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Based on an experiment using three languages under .NET, this paper argues that
the semantic di�erences between these languages regarding method overloading and
overriding give rise to signi�cant complexity and break encapsulation. We �rst recall
the various interpretations of overriding and overloading in object oriented languages
through what we call language signatures. Then, we perform an experiment with .NET
components coded in di�erent programming languages in order to observe the global
behavior. From this, we show that overriding and overloading are not compatible with
a key property of components: encapsulation. We conclude that, in the current state of
the art, in order to build predictable assemblies, components must expose their internal
structure! We propose a solution to this problem.

1 INTRODUCTION

For the past 25 years, object technologies have been spreading in programming
languages, development method, and modelling technique. Almost all non-object
languages have their "OO-extension": ADA, Caml, C and even COBOL. Analysis
and design methods often rely on a unifying modelling language (UML) that relies
itself on objects. It seems that the hope that object technology is the silver bullet
solution has gone. Reusing is not so simple and assembling objects remains complex.
The need for a better engineering process leads to the development of software by
assembly of components. The idea to develop software systems like electronic ones
is not new [12], but only recently have we seen component models being industrially
used (CCM, DCOM, EJB, Fractal, .NET). All are implemented with objects.

We demonstrate that the various behaviors that object programming languages
have relatively to method overriding and overloading semantics mis�t with one of
the main features of components: encapsulation.

This paper is organized as follows. We �rst recall in the next section some of
these behaviors, and how component interfaces can be described with contracts. In
sections 3 and 4 we present the experiments that demonstrate that the assembly of
heterogeneous components cannot be predictable if their interface does not expose
enough implementation details. Before concluding, we give some suggestions to solve
this problem.
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2 OVERLOADING AND OVERRIDING

The main contribution of object programming is, from our point of view, the easy
access to dynamic dispatching that makes possible the development of frameworks.
Frameworks can be easily extended and specialized thanks to dynamic dispatching.
Being easy to use and safe, thanks to type systems (unlike in C where function
pointers could be used to implement it), object-oriented languages allow the de-
velopment of more �exible and reusable applications. However, the bene�t of this
"late-binding" is moderated by the time required to apply the lookup procedure
that implements the dynamic dispatching and by the fact that any user needs to
know the extension points (methods) of the framework s/he uses.

Figure 1: How will this model behave?

This powerful mechanism is, however, di�cult to use since the overriding in-
tent expressed in a diagram such as in �gure 1 is interpreted di�erently by object
programming languages. As it has already been published in [5] the interactions
between overloading and overriding lead to very di�erent behaviors. For instance,
overriding can be invariant, covariant or contravariant, but nothing prevents a lan-
guage from accepting these three possibilities at the same time. The late-binding
resulting from the detection of this overriding can be simple, the most frequent case,
or multiple, like in CLOS. Overloading can be allowed or not.

Interpretations

In order to show the di�erent interpretations we have implemented the model of
�gure 1 in many languages. Then we called all possible cases and built what is
called a language signature1 [5]. On the basis of the following de�nition of receivers
and parameters:

1The language signatures of many languages (including ADA, Java, Smalltalk, CLOS) and the
source code of the experiment can be seen in [4].
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//receivers

Up u, ud;

Down d;

//parameters

Top t = new Top();

Middle m = new Middle();

Bottom b = new Bottom();

table 1 shows how we elaborated a language signature.

� First test � Second test � Third test
u := new Up(); d := new Down(); ud := new Down();
u.cv(t); d.cv(t); ud.cv(t);
u.cv(m); d.cv(m); ud.cv(m);
u.cv(b); d.cv(b); ud.cv(b);
u.ctv(t); d.ctv(t); ud.ctv(t);
u.ctv(m); d.ctv(m); ud.ctv(m);
u.ctv(b); d.ctv(b); ud.ctv(b);

Table 1: Signature elaboration

Table 2 shows the signatures of C++ [17], Visual Basic [15], C# [11] and Java [3]
since we use them in the experiment of section 3 and section 4. Each cell contains the
name of the class where the applied method was found. The word "Error" denotes
a compilation error.

