robust, and faithful description.

The primary objective of this work is to grasp the semantics of Java runtime (Java
Virtual Machine Language or JVML) and to compile the underlying meanings into

Cite this document as follows: Nadia Belblidia, Mourad Debbabi: A Dynamic Operational
Semantics for JVML , in Journal of Object Technology, vol. 6, no. 3, March–Aprile 2007,
pages 71–100,
http://www.jot.fm/issues/issues 2007 03/article2

http://www.jot.fm/issues/issues_2007_03/article2

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

a formal dynamic semantics. JVML is the language interpreted by the Java Virtual
Machine (JVM), which is the heart of any Java platform.

One can ask a legitimate question: Why another semantics for JVML? The right
answer to this question is:

• In spite of the intensive activities of the research community in formalizing
JVML semantics, it remains that there is no contribution that formally ad-
dresses, within the same framework, the meanings of JVML features such as
multi-threading, synchronization, exception handling, the four method invo-
cations and the use of modifiers.

• Most of the proposed research contributions so far consider only one single
thread of execution even though multi-threading is a keystone in Java.

• In the very few proposals where multi-threading has been addressed, it has
been done in a way that is no faithful to the official JVML specification. For
instance, no distinction is made between implementing the interface Runnable
or extending the class Thread.

Besides these arguments, the main motivation that led us to the formalization of
JVML stems from a security investigation of the Java platform. Actually, we needed
a formalization that accounts, at the same time and within the same framework,
for all the aforementioned JVML aspects. Such a requirement was not satisfied
by the state of the art contributions on JVML semantics. The semantics that we
report in this paper is a small-step operational style structured in two-layers dynamic
semantics: The first layer consists of judgements that capture the semantics of
sequential JVML programs in isolation. The second layer consists of judgements
that capture the parallel execution of JVML threads.

The rest of the paper is organized as follows. Section 2 is a discussion of the state
of the art on Java and JVML semantics. Section 3 is devoted to the description of
the JVML syntax. Section 4 describes the ingredients that are used in the semantic
description: Data types, computable values, dynamic environments, stores, frames
and configurations. The semantic rules are given in section 5 and finally some
concluding remarks are reported in section 6.

2 RELATED WORK

The closest proposals to our contribution are those defining a formal semantics to
JVML. Most of the research initiatives describing the semantics of JVML subsets
use a small-step structural operational semantics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
The main objective of these proposals is either to purely study the semantics or
put the emphasis on typing constraints. In his papers [2, 3], Bertelsen presents a
very detailed semantics of a subset of JVML. However, his work does not address

72 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

3 JVML SYNTAX

the semantics of multi-threading and synchronization (no meaning is ascribed to
monitorenter and monitorexit instructions). Freund and Mitchell, in [6], use
a type system to investigate the problem of object initialization and subroutines.
The authors add support for objects, classes, interfaces, arrays and exceptions in
[5, 7]. Nevertheless, Freund and Mitchell’s contributions considers a mono-threaded
virtual machine (no support for multi-threading and synchronization). This is un-
derstandable since the primary intent of the authors was to put the emphasis on
initialization rather than completeness of JVML semantics. Hagiya and Tozawa in
[8] and Klein and Wildmoser in [9] define operational semantics for JVML subsets
with subroutines in order to explore type safety issues. However, in these proposals,
method invocations, exception handling and multi-threading have not been taken
into account. In [4], Bigliardi and Laneve isolate a sub-language of JVML with
thread creation and mutual exclusion and define an operational semantics together
with a formal verifier that enforces basic safety properties on threads involving lock
and unlock operations. In their work, the authors did not handle modifiers and did
not consider the instructions invokespecial, invokestatic and invokeinterface.
In addition, their semantic handling of invokevirtual is not compliant with the
official specification since they only consider void methods without arguments. Fur-
thermore, they did not address an interesting and subtle issue, which is the semantic
treatment of thread creation by either extending the class Thread or by implement-
ing the interface Runnable. In fact, they use an instruction start(σ) as an artifact
to the instruction invokevirtual java/lang/Thread/start(). In another simi-
lar paper of Laneve [10], the invoke method instructions have not been taken into
account. Siveroni [11, 12] presents an operational semantics for a language that
models the Java Card virtual machine including exception handling, array objects
and subroutines but lacking support for multi-threading aspect. Stata and Abadi
[13] use type systems for bytecode verification focussing on subroutine safety. They
define an operational semantics for a JVML subset containing 9 instructions inc,

pop, push, load, store, if, jsr, ret and halt. Again this is highly under-
standable since the authors were mainly interested in subroutine safety. Börger and
Schulte [14] use operational semantics of Abstract State Machines (ASMs) to de-
scribe the JVM with the goal of defining a platform for correct compilation of Java
code.

None of the previously proposed semantics of JVML handles, in a thorough way,
the semantics of all the major aspects of the language, at the same time and within
the same framework.

3 JVML SYNTAX

In this section, we present the syntax of JVML. It is presented in Table 1 in the
BNF form together with the notation that is used along this paper.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 73

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

Instruction ::= aload i | iload i
| astore i | istore i
| pop | push n
| dup | iadd

| new i | ifeq adr
| ifne adr | goto adr
| return | ireturn

| areturn | athrow i
| monitorenter | monitorexit

| invokevirtual i | invokespecial i
| invokestatic i | invokeinterface i,n
| getstatic i | putstatic i
| getfield i | putfield i

Table 1: JVML Bytecode Grammar

Notation

• Given a map m from A to B, the domain of m, A, is written Dom(m).

• Given a map f , we write f [x 7→ v] to denote the updating operation of f that
yields a map that is equivalent to f except that x is from now on associated
with v.

• Given a record space D = 〈f1 : D1, f2 : D2, . . . , fn : Dn〉 and an element e
of type D, the access to the field fi of e is written e.fi and the update of
the fields fi1, . . . , fik in e by the values vi1, . . . , vik ∈ Di1, . . . , Dik is written
e[fi1 ← vi1, . . . , fik ← vik]. If an update of a field fij with a value vij is
subjected to a condition C, we will use the notation e.[. . . , fij ← vij/C, . . .].

• Given a type τ , we write (τ)-list to denote the type of lists having elements
of type τ .

• Given a type τ , we write (τ)-set to denote the type of sets having elements
of type τ .

• The space Identifier classifies identifiers whereas NoneType classifies the
unique value None.