C++ VB C# Java

calls u d ud d d d

cv(t) Up Error Up Up Up Up
cv(m) Up Down Up Down Down Down
cv(b) Up Down Up Down Down Down

ctv(t) Error Error Error Error Error Error
ctv(m) Error Down Error Down Down Down
ctv(b) Up Down Up Up Down UP (Error before 1.4)

Table 2: C++, Visual Basic, C# and Java signatures

The �rst and the third columns are identical since the four languages adopt an
invariant overriding policy. Hence, in our experiment, u and ud return the same
results since both are statically declared as Up. All di�erences are in the second
column, when a receiver d is declared Down and is actually Down. That is why we
presented only this case for the other languages. Di�erences (in bold in the table)
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are due to the overloading rules that are di�erent in C++, C#, Visual Basic and
Java.

C++ rejects the �rst line considering that the method cv(Middle) hides the
previously de�ned method cv(Top).

The last line is Down for C++ and C# following the intuitive semantics of OO
languages where the most speci�c method, accordingly to the receiver, is selected.

The result of the last line for Visual Basic is due to the priority given to the
parameter over the receiver in order to select the method; Bottom in ctv(Bottom)

of Up is considered by Visual Basic as more specialized than Middle in ctv(Middle)

of Down. This is a strict interpretation of overloading; the parameter is used to select
the method.

Before the 1.4 version, the last line for Java gives an Error. This is due to
the strict method overriding applied by Java. Note that between version 1.3 and
1.4 the interpretation of line 6, has changed! Java has now the same signature as
VisualBasic.

Implication for software component technology

A software component is de�ned in [18] as an independent software entity, that can
be deployed and composed with others. Many models of components have been
proposed. All rely on a feature that allows to describe components while hiding
unnecessary details: encapsulation. Information needed to assemble a component
is not the component itself - considered as a white-box - but the interface of the
component. In that case, the component is seen as a black-box. Many authors have
noticed that to be able to compose components a certain number of properties of
components not typically considered part of the interface should be considered part
of the interface. The component is then viewed as a grey-box [7].

We have proposed in [6] to attach a contract to a component in order to organize
information of its interface. A contract may contain 4 levels: syntactic, semantic,
behavioral, and quality of service. Only the �rst level is needed for the experiment
we have done. This level ensures the "compilability" of interfaces; it is used to check
that method names, return types, parameter numbers and types are compatible with
the components it is assembled with.

In case of an assembly of heterogeneous components, what is the level of greyness
of a component? As we will see, in order to predict the behavior of an assembly the
syntactic contract of a component may need to expose its implementation language
and deployment mode (distributed or not) but also make explicit assumptions on
required properties of the implementation languages of its clients!

To show this situation we performed two experiments: the �rst experiment il-
lustrates the consequences of the lack of consensual de�nition of overloading and
overriding when distributing a one language program (example Java). We use two
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mechanisms of distribution (CORBA and RMI) and show that distributing objects
is not as transparent as it should be. The second experiment generalizes the ex-
periment thanks to .NET and mixes 3 languages and shows that encapsulation is
broken because of the di�erent interpretations of overriding and overloading.

3 JAVA DISTRIBUTION EXPERIMENT

Using the testing protocol de�ned in section 2, we create a client program with three
server objects:

• Up u = getServerUp();

• Down d = getServerDown();

• Up ud = getServerDown();

The methods getServerDown() and getServerUp() are used to get the remote
reference to the server object according to the technology (RMI, CORBA or .NET).
The type of the reference u is Up, of d is Down and of ud is declared as Up but the
actual type of the instance is Down. In accordance with the testing procedure, each
of these instances is invoked with the methods cv and ctv with the parameters of
type Top, Middle and Bottom.

All used distribution technologies rely on the generation of proxies (also called
stubs or skeletons) from the speci�cation of interfaces. Hence we have two compila-
tions phases, each of them leading possibly to errors. As done previously, the only
removed statements are those triggering compilation errors.

Since there is an additional compilation stage, there are various sources of errors;
they appear in the table as:

• ICE: Interface compilation Error (from IDL to skeleton source)

• SCE: Skeleton Compilation Error (from skeleton source to skeleton binary)

• CE: Compilation Error (as for previous sections)

We have tested Java with the two middlewares embedded with the Java Devel-
opment Kit: RMI and CORBA. This leads to the comparison of the behavior of a
language relatively to late-binding in three contexts: local, RMI-remote, CORBA-
remote.

The interface speci�cation in IDL-CORBA for our tests is:

module App{
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interface Top{};

interface Middle : Top {};

interface Bottom : Middle {};

interface Up

{

string cv(in Top t);

string ctv(in Bottom b);

oneway void shutdown();

};

interface Down : Up

{

// Overloading is forbidden

// string cv(in Middle m);

// string ctv(in Middle m);

};

};

The following code illustrates how a covariant rede�nition can be simulated:

public class DownImpl extends DownPOA{

...

public String cv(Top t){

// If call needed

// Middle m = (Middle)t; // POSSIBLE

//CAST ERROR

// m.call();

return("Down");

}

... }

This code is error prone. A safer one, checking the dynamic parameter type may
correspond to the following:

public class DownImpl extends DownPOA{

...

public String cv(Top t){

// If call needed

if (t instanceof Middle){

Middle m = (Middle)t;
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Java/CORBA Java/RMI

calls u d ud u d ud

cv(t) Up ICE ICE Up Up Up
cv(m) Up ICE ICE Up Down Up
cv(b) Up ICE ICE Up Down Up

ctv(t) Error ICE ICE Error SCE SCE
ctv(m) Error ICE ICE Error SCE SCE
ctv(b) Up ICE ICE Up SCE SCE

Table 3: Java/CORBA and Java/RMI results

m.call();

}

else super.cv(t);

return("Down");

}

... }

Results and analysis

The second and the third columns of table 3 show systematic Interface Compilation
Errors. This is due to the fact that CORBA forbids methods overloading and meth-
ods overriding. The only acceptable case is invariance. Contravariant rede�nition
cannot be implemented. Covariant rede�nition could be implemented with a proper
method body.

The most interesting behavior of Java is in line 6 of table 2. The Error result
reappears when trying to compile the RMI skeleton, leading to many ambiguous
calls with ctv method as visible in Java/RMI part of table 3.

The RMI skeleton code below shows that the RMI compiler prepares all possible
calls for ctv. Alas, these are ambiguous, and then when the Java compiler tries
to compile the skeleton, it fails. This shows that this problem is still not under-
stood su�ciently. A high quality source to source compiler should never generate
uncompilable code!

public final class DownImpl_Skel

implements java.rmi.server.Skeleton

{

private static final

java.rmi.server.Operation[]

operations = {
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new java.rmi.server.Operation

("java.lang.String ctv(Bottom)"),

new java.rmi.server.Operation

("java.lang.String ctv(Middle)"),

new java.rmi.server.Operation

("java.lang.String cv(Middle)"),

new java.rmi.server.Operation

("java.lang.String cv(Top)"),

};

....

public void dispatch(

java.rmi.Remote obj,

java.rmi.server.RemoteCall call,

int opnum, long hash)

throws java.lang.Exception{

....

switch (opnum) {

case 0: // ctv(Bottom)

Bottom $param_Bottom_1;

....

java.lang.String $result =

server.ctv($param_Bottom_1);

....

}

....

}

.....

}

Our test shows that if a Java application uses a method overloading it cannot be
distributed: CORBA forbids method overloading at IDL compilation stage, while
RMI-Java enables the �rst stage of interface compilation, but detects and triggers
errors only at implementation compilation stage. This late detection is problem-
prone for application evolution.

This experiment highlights the fact that distribution techniques impact the dis-
tribution behavior because of the constraints they add to the normal behavior of
a language like Java. In the next section we generalize the experiment using more
languages, but removing the distribution.

4 .NET EXPERIMENT

The model of �gure 1 may serve as an experiment of components assembly. Imagine,
as in �gure 2, that classes Up, Top, Middle and Bottom de�ne a framework C1
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written in a language L1. Later, an evolution of C1 is realized by the class Down
written in a language L2 that extends Up. This de�nes the component C2. A client
C3 is written in a language L3.

Figure 2: How will this assembly behave?

We have performed this experiment with the .NET framework [14] that claims
language interoperability. We used 3 languages integrated into the framework: C#,
Visual Basic and C++. Each of them was used to develop the 3 components, leading
to 27 (3*3*3) di�erent assemblies.