4 SEMANTIC INGREDIENTS

In this section, we define the ingredients that are used in the semantic description.
Accordingly, we introduce and define the notions of data type, computable value,
environment, memory store, frame and configuration. A data type refers to a type

74 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

4 SEMANTIC INGREDIENTS

Type ::= PrimitiveType | ReferenceType
ReferenceType ::= ClassType | InterfaceType
ResultType ::= Type | void

ClassType ::= Identifier

InterfaceType ::= Identifier

Table 2: Type Algebra

Value ::= Location | Constant | Null

Table 3: Runtime Values

that is used in JVML. A computable value refers to a dynamic value that is the
result of a semantic evaluation of a given JVML expression. An environment is the
context that holds the definitions under which the evaluation is done. It corresponds
to the actual constant pool of a class file. Memory store is an abstraction of both
the memory storage and the heap. The proposed semantics has the form of a small
step operational semantics that is based on evolving configurations.

Type Algebra

We describe in Table 2 the type algebra. We consider two categories of types: Prim-
itive types and reference types. Reference types are either class types or interface
types. An object is a dynamically created class instance and reference values are
pointers to these objects.

Computable Values

We define in Table 3 the computable values. Two kinds of values are considered: Lo-
cations and constants. Locations are addresses and constants are values of primitive
types. The particular reference value Null refers to no object.

Environment

We define hereafter dynamic environments. We assume that the reader is familiar
with the class file format as described in the official specification of JVML [1].
The environment as described in Table 4 and Table 5 models the different program
declarations and is represented as a map that associates a set of classes to a set of
reference types. A class is a record containing a constant pool, a super-class, a set
of interfaces, a list of fields, a map that associates values to static fields, a list of
methods, two flags that indicate whether the class is initialized or not and if the

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 75

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

class is an interface and a monitor. A constant pool is a map that associates a set
of integers with a set of constant pool entries. A constant pool entry can be a class
type, a pair of a method signature and a supposed class, or a pair of a field signature
and a supposed class. The supposed class represents the class in which the method
or the field is supposed to be found. The value None for the super class indicates
that the class does not have a super class. The monitor associated with a class
is a record of three components: threadOwner (thread identifier that locked the
class), depth (the number of times this class has been locked by this same thread)
and a waitList(a list of all the threads blocked waiting for this class). A method
consists of a method signature, a class name in which the method has been defined,
a set of modifiers, a bytecode sequence, a list of method variables and an exception
table. A method signature is a record that contains the method’s name, the types of
arguments and the result type. The list of the method variables contains the default
values of all local variables defined inside the method. The method’s parameters are
not considered in the method variables.

An exception table is a list of exception handlers where an exception handler is
defined by:

• Two natural numbers, startPc and endPc, that are used to determine the code
range where the exception handler is valid.

• A natural number, handler, that indicates the location that is called upon
exception.

• A class type, exceptionType, that indicates the class of the exception.

A field is represented by a record that contains a field signature, a class type to
which the field belongs to and a set of modifiers. The signature is a combination of
the field’s name and the field’s type.

Memory Store

We define, in what follows, a model that captures both the memory storage and the
heap of the Java virtual machine. The store as shown in Table 6 is a partial mapping
from locations to Java objects that are class instances. A Java object is a record
containing the class type of the object, a map from the object fields identifiers to
computable values, a monitor and an additional information fromRunnable. If the
object is a Thread instance constructed from a class that implements the interface
Runnable, the name of this class is put in the field fromRunnable otherwise from-
Runnable is set to the value None. This information is useful when a method start

is invoked on an object that is an instance of Thread or one of its subclasses. It
allows to know which method run to execute. The lookup of the run method starts
from the dynamic class of the object if fromRunnable is None otherwise it starts
from fromRunnable.

76 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

4 SEMANTIC INGREDIENTS

Environment ::= ReferenceType −→
m

Class

Class ::= 〈 constantPool: ConstantPool,
superClass: ClassType | NoneType,
interfaces: (ClassType)-set,
fields: (Field)-list,
staticMap: Field −→

m
Value,

methods: (Method)-list,
initialized: Int,
interface: Int,
monitorClass: Monitor 〉

ConstantPool ::= Int −→
m

ConstantPoolEntry

ConstantPoolEntry ::= ClassType
| 〈 methodSignature: MethodSignature,

supposedClass: ClassType 〉
| 〈 fieldSignature: FieldSignature,

supposedClass: ClassType 〉
Monitor ::= 〈 threadOwner: ThreadOwner,

depth: Nat,
waitList: WaitingList 〉

ThreadOwner ::= ThreadId | NoneType
WaitingList ::= (ThreadId)-list
ThreadId ::= Nat
Field ::= 〈 fieldSignature: FieldSignature,

fromClass: ClassType,
fieldModifiers: (FieldModifier)-set 〉

Method ::= 〈 methodSignature: MethodSignature,
fromClass: ClassType,
methodModifiers: (MethodModifier)-set,
code: Code,
methodVariables: MethodVariables,
exceptionTable: ExceptionTable 〉

Name ::= Identifier

Code ::= ProgramCounter −→
m

JVML Instruction

ProgramCounter ::= Nat
FieldSignature ::= 〈 name: Name,

type: Type 〉

Table 4: Environment Part I

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 77

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

MethodSignature ::= 〈 name: Name,
argumentsType: (Type)-list,
resulType: Type 〉

MethodVariables ::= (Value)-list
ExceptionTable ::= (ExceptionHandler)-list
FieldModifier ::= public | private | static
MethodModifier ::= public | private | static | synchronized
ExceptionHandler ::= 〈 startPc: Nat,

endPc: Nat,
handler: Nat,
exceptionType: ClassType 〉

Table 5: Environment Part II

Store ::= Location −→
m

JavaObject

JavaObject ::= 〈 classType: ClassType,
fieldsMap: Field −→

m
Value,

monitor: Monitor
fromRunnable: ClassType | NoneType 〉
waitList: WaitingList

Table 6: Store Structure

An object monitor has the same structure than a class monitor and is set to
〈None, 0, []〉 if the object is not locked.

Frame

A frame is a runtime data structure that captures the execution state of a JVML
method. It is defined as a tuple {|m, pc, l, o, z|} where:

• m refers to the current method.

• pc denotes the program counter that refers to the address of the instruction
to be executed in the method m.

• l holds the values of the different local variables of m.

• o holds the stack of operand values.

• z holds the element locked when m is a synchronized method. It is the class
locked in the case of a static method or the reference to the locked object in

78 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

4 SEMANTIC INGREDIENTS

MethodFrame ::= 〈 method Method,
programCounter: ProgramCounter ,
locals: Locals,
operandStack: OperandStack,
synchronizedElement: SynchronizedElement 〉

Locals ::= (Value)-list
OperandStack ::= (Value)-list
SynchronizedElement ::= ClassOrLocation | NoneType
ClassOrLocation ::= Location | ClassType

Table 7: Method Frame

the case of a non static method. The value is None in case of non synchronized
methods.

The formal description of the frame is given in Table 7.