Results

Results are organized in 3 tables of 9 signatures. Each table is associated to a
client language (C#, Visual Basic, C++ respectively). The programming language
of the basic framework (L1) appears by column. The programming language of the
extension (L2) appears by line. Each cell is the observed language signature.

L2/L1 C# VB C++

C# C# C# C++
VB C# C# C++
C++ C# C# C++

Table 4: C# client results (L3 = C#)

Table 4 shows the result for a C# client. The result is mainly a C# signature
except for the C++ column where the C++ signature is observed.

Table 5 shows the result for a Visual Basic client. The result is mainly a Visual
Basic signature except for the C++ column where the C++ signature is observed.
Another di�erence is observed. When the framework is written in Visual Basic and
the extension in C++, the observed signature is C# which is not used at all!
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L2/L1 C# VB C++

C# VB VB C++
VB VB VB C++
C++ VB C# C++

Table 5: Visual Basic client results (L3 = VB)

L2/L1 C# VB C++

C# (C++/VB) (C++/VB) (C++/VB)
VB C++ C++ C++
C++ C++ C++ C++

Table 6: C++ client results (L3 = C++)

Table 6 shows the result for a C++ client. The result is mainly a C++ signa-
ture but for the C# line where the observed signature does not match any known
signature. It looks like a mixing of C++ and Visual Basic signatures.

C#/C# VB/C# C++/C#
u d ud u d ud u d ud

cv(T) U E U U E U U E U
cv(M) U D U U D U U D U
cv(B) U D U U D U U D U

ctv(T) E E E E E E E E E
ctv(M) E D E E D E E D E
ctv(B) U U U U U U U U U

Table 7: Detailed results for a C++ client and a C# extension

Table 7 shows the detailed results of the �rst line of the previous table (D denotes
Down, U Up and E Error). It shows the mixing of C++ and Visual Basic signatures
(see table 2 for comparison). Notice the last line where the Visual Basic behavior
appears everywhere, even when Visual Basic is not used!

Interpretation

The signatures observed are mainly those expected by the client, i.e. the client's
signature. C# and C++ client are the more stable with 6 out of 9 "good" cells while
Visual Basic has only 5 out of 9 "good" results. The reasons for the "bad" behavior
are mainly due to C++ when clients are C# or Visual Basic, probably because of
the inheritance exception of C++ in cell line 1, column 2 of table 2 where cv(Top)
of Up is hidden by the overloading cv(Middle) of Down.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2



4 .NET EXPERIMENT

If we try to write down the syntactic contract of the component C2, we would
produce something like what is presented in table 8. In this table C3 corresponds
to the client.

Services Returns the result of method found in:

cv(Top) Up
Error if receiver is Down declared Down and C1 is written in C++;
or if C3 is written in C++.

ctv(Bottom) Up often, but
Down when
(1) C3 is written in C# and when receiver is Down declared Down, or
(2) C3 is written in Visual Basic and when C1 is written in C++ or

when (C1 is written in Visual Basic and C2 in C++), or
(3) C3 is written in C++ and when C2 is written in Visual Basic or C++.

cv(Middle) Up often, but
Down when receiver is Down declared Down.

ctv(Middle) Down
Error when receiver is not Down declared Down.

Table 8: Component extension (C2) contract attempt

This table reveals that the contract makes references to implementation details of
the component and, worse, to a client internal feature: the implementation language.
The encapsulation is broken. The black-box whitens and borders fade away . . .

Explicit references to the implementation language could be replaced by generic
language features following the approach proposed in [8]. However, language sig-
nature diversity and the �ner points of the interpretations convinced us that such
generic language features would be more complex to describe than the simple refer-
ence to the language.

Beyond a deep understanding of these results, this experiment shows that in order
to be able to predict the behavior of a component assembly, the client of a component
must have information on how the overriding and overloading are interpreted. This
information relies on the languages used to realize the component but also on the
whole internal structure such as inheritance relationships, overloading and overriding
that are actually done. So, what about encapsulation?

We are convinced, although experiments remain to be done, that the use of
another language, like Ei�el, in the experiment would increase the diversity of be-
haviors.