Configurations

We need to introduce two categories of configurations. The domain of configurations
that are dedicated to mono-threaded programs is ThreadConfiguration. The domain
of configurations that are dedicated to multi-threaded programs is MultiThreadCon-
figuration. These two categories are respectively defined in Table 8 and Table 9. A
thread configuration will have the following form:

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, x〉
where:

• E represents the environment.

• S is the store.

• {|m, pc, l, o, z|} :: F represents the thread’s stack from which method frames are
retrieved. The term {|m, pc, l, o, z|} denotes the frame that is the top element
of frame stack.

• L contains the objects and classes that are locked by the current thread.

• ι represents the identity of the current thread i.e. the one executing the method
m.

• x indicates if an exception has been detected. Whenever an exception is raised,
we will use the location to point to the underlying object that is an instance

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 79

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

ThreadConfiguration ::= Environment×Store×ThreadInformation
ThreadInformation ::= 〈 threadStack: ThreadStack,

lockedElements: LockedElements
threadId: ThreadId
exception: Exception 〉

ThreadStack ::= (MethodFrame)-list
LockedElements ::= (ClassOrLocation)-list
Exception ::= Location | NoneType

Table 8: Thread Configuration

MultiThreadConfiguration ::= Environment×Store×JavaStack
JavaStack ::= ThreadId −→

m
Thread

Thread ::= 〈threadInformation: ThreadInformation,
state: State 〉

State ::= active | blocked

Table 9: Multi-Threads Configuration

of the class Throwable. If no exception is thrown None is used instead of a
location e.

The configuration in Table 9 is used in presence of multiple threads and is a
combination of an environment, a store and a Java stack. The Java stack contains
information about the current threads and consists of a partial mapping that asso-
ciates thread information and state to the Nat number that identifies the thread.
The term blocked is used to denote the state of a thread waiting for a resource,
owned actually by another thread, otherwise the thread is said to be active.

5 SEMANTICS RULES

The semantics is structured in two layers, one for threads in isolation and another
for threads running in parallel following [15]. For processes in isolation, the se-
mantics is defined using a labelled transition system on thread configurations i.e.
(ThreadConfiguration, Λ,−→) whereas an unlabelled state transition system (Mul-
tiThreadConfiguration, ↪→) is used for multisets of threads. The set of labels Λ is
defined as follows:

80 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

5 SEMANTICS RULES

Λ 3 ` ::= ε
| block .Block Current Thread
| kill . Kill Current Thread
| run(class : ClassType).Fork New Thread
| notify(x : ClassOrLocation) . . .Notify Blocked Threads

The labels on the transitions contain the information to send from the first layer
to the second one. The transition label ε1 allows to report, in the Java stack,
all the modifications that the current thread has been subjected to during this
transition. The transition label block is designed to instruct the second layer of the
dynamic evaluation to change the current thread’s state from active to blocked.
The kill label refers to the case where the current thread must be killed and its
corresponding entry in the Java stack removed. The label run(class:ClassType)
reports to the second layer that a new thread must be created and that the lookup
of its run method must start from the parameter class. The last transition label
notify(x:ClassOrLocation) is used by the second layer in order to change the state
of all the threads waiting for the resource x from blocked to active.

First Layer

Because of the imposed restriction on space, we cannot present the totality of the
semantic rules. Therefore, we made the choice to report a significant part of the
first layer rules. As of the rules of the second layer, they are completely reported.

We selected for each transition label a number of rules. The semantic rules of
the first layer count only one rule with the transition label run and one rule with the
transition label kill . We present first these two rules. Afterwards, we will present
four different rules for each of the remaining labels i.e. ε, block and notify.

The transition in the following rule is labelled with the run label. It represents
the semantics of invokevirtual i when the method invoked is the start method
of the class Thread or one of its subclasses. In this case, an information is sent
to the second level using the label run(class) in order to start running the new
thread. The parameter class of the label represents the class from which the lookup
for the method run of the new thread starts. If the object referenced by the top
of the operand stack was constructed using a Runnable interface then the field
fromRunnable of this object is assigned to the variable class. If the object referenced
by the top of the operand stack was not constructed using a Runnable interface (ie.
the field fromRunnable is None) then its dynamic class (ie. the class Thread or
one of its subclasses from which the object has been instantiated) is assigned to the
variable class. When the rule processes, the reference on the top of the operand stack
of the current thread is popped, the current thread program counter is incremented.

1For the rest of the paper, we adopt the notation C1 −→ C2 instead of C1
ε−→ C2.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 81

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

m.code(pc) = invokevirtual i
ms = thisConstantPoolEntry(E , m, i).methodSignature

ct = thisConstantPoolEntry(E , m, i).supposedClass
isMethResolved(E , ms, ct)

argCount = length(ms.argumentsTypes)
Loc = getOneStackElem(o, argCount)

Loc 6= Null

dc = getDynamicClass(S, Loc)
m′ = lookupM(E , ms, dc)

m′ 6= None

m′.name = start ∧ isThread(m′.fromClass)
class = ifThenElse(S(Loc).fromRunnable = None, dc,S(Loc).fromRunnable)

o′ = popStack(o, 1)

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 run(class)−→
〈E ,S, {|m, pc + 1, l, o′, z|} :: F ,L, ι, None〉

The next rule shows a transition that uses the kill label. It describes the case
where the exception flag in the initial thread configuration is an exception reference
e and where the frames stack contains only one method. Furthermore, this unique
method in the frames stack can not handle the exception referenced by e. In this
case, the information that the current must be killed is sent to the second layer using
the transition label kill .

type = getDynamicClass(S, e)
appropriatePcHandler(E , pc, type, m.exceptionTable) = −1

〈E ,S, {|m, pc, l, o, z|},L, ι, e〉 kill−→
〈E ,S, {|m, pc, l, o, z|},L, ι, e〉

The four following rules are relative to the label transition ε. The first rule
reflects the semantics of aload i, which consists in loading an address from the
local variables set of the method to its operand stack. The rule is easy and its
understanding is straightforward.

m.code(pc) = aload i
o′ = getLocalValue(l, i) :: o

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 −→
〈E ,S, {|m, pc + 1, l, o′, z|} :: F ,L, ι, None〉

The second rule, which uses also the label ε, describes the semantics of the
putfield opcode when no exceptions are signaled. The exceptions that might be
thrown whenever the reference on the top of the operand stack is null, or the consid-
ered field is not found, not accessible or static. Two elements are popped from the

82 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

5 SEMANTICS RULES

operand stack (a value and an object reference). The considered field in the object
reference is then set to the popped value.

m.code(pc) = putfield i
fs = thisConstantPoolEntry(E , m, i).fieldSignature
c = thisConstantPoolEntry(E , m, i).supposedClass

f = lookupF(E , fs, c)
v = getOneStackElem(o,0)

Loc = getOneStackElem(o,1)
(f 6= None) ∧ (Loc 6= Null) ∧ (accessAllowedF(f, m)) ∧ (¬ isStaticF(f))
S ′ = S[Loc 7→ S(Loc)[fieldsMap← S(Loc).fieldsMap[f 7→ v]]]

o′ = posStack(o, 2)
〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 −→
〈E ,S ′, {|m, pc + 1, l, o′, z|} :: F ,L, ι, None〉

The third rule chosen for the label ε presents the semantics of athrow. The
actual configuration moves to a configuration where the exception flag is set to the
object reference on the top of the stack.

m.code(pc) = athrow

Loc = getOneStackElem(o, 0)
(Loc 6= Null) ∧ (¬isSynchronized(m) ∨ isOwner(S, z, ι))

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 −→
〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, Loc〉

The fourth rule describes the semantics of new i in the case where the class of
the object to create is not an interface, is not initialized and is not locked by another
thread. A frame of its clinit2 method is pushed onto the frames stack. The class
is locked and added to the locked elements of the thread if it is not there yet. The
monitor of the considered class is updated to reflect the fact that the current thread
has acquired it or reentred it. This implies the update of the environment.

m.code(pc) = new i
ct = thisConstantPoolEntry(E , m, i)

¬ isInterface(E , ct) ∧ ¬ isInitialized(E , ct)
¬ isClassLocked(E , ct) ∨ isClassOwner(E , ct, ι)

signatureClinit = 〈clinit, [], void〉
clinit = retrieveM(signatureClinit, E(ct).methods)

clinitFrame = newFrame(clinit, 0, clinit.locals, [], ct)
L′ = ifThenElse(isClassOwner(E , ct, ι),L, ct :: L)
E ′ = E [ct 7→ classMonitorEntered(E , ct, ι)]
〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 −→
〈E ′,S, clinitFrame :: {|m, pc, l, o, z|} :: F ,L′, ι, None〉

2We consider that each class has a clinit method even it is empty.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 83

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

The four following rules are relative to the label transition block . The first rule
describes the semantics of invokestatic i when the class, on which the method is
invoked, is owned by another thread. The actual thread is then added to the waiting
list of this class and is blocked waiting for its release.

m.code(pc) = invokestatic i
ms = thisConstantPoolEntry(E , m, i).methodSignature

argCount = length(ms.argumentsTypes)
ct = thisConstantPoolEntry(E , m, i).supposedClass

isMethResolved(E , ms, ct)
m′ = lookupM(E , ms, ct)

m′ 6= None

cm = m′.fromClass
isSynchronized(m′) ∧ accessAllowedM(m, m′) ∧ isStaticM(m′) ∧ isInitialized(E , cm)

isClassLocked(E , cm) ∧ ¬ isClassOwner(E , cm, ι)
E ′ = E [cm 7→ addToClassWaitingList(E , cm, ι)]

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 block−→
〈E ′,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉

The second rule, which uses also the label block, reflects the semantics of the
instruction monitorenter. It refers to the case where another thread currently
owns the object referenced by the top of the operand stack. The current thread is
then added to the waiting list of this object and is blocked waiting for its release.

m.code(pc) = monitorenter

Loc = getOneStackElem(o, 0)
isLocked(S, Loc) ∧ ¬ isOwner(S, Loc, ι) ∧ Loc 6= Null

S ′ = S[Loc 7→ addToObjectWaitingList(S, Loc, ι)]

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 block−→
〈E ,S ′, {|m, pc, l, o, z|} :: F ,L, ι, None〉

The third rule represents the semantics of new i. It reflects the case where the
relative class of the object to create is not an interface, is not initialized but is locked
by another thread. The thread is then blocked waiting for the release of this class
and its identity is put in the waiting list of the class.

84 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

5 SEMANTICS RULES

m.code(pc) = new i
ct = thisConstantPoolEntry(E , m, i)

¬ isInterface(E , ct) ∧ ¬ isInitialized(E , ct)
isClassLocked(E , ct) ∧ ¬ isClassOwner(E , ct, ι)
E ′ = E [ct 7→ addToClassWaitingList(E , ct, ι)]
〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 block−→

〈E ′,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉

The fourth rule describes the semantics of invokevirtual i when the invoked
method is synchronized, accessible and not static. Furthermore, the monitor asso-
ciated to the receiver is already owned by another thread. The current thread is
added to the waiting list of the receiver (ie. the object referenced by the top of
the current thread’s operand stack) implying an update of the store. The transition
label block transmits to the second layer the information that the current thread
must be blocked.

m.code(pc) = invokevirtual i
ms = thisConstantPoolEntry(E , m, i).methodSignature

ct = thisConstantPoolEntry(E , m, i).supposedClass
isMethResolved(E , ms, ct)

argCount = length(ms.argumentsTypes)
Loc = getOneStackElem(o, argCount)

Loc 6= Null

dc = getDynamicClass(S, Loc)
m′ = lookupM(E , ms, dc)

m′ 6= None

isSynchronized(m′) ∧ accessAllowedM(m, m′) ∧ ¬ isStaticM(m′)
isLocked(S, Loc) ∧ ¬ isOwner(S, Loc, ι)

S ′ = S[Loc 7→ addToObjectWaitingList(S, Loc, ι)]

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 block−→
〈E ,S ′, {|m, pc, l, o, z|} :: F ,L, ι, None〉

The four following rules use of the transition label notify. The first rule describes
the semantics of return from a non-static synchronized method. We consider, in this
rule, that the depth of the monitor owned by the current thread and referenced by
the variable z becomes null after returning from the method. We have to notify then
all the threads waiting for the object referenced by z and to remove the reference z
from the list of objects and classes locked by the current thread.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 85

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

m.code(pc) = return

isSynchronized(m) ∧ ¬ isStaticM(m) ∧ isOwner(S, z, ι)
S ′ = S[z 7→ objectMonitorExited(S, z, ι)]

depthLock(S ′, z) = 0
L′ = suppress(z,L)
f = {|n, pc′, l′, o′, z′|}

〈E ,S, {|m, pc, l, o, z|} :: f :: F ,L, ι, None〉 notify(z)−→
〈E ,S ′, {|n.pc′ + 1, l′, o′, z′|} :: F ,L′, ι, None〉

The second rule refers also to return and is similar to the precedent one except
that the method is static and synchronized. In this case the notification must be
done for all the threads waiting for the class represented by the variable z and this
class is removed from the list of objects and classes locked by the current thread.