The semantic distance between Ei�el and C++, C# or Visual Basic is too large
as Ei�el signature of table 9 shows. Ei�el forbids overloading (Errors on line 4 and
5) and allows covariant overriding (column 3 lines 1,2 and 3). Column 2 is a mixing
of C++ on the �rst line (Error) and Visual Basic on the last line (Up).
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calls u d ud

cv(t) Up Error Down
cv(m) Up Down Down
cv(b) Up Down Down

ctv(t) Error Error Error
ctv(m) Error Error Error
ctv(b) Up Up Up

Table 9: Ei�el signature

5 SUGGESTIONS

Table 8 illustrates that the current situation is impossible for programmers building
assemblies; the table is far too complex. Simple rules must be chosen and used;
components should have well-de�ned semantics and it should not depend on its
clients. Components need to be reused in open and multi-language contexts. The
behavior of the component assemblies must be predictable from the component's
interface speci�cation, probably with more information than the simple syntactic
contract used during this experiment.

In order to reach this goal, here are some suggestions:

• We could study the interaction combinations among languages. But, as our
experiment shows for only 3 rather semantically close languages, all combina-
tions are to be considered. This is exponential, and as table 7 shows in its �rst
line, the "combination operator" can lead to unexpected signatures. It is not
a binary operation (combining two language signatures may result in a brand
new one leading to other combinations to study, and so on). Because of the
number of programming languages and the diversity of their signatures, this
approach seems untractable. But could we do otherwise?

• We could enrich the level of information in the contract in order to express
how the component interprets overloading and overriding. Overloading and
overriding semantics should not remain implicit, but as our experiment shows,
should be explicit. This solution also requires the previous approach and a
good understanding of language combinations.

• We could compel the use of overriding to the invariant case and forbid over-
loading. With such a restriction, all object programming languages have the
same behavior, hence the assembly is simple. This solution requires modi�ca-
tion of compilers and languages which is practically impossible.

• At last, a new tool may be developed. An assembly checker that would de-
tect "pathological cases" when components written in di�erent languages are
assembled.
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The last solution seems to be the most tractable. Programming language history
shows that programming language evolution follows a double movement; �rst a
generation of ideas and concepts that are implemented and tested, then a selection
among these concepts. This selection generates language restrictions. For instance,
the "GOTO" has been replaced in order to improve the structure of programs.
After developing "multi-language assembly checkers" it may be time for the next
generation object programming languages to make a decision and select the right
(and constraining) rules of overriding and overloading.

Overloading has already been criticized [13, 10] and this article may be considered
as another argument against overloading; it interacts badly with overriding. The
choice for a covariant, invariant or contravariant overriding is more open. In practice,
invariance is largely used and its implementation is rather easy. Covariance is hard
to implement, and not always safe, as Ei�el signature shows in column 3 line 1.
Contravariant, if theoretically sound, is rarely implemented. Hence, a tradeo� is to
choose invariant overriding.

6 CONCLUSION

The �rst experiment is restricted to Java techniques and shows that overriding and
overloading choices have consequences on distribution. The .NET experiment uses
very semantically close languages; overriding is invariant and overloading is allowed.
In this context, the diversity of behaviors remains great.

Theoretical research on component assembly mainly focusses on static aspects
of linking [9, 2, 1] even when it deal with dynamic linking; it is in the sense of "com-
piler linkers" not in the sense of "object-oriented late-binding". It looks for typing
theories that ensure error-free compilations, ignoring the expected behavior. On the
other hand, practical approaches propose component models implementations in ho-
mogeneous contexts (Java for instance) or leave the responsibility to programmers
to manage the composition of components (CCM or CORBA for instance).

More experiments need to be done with more languages, and di�erent scenarios.
For instance, we could envisage experiments with two components without extension
or extension within the client component. Anyhow, we feel that it is strange that
research on overriding and overloading interactions is uncommon. In a context where
model transformations (MDA [16]), language interoperability through middleware
(CORBA, SOAP) or virtual machine (.NET, Java), and assembly of components
are considered as key technologies, it is astonishing.

The problems of assembling components carried out in di�erent languages or in a
distributed environnement are real. We believe that the extension of components in
di�erent languages may become frequent in the future. Anyway, both situations can
occur and should be considered in theories and in programming languages design.
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