m.code(pc) = return

isSynchronized(m) ∧ isStaticM(m) ∧ isClassOwner(E , z, ι)
E ′ = E [z 7→ classMonitorExited(E , z, ι)]

depthLock(S ′, z) = 0
L′ = suppress(z,L)
f = {|n, pc′, l′, o′, z′|}

〈E ,S, {|m, pc, l, o, z|} :: f :: F ,L, ι, None〉 notify(z)−→
〈E ′,S, {|m, pc′ + 1, l′, o′, z′|} :: F ,L′, ι, None〉

The third rule representing the transition label notify describes the semantics of
monitorexit. In this rule, the thread decrements the counter indicating the number
of times the thread has entered the monitor referenced by the top of the operand
stack. In this case, the counter becomes 0 and consequently, the current thread
must release this monitor and notify all the threads waiting for it.

m.code(pc) = monitorexit

Loc = getOneStackElem(o, 0)
Loc 6= Null ∧ isOwner(S, Loc, ι)

S ′ = S[Loc 7→ objectMonitorExited(S, Loc, ι)]
depthLock(S ′, Loc) = 0
L′ = suppress(Loc,L)
o′ = popStack(o, 1)

〈E ,S, {|m, pc, l, o, z|} :: F ,L, ι, None〉 notify(Loc)−→
〈E ,S ′, {|m, pc + 1, l, o′, z|} :: F ,L′, ι, None〉

The fourth rule representing the transition notify describes the semantics of
ireturn. It is similar to the second rule described previously for the return using

86 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

5 SEMANTICS RULES

the label notify except that in the following case the method returns a value, which
is pushed onto the operand stack of the previous method.

m.code(pc) = ireturn

isSynchronized(m) ∧ ¬ isStaticM(m) ∧ isOwner(S, z, ι)
S ′ = S[z 7→ objectMonitorExited(S, z, ι)]

depthLock(S ′, z) = 0
L′ = suppress(z,L)

o′ = pushStack(o′, head(o))
f = {|n, pc′, l′, o′, z′|}

〈E ,S, {|m, pc, l, o, z|} :: f :: F ,L, ι, None〉 notify(z)−→
〈E ,S ′, {|n, pc′ + 1, l′, o′, z′|} :: F ,L′, ι, None〉

Second Layer

The previous section described the semantics inside one thread in terms of configura-
tions transitions: 〈E ,S, T 〉 a−→ 〈E ,S, T ′〉 where T and T ′ are thread configurations
and a is a label in Λ. In this section, we define the semantics of multisets of threads
giving the configurations transitions:〈E , S, JS〉 ↪→ 〈E , S, JS ′〉 of the unlabelled
transition system (MultiThreadConfiguration,↪→) where JS and JS ′ denote Java
stacks.

We present, in this section, all the rules of the second layer. There are five
different rules, one for each transition label. The first rule illustrates the case when
an ε-transition is done in the first layer. In this case, we have only to report in
the Java stack the fact that the current thread has changed its information from T
to T ′ maintaining its state to active. The new Java stack JS ′ is identical to the
initial Java stack JS except for the current thread.

〈E , S, T 〉 −→ 〈E ′, S ′, T ′〉
T ′.exception = None

JS ′ = changeThreads(JS, T , T ′)
〈E , S, JS >↪→ 〈E ′, S ′, JS ′〉

The next rule is executed when the transition in the first layer is done via the
label block. In this case, the Java stack has to change also the state of the current
thread from active to blocked because it asks for a resource that is not available.

〈E , S, T 〉 block−→ 〈E ′, S ′, T ′〉
J S ′ = blockThreads(JS, T)
〈E , S, JS〉 ↪→ 〈E ′, S ′, JS ′〉

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

The following rule defines the configuration transition in the second layer when
the transition in the first layer is done via the label notify. In this case, the current
thread has released an object or a class x and all the threads that are waiting for
this resource x must be now active.

〈E , S, T 〉 notify(x)−→ 〈E ′, S ′, T ′〉
J S ′ = changeThreads(JS, T , T ′)
JS ′′ = activateThreads(JS ′, S, E , [x])
〈E , S, JS〉 ↪→ 〈E ′, S ′, JS ′′〉

The next rule presents the configuration transition in the second layer in presence
of a transition in the first layer done with the label kill. In this case, the current
thread throws an exception that is not caught by any method along its method
invocation stack. The thread must then expire and activate before all the threads
waiting for its locked objects.

〈E , S, T 〉 kill−→ 〈E ′, S ′, T ′〉
J S ′ = activateThreads(JS,S, E , T .lockedElements)

JS ′′ = dieThread(JS ′, T .threadId)
〈E , S, JS〉 ↪→ 〈E ′, S ′, JS ′′〉

Finally, the last rule describes the configuration transition in the second layer
when the transition in the first layer is done via the label run. In this case, a new
thread is created and starts its execution by the adequate run method given by the
lookup.

〈J E , S, T 〉 run(class)−→ 〈J E ′, S ′, T ′〉
signatureRun = 〈run, [], void〉

run = lookupM(J E , signatureRun, class)
f = newFrame(run, 0, run.methodVariables, [], None)

JS ′ = JS[ι 7→ newThreadInformation([f], [], ι) ; ι /∈ Dom(JS)
〈J E , S, JS〉 ↪→ 〈J E ′, S ′, JS ′〉

6 CONCLUSION AND FUTURE WORK

In this paper, we reported a formalization of the dynamic semantics of JVML. The
semantics comes into a small step operational style. In order to ascribe meanings
to threading, the semantics is structured in two layers: The first layer capture the
semantics of sequential JVML programs in isolation. The second layer consists of
judgements that capture the parallel execution of JVML threads. A nice feature
of the presented semantics is its faithfulness to the official JVML specification as
described in [1]. Besides, the presented semantics provides full account details for

88 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

the most technical and tricky aspects of JVML such as multi-threading, synchro-
nization, method invocations, exception handling, object creation, object’s fields
manipulation, stack manipulation, local variable access, modifiers, etc. The pre-
sented semantics is also, to the best of our knowledge, the first dynamic semantics
of JVML that provides semantics for that many features within the same framework.

As future work, we intend to use this dynamic semantics in order to explore some
new and unresolved security issues in the Java virtual machine.

REFERENCES

[1] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second
Edition. Addison Wesley, 1999.

[2] P. Bertelsen. Semantics of Java Bytecode. Technical report, Department
of Mathematics and Physics, Royal Veterinary and Agricultural University,
Copenhagen, Denmark, 1997.

[3] P. Bertelsen. Dynamic Semantics of Java Bytecode. Future Genration Computer
systems, 16(7):841–850, 2000.

[4] G. Bigliardi and C. Laneve. A Type System for JVM Threads. Technical Re-
port UBLCS-2000-06, Department of Computer Science, University of Bologna,
2000.

[5] S. N. Freund and J. C. Mitchell. A Formal Framework for the Java Bytecode
Language and Verifier. In Proc. 14th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications, volume 34(10).
ACM Press, 1999.

[6] S. N. Freund and J. C. Mitchell. The Type System for Object Initialization in
the Java Bytecode Language. ACM Transactions on Programming Languages
and Systems, 21(6):1196–1250, 1999.

[7] S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language
and Verifier. Journal of Automated Reasoning, 2003.

[8] M. Hagiya and A. Tozawa. On a New Method for Dataflow Analysis of Java Vir-
tual Machine Subroutines. In SIG-Notes, PRO-17-3, pages 13–18. Information
Processing Society of Japan, 1998.

[9] G. Klein and M. Wildmoser. Verified bytecode subroutines. Journal of Auto-
mated Reasoning, 30(3–4):363–398, 2003.

[10] C. Laneve. A Type System for Jvm Threads. Theoretical Computer Science,
290((1)):741 – 778, 2003.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

[11] I. Siveroni. Operational semantics of the java card virtual machine. J. Log.
Algebr. Program., 58(1-2):3–25, 2004.

[12] I. Siveroni and C. Hankin. A Proposal for the JCVMLe Operational Semantics.
Technical Report SECSAFE-ICSTM-001, Imperial College,, 2001.

[13] R. Stata and M. Abadi. A Type System for Java Bytecode Subroutines. In
Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, San Diego, California, pages
149–160, New York, NY, 1998.

[14] E. Borger and W. Schulte. Defining the Java Virtual Machine as Platform for
Provably Correct Java Compilation. In Mathematical Foundations of Computer
Science, pages 17–35, 1998.

[15] K. Havelund and K. G. Larsen. The Fork Calculus. In ICALP, pages 544–557,
1993.

90 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

Appendix: Utility Functions

1. The function accessAllowedF returns true if a given field is visible from a given
method:

accessAllowedF : Method×Field → Boolean
accessAllowedF(m,f) = (¬ isPrivateF(f) ∨ (f .fromClass=m.fromClass))

2. The function accessAllowedM returns true if a given method is visible from
another given method:

accessAllowedM : Method×Method → Boolean
accessAllowedM(m,m′) = (¬ isPrivateM(m′) ∨ (m′.fromClass=m.fromClass))

3. The function activateThreads returns a new Java stack where all the threads
waiting for objects or classes in a given list are activated:

activateThreads : JavaStack×Store×environment×(ClassOrLocation)-list → JavaStack
activateThreads(JS,S,E ,l) = JS ′ if{
JS ′(i) = JS(i),∀i ∈ Dom(JS) ∧ i /∈ waitingThreads(S, E , l)
JS ′(i) = active(JS, i),∀i ∈ Dom(JS) ∧ i ∈ waitingThreads(S, E , l)

4. The function active returns the thread information of a given entry i in a given
JavaStack with an active state:

active : JavaStack×Nat → ThreadInformation×State
active(JS,i) = (JS(i).threadInformation, active)

5. The function addToClassWaitingList adds a given thread in the waiting list of
a given class:

addToClassWaitingList: Environment×ClassType×ThreadId → Class
addToClassWaitingList(E ,ct,id) =

E(ct)[monitorClass.waitList ← id::E(ct).monitorClass.waitList]

6. The function addToObjectWaitingList adds a given thread in the waiting list of
a given object:

addToObjectWaitingList: Store×Location×ThreadId → JavaObject
addToObjectWaitingList(S,Loc,id) =

S(Loc)[monitor.waitList ← id::S(loc).monitor.waitList]

7. The function allInterfaces gives all the interfaces of a given set of classes.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 91

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

allInterfaces : Environment×(ClassType)-set → (ClassType)-set
allInterfaces(E ,Ø) = Ø
allInterfaces(E ,{ct}) = Ø if ct= “Object”
allInterfaces(E ,{ct}) = E(ct).interfaces

∪ allInterfaces(E ,{E(ct).superClass})
∪ allSuperClasses(E ,E(ct).interfaces) if ct 6= “Object”

allInterfaces(E ,{ct} ∪ ctSet) = allInterfaces(E ,{ct})
∪ allInterfaces(E ,ctSet) if ctSet 6= Ø

8. The function allSuperClasses gives all the super classes of a given set of classes.

allSuperClasses : Environment×(ClassType)-set → (ClassType)-set
allSuperClasses(E ,Ø) = Ø
allSuperClasses(E ,{ct})= Ø if ct=“Object”
allSuperClasses(E ,{ct}) =

E(ct).superClass ∪ allSuperClasses(E ,{E(ct).superClass}) if ct 6= “Object”
allSuperClasses(E ,{ct} ∪ ctSet) = allSuperClasses(E ,{ct})∪ allSuperClasses(E ,ctSet)

9. The function appropriatePcHandler returns the start address indicated by the
first appropriate exception handler found given an environment, a program
counter, an exception class type to catch and a list of exception handlers. If
there is no appropriate exception handler in the list, the function return −1:

appropriatePcHandler : Environment×Nat×ClassType×ExceptionTable→ int
appropriatePcHandler(E , pc, ct, []) = −1
appropriatePcHandler(E , pc, ct, l) = head(l).handler

if isAppropriateHandler(E , pc, ct, head(l))
appropriatePcHandler(E , pc, ct, l) = appropriatePcHandler(E , pc, ct, tail(l))

if ¬ isAppropriateHandler(E , pc, ct, head(l))

10. The function blockThreads sets the state of a thread to blocked in the Java
stack:

blockThreads : JavaStack×ThreadInformation → JavaStack

blockThreads(JS,T) = JS ′ if


T .threadId = id
JS ′(i) = JS(i),∀i ∈ Dom(JS) ∧ i 6= id
JS ′(id).state = blocked
JS ′(id).threadInformation = T

11. The function changeThreads allows to change a given thread information to
another given thread information in a given Java stack and maintaining the
state to active:

92 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

changeThreads: JavaStack×ThreadInformation×ThreadInformation → JavaStack

changeThreads(JS,T ,T ′) = JS ′ if


T .threadId = id
JS ′(i) = JS(i),∀i ∈ Dom(JS) ∧ i 6= id
JS ′(id).state = JS(id).state
JS ′(id).threadInformation = T ′

12. The function classMonitorEntered returns the same class than the given class
identifier but containing the information that the class’s monitor has been en-
tered by a given thread:

classMonitorEntered : Environment×ClassType×ThreadId → Class
classMonitorEntered(E ,ct,id) =

E(ct)[monitorClass.waitList ← suppress(E(ct).monitorClass.waitList,id),
monitorClass.threadOwner ← id,
monitorClass.depth ← E(ct).monitorClass.depth+1]

13. The function classMonitorExited returns the same class than the given class
identifier but containing the information that the class’s monitor has been ex-
ited by a given thread:

classMonitorExited : Environment×ClassType×ThreadId → Class
classMonitorExited(E ,ct,id) =
E(ct) [monitorClass.threadOwner ← “None”/ E(ct).monitorClass.depth=1,

monitorClass.depth ← E(ct).monitorClass.depth-1]

14. The function depthLock returns the number of times an object in a given Lo-
cation and a given store has been reentered. If the object is not owned by any
thread, the value returned is zero:

depthLock : Store×Location → Nat
depthLock(S,loc) = (S(loc).monitor).depth

15. The function dieThread returns a Java stack constructed by removing a given
thread from a given Java stack:

dieThread : JavaStack×ThreadId → JavaStack

dieThread(JS,id) = JS ′ if
{

Dom(JS ′) = Dom(JS)− {id}
∀i ∈ Dom(JS ′);JS ′(i) = JS(i)

16. The function getDynamicClass returns the dynamic class of an object at a given
location in a given store:

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

getDynamicClass : Store×Location → ClassType
getDynamicClass(S,loc) = S(loc).classType

17. The function getLocalValue returns an element at a given position in a given
list:

getLocalValue : (τ)-list ×Nat → τ
getLocalValue(l,0) = head(l)
getLocalvalue(l,i) = getLocalValue(tail(l),i-1), ∀ i > 0

18. The function getOneStackElem is identical to getLocalValue. It has been intro-
duced only to let the comprehension of the semantic rules easier:

getOneStackElem : (τ)-list ×Nat → τ
getOneStackElem(l,i) = getLocalValue(l,i)

19. The function head returns the first element in a given list:

head : (τ)-list → τ
head(v::l) = v, ∀ (v,l) ∈ τ×(τ)-list

20. The function ifThenElse returns, depending on the value of a given boolean
value, the second or the third given argument:

ifThenElse : Boolean×a×a → a
ifThenElse(true,a,b) = a
ifThenElse(false,a,b) = b

21. The function isAppropriateHandler returns true if a given exception handler is
appropriate for a given program counter and a thrown exception in a specific
environment otherwise the function returns false:

isAppropriateHandler : Environment×Nat×ClassType×ExceptionHandler → Boolean

isAppropriateHandler(E , pc, ct, h) = True if

 h.startPc <= pc
h.endPc >= pc
h.exceptionType ∈ allSuperClasses(E , ct)

isAppropriateHandler(E , pc, ct, h) = false otherwise.

94 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

22. The function isClassOwner returns true if in a given environment, a given
thread Id is owner of a given class otherwise the function returns false:

isClassOwner : Environment×ClassType×ThreadId → Boolean
isClassOwner(E ,c,id) = ((E(c).monitorClass).threadOwner= id)

23. The function isInitialized returns true if in a given environment, a given class
is initialized otherwise the function returns false:

isInitialized : Environment × ClassType → Boolean
isInitialized(E ,c) = (E(c).initialized=1)

24. The function isInterface returns true if in a given environment, a given class is
an interface otherwise the function returns false

isInterface : Environment × ClassType → Boolean
isInterface(E ,c) = (E(c).interface=1)

25. The function isLocked returns true if in a given store, a given location is locked
otherwise the function returns false:

isLocked : Store×Location → Boolean
isLocked(S,loc) = (S(loc).monitor).threadOwner 6= “None”)

26. The function isMethodOf returns true if a class with an identifier belonging to
a given list of class identifiers contains a method with the same signature than
the given method signature otherwise the function returns false:

isMethodOf : Environment×MethodSignature×(ClassType)-set → Boolean

isMethodOf(E ,ms,Ø) = false
isMethodOf(E ,ms,{ct}) = true if ms ∈ methodSignatures(E(ct).methods)
isMethodOf(E ,ms,{ct}) = false if ms /∈ methodSignatures(E(ct).methods)
isMethodOf(E ,ms,{ct} ∪ ctSet) = isMethodOf(E ,ms,{ct}) ∨ isMethodOf(E ,ms,ctSet)

27. The function isMethResolved returns true if a given method signature is re-
solved for a given class in a given environment otherwise the function returns
false:3

3A method m is resolved for a class c [1] if c is not an interface and c, or one of the super classes
of c or any of the superinterfaces of c declares m.

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

isMethResolved : Environment×MethodSignature×ClassType → Boolean
isMethResolved(E ,ms,ct) = false if isInterface(E ,ct)

isMethResolved(E ,ms,ct) = false if


¬isInterface(E , ct)
classes1 = {ct} ∪ allSuperClasses(E , {ct})
classes=classes1 ∪ allInterfaces(E , {ct})
¬isMethodOf(E ,ms, classes)

isMethResolved(E ,ms,ct) = true if


¬isInterface(E , ct)
classes1 = {ct} ∪ allSuperClasses(E , {ct})
classes=classes1 ∪ allInterfaces(E , {ct})
isMethodOf(E ,ms, classes)

28. The function isOwner returns true if an object in a given store and pointed by
a given Location is acquired by a thread with a given Id otherwise the function
returns false:

isOwner : Store×Location×ThreadId → Boolean
isOwner(S,loc,id) = ((S(loc).monitor).threadOwner= id)

29. The function isPrivateF returns true if a given field is private otherwise the
function returns false:

isPrivateF : Field → Boolean
isPrivateF(f) = (private ∈ f .fieldModifiers)

30. The function isPrivateM returns true if a given method is private otherwise the
function returns false:

isPrivateM : Method → Boolean
isPrivateM(m) = (private ∈ m.methodModifiers)

31. The function isStaticF returns true if a given field is static otherwise the func-
tion returns false:

isStaticF : Field → Boolean
isStaticF(f) = (static ∈ f .fieldModifiers)

32. The function isStaticM returns true if a given method is static otherwise the
function returns false:

isStaticM : Method → Boolean
isStaticM(m) = (static ∈ m.methodmMdifiers)

96 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

33. The function isSynchronized returns true if a given method is synchronized
otherwise the function returns false:

isSynchronized : Method → Boolean
isSynchronized(m) = (synchronized ∈ m.methodModifiers)

34. The function isThread returns true if a given class type is the class Thread or
one of its subclasses otherwise the function returns false:

isThread : Environment × ClassType → Boolean
isThread(E ,ct) = (ct=Thread) ∨ (Thread ∈ allSuperClasses(E ,ct))

35. The function length returns the length of a given list:

length : (τ)-list → Nat
length([]) = 0
length(v::l) = 1 + length (l), ∀ (v,l) ∈ τ×(τ)-list

36. The function lookupF returns the first field with a given signature found in the
superclass hierarchy of a given class in a given environment. If the field is not
found the value None is returned:

lookupF: Environment×FieldSignature×ClassType → Field
⊕

NoneType
lookupF(E ,fs,c) = f if retrieveF(fs,E(c).fields)=f ∧ f 6= “None”

lookupF(E ,fs,c) = lookupF(E ,fs,E(c).superClass) if
{

c 6= “Object”
retrieveF(fs, E(c).fields) = “None”

lookupF(E ,fs,c) = “None” if
{

c= “Object”
retrieveF(fs, E(c).fields) = “None”

37. The function lookupM returns the first method with a given signature found in
the superclass hierarchy of a given class in a given environment. If the method
is not found the value None is returned:

lookupM : Environment×MethodSignature×ClassType → Method
⊕

NoneType
lookupM(E ,ms,c) = m if retrieveM(ms,E(c).methods)=m ∧ m 6= “None”
lookupM(E ,ms,c) = lookupM(ms,E(c).superClass) if{

c 6= “Object”
retrieveM(ms, E(c).methods) = “None”

lookupM(E ,ms,c) = “None” if
{

c= “Object”
retrieveM(ms, E(c).methods) = “None”

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

38. The function newFrame returns a new frame constructed from a given method,
a given program counter, a given list of local variable values a given operand
stack and a given synchronized element:

newFrame:Method×ProgramCounter×Locals×OperandStack×SynchronizedElement→Frame

newFrame(m,pc,l,o,z) = frame if


frame.method =m
frame.programCounter =pc
frame.locals =l
frame.operandStack =o
frame.synchronizedElement =z

39. The function newThreadInformation returns a new thread structure given a
thread stack, a list of locked elements and a thread Id:

newThreadInformation:ThreadStack×(LockedElement)-list×ThreadId → ThreadInformation

newThreadInformation(s,l,id) = t if

 t.threadStack =s
t.lockedElements =l
t.threadId =id

40. The function objectMonitorExited returns the same object than the given loca-
tion in the given store but containing the information that the object’s monitor
has been exited by a given thread:

objectMonitorExited : Store×Location×ThreadId → JavaObject
objectMonitorExited(S,Loc,id) = S(Loc)[monitor.threadOwner ← “None”/

S(Loc).monitor.depth=1,
monitor.depth ← S(Loc).monitor.depth-1]

41. The function posStack returns a list obtained from a given list by popping a
given number of elements:

posStack : (τ)-list ×Nat → (τ)-list
posStack(l,0) = l
popStack(l,i) = popStack(tail(l),i-1)), ∀ i > 0

42. The function pushStack returns a list obtained by appending a given value to
a given list:

pushStack : (τ)-list×τ → (τ)-list
pushStack(l,v) = v::l, ∀ (v,l) ∈ τ×(τ)-list

98 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

6 CONCLUSION AND FUTURE WORK

43. The function retrieveF searches for a field with a given signature in a given list
of fields and returns the field if the field is found otherwise returns the value
None:

retrieveF : FieldSignature×Fields → Field ⊕ NoneType
retrieveF(fs,[]) = ”None”
retrieveF(fs,l) = head(l) if head(l).fieldSignature = fs
retrieveF(fs,l) = retrieveF(fs,tail(l)) if head(l).fieldSignature 6= fs

44. The function retrieveM searches for a method with a given signature in a given
list of methods and returns the method if the method has been found other-
wise returns the value None:

retrieveM : MethodSignature×Methods → Method ⊕ NoneType
retrieveM(ms,[]) = “None”
retrieveM(ms,l) = head(l) if head(l).methodSignature = ms
retrieveM(ms,l) = retrieveM(ms,tail(l)) if head(l).methodSignature 6= ms

45. The function suppress returns a list constructed from a given list by suppress-
ing all the occurrences of a given value :

suppress : τ×(τ)-list → (τ)-set
suppress(v,[]) = []
suppress(v,l) = suppress(v,tail(l)); if head(l)=v
suppress(v,l) = head(l)::suppress(v,tail(l)); if head(l) 6= v

46. The function tail returns the tail of a given list:

tail : (τ)-list → (τ)-list
tail([]) = []
tail(v::l) = l, ∀ (v,l) ∈ τ×(τ)-list

47. The function thisConstantPoolEntry returns a constant pool entry given an en-
vironment, a method and an index for the entry:

thisConstantPoolEntry : Environment×Method×Nat → ConstantPoolEntry
thisConstantPoolEntry(E ,m,i) = E(m.fromClass).constantPool(i)

48. This function waitingThreads returns a set of thread Ids waiting for a list of
objects or classes described in a given list of locations or class identifiers:

VOL 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

A DYNAMIC OPERATIONAL SEMANTICS FOR JVML

waitingThreads : Store×Environment×(ClassOrLocation)-list → (ThreadId)-set
waitingThreads(S,E ,[]) = Ø
waitingThreads(S,E ,x::l) = setOf(S(x).waitList) ∪

waitingThreads(S,E ,tail(l)) if x ∈ Dom(S)
waitingThreads(S,E ,x::l) = setOf(E(x).monitor.waitList) ∪

waitingThreads(S,E , tail(l)) if x ∈ E(S)

ABOUT THE AUTHORS

Nadia Belblidia is a Ph.D. student at Concordia Institute for Infor-
mation Systems Engineering (CIISE), Concordia University, Mon-
treal, Quebec, Canada. She is a member of the Computer Security
Laboratory (CSL) at CIISE. She is pursuing a Ph.D. thesis on an
aspect oriented approach for security hardening. She can be reached
at na bel@ece.concordia.ca.

Mourad Debbabi Mourad Debbabi is a Full Professor and the
Associate Director of the Concordia Institute for Information Sys-
tems Engineering at Concordia University. He is also a Concordia
Research Chair Tier I in Information Systems Security. He holds
Ph.D. and M.Sc. degrees in computer science from Paris-XI Orsay,
University, France. He published more than 100 research papers
in international journals and conferences on computer security, for-
mal semantics, mobile and embedded platforms, Java technology
security and acceleration, cryptographic protocol specification, de-
sign and analysis, malicious code detection, programming languages,
type theory and specification and verification of safety-critical sys-
tems. In the past, he served as Senior Scientist at the Panasonic
Information and Network Technologies Laboratory, Princeton, New
Jersey, USA; Associate Professor at the Computer Science Depart-
ment of Laval University, Quebec, Canada; Senior Scientist at Gen-
eral Electric Corporate Research Center, New York, USA; Research
Associate at the Computer Science Department of Stanford Univer-
sity, California, USA; and Permanent Researcher at the Bull Cor-
porate Research Center, Paris, France. Nowadays, he is leading two
major projects on cyber forensics and open source security.

100 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 3

mailto:na_bel@ece.concordia.ca

