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As programming languages and software development paradigms have evolved, so
has our conception of what is meant by the term ‘software reuse’. In this paper we
track these shifts in meaning up to the era of component frameworks. Our concerns,
initially related to the maintenance of shared libraries, have become a study of dynamic
evolution.
The designers of modern programming languages and runtime systems have devoted
considerable efforts to ensuring that today’s software systems can, in some circum-
stances, be updated incrementally through the mechanism of dynamic linking. We
examine those circumstances and the situations where they do not apply. We describe
tools designed to support dynamic evolution on behalf of component developers, and
to help their clients to benefit from it.

1 INTRODUCTION

‘Software reuse’ has been a confusing term for software developers. Over time, the
word has taken different meanings which seemed to promise us different things.
Initially, it implied some kind of code scrap-heap where a developer could find some
bits and pieces to help get a job done. Then, with the advent of multi-user, time-
sharing computers, it came to mean just another shareable resource. Nowadays,
most people would say that (‘reusable’) code has been purpose-built to be supplied
to multiple client developers for incorporation into their own applications. So really
we just mean ‘usable’.

The term ‘supplied to’ implies some sort of packaging, or, in the words of Szyper-
ski [31], a ‘unit of deployment’. The term ‘incorporation into’ implies some sort of
interface or [31], a ‘unit of composition’. We need to consider how to achieve these
twin goals.

White-box distribution The earliest method of ‘reusing’ code was simply to
ship the sources. The client developer could incorporate the supplied code easily as
it stood or otherwise adapt it to the particular requirements of the application. If
the code was adapted however and the resulting application failed to run correctly,
this raised questions about responsibilities and liabilities implicit in the ‘contract’
between the two developers. When the original developer corrected or upgraded
the service code, the client developer had to decide whether to incorporate (and
possibly adapt) the new version or stick with the old. With a large number of
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clients, an unsupportable multiplicity of versions could result. In addition to the
issues of deployment and composition mentioned earlier, it seems it is necessary
to consider the issue of sustained maintenance – how to support multiple clients
whilst both they and the original service provider undergo change. Perhaps this is
another meaning for ‘reuse’ – the ability to keep on using your application whilst
the software it depends upon is upgraded. In this sense, white box distribution is,
for all practical purposes, a disposable, one-off solution.

Black box distribution The abstract datatype and the concept of information
hiding were conceived originally to prevent clients from adapting or otherwise mis-
using supplied service code in such a way as to compromise its integrity. The mech-
anism of separate compilation was thus developed to allow black box distribution
via the ‘executable subroutine library’ which can be linked to the client application
at build-time. This technology flourished in the 1970’s. Limitations in memory and
storage capacity led to the development of memory-resident (dynamic) link-libraries
so that the application image size could be minimised and the library code shared
between multiple concurrently active clients. At the time it seemed that this type
of ’sharing’ was the main interpretation of the re-use concept. The introduction of
a new version of a library could have been a substantial undertaking because all
the client applications would have to be re-built in order to re-establish their offsets
into the dynamic link-library subroutines (loosely called dlls). Because subroutine
libraries were not upgraded very frequently and because much of the process had
been practically automated by means of make-file systems, this scheme was entirely
feasible on the managed mainframe and minicomputer systems of the 1970’s.

During the 1980’s however, this state of affairs was put paid to by a number of
developments, including in particular, the invention of the personal computer; the
development of interactive graphics interfaces; and the adoption of object-oriented
programming.

The personal computer Because the personal computer is generally just used
and not really managed, the careful, professional construction and periodic re-
construction of ‘the system’ cannot be relied upon for updating and upgrading.
Instead, applications are installed willy-nilly from a CDROM or the Internet,
and at every installation a new set of dlls will be dumped into the library.
Eventually (occasionally immediately) dlls which certain applications depend
upon will be overwritten by new, incompatible versions. Those applications
will fail unless the original dlls are re-installed at which time any subsequently-
installed applications may in turn fail. The system will have entered what the
Microsoft system support staff have termed ‘Dll Hell’. [1, 25, 24]

Interactive graphics Managing multiple windows on the screen, and performing
all the other complicated event-driven tasks required of an interactive graphics
system, involves the client and its service-providing dlls in far more complex
interactions than the simple subroutine call-and-return. Where it is necessary
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for the two parties to exchange ‘state’ information in this manner, it is not
really practicable for the dll to service multiple clients in the conventional way.
The concept of code-sharing ceases to be a sensible runtime affair and hence
becomes a design-time issue once again, as it was in the white-box days.

Object-orientation Object-oriented developers encapsulate their designs in classes
and interfaces. When client developers adopt a class by instantiating objects,
they directly (re)use the original developer’s implementation; but when they
adapt the class by subclassing, they reuse parts of the original design together
with any code that’s not over-ridden. Finally, when they implement an inter-
face, it is largely the design that is reused. As a consequence of this multiplic-
ity, when an object-oriented application executes, a heterogeneous assemblage
of objects will be loaded. All their methods must mutually be able to access
each other’s in-scope fields and pass messages back and forth.

In the real world we may distinguish between the client developer and an
array of service developers, but inside the machine, all objects are equal. Just
making this work once is a clever trick towards which systems designers have
directed much ingenuity. Making sure it works, run after run, build after
build, under sustained maintenance throws up some subtle new problems. This
paper describes the ways in which systems and language designers have tried
to overcome these hurdles and approached the challenge of finding another
solution to the problem of reuse.

Section 2 begins with an explanation of the fragile base class, the original main-
tenance time problem that arose when object-orientation collided with traditional
compilation and linking techniques. Section 3 covers similar ground but in relation
to more recent (dynamic) linking mechanisms, and sketches a rationale for the tools
described in Sections 4 and 6. Dejavu, in section 4, is a prototype server-side
environment for supporting small-scale Java class libraries. Because it was explic-
itly designed as a component composition and deployment environment, we have
described the .NET architecture in some detail in Section 5 before outlining the de-
sign of Snap, a client-side utility for reconfiguring .NET applications, in Section 6.
Section 7 discusses some related work as reported in recent literature.

2 THE FRAGILE BASE CLASS PROBLEM

In a typical C++ implementation, a class’s method declarations are indexed in a
virtual function table (vtable) which subsequent classes reference in order to invoke
the method [19]. Thus, a class Aircraft is declared as follows:

//Aircraft.h vtable index
class Aircraft{

virtual int GainHeight(); 0
};
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Source files that include Aircraft.h are then compiled. Code is generated as-
suming that the virtual function GainHeight has vtable index 0. Suppose that
Aircraft.h is then modified to add another virtual function:

//Aircraft.h new version vtable index
class Aircraft{

virtual void SndMsg(faultNo); 0
virtual int GainHeight(); 1

};

Any source files that include Aircraft.h that are not re-compiled after this
modification will use at runtime the contents of entry 0 in the vtable for instances of
class Aircraft in order to invoke GainHeight. But entry 0 will actually point to the
code for SndMsg, and, when invoked from a client, a type violation will occur. The
representation of the function in the vtable has lost the signature of the function —
it is merely an offset in the table. The problems this can produce may be even more
insidious. Say Aircraft.h was modified again:

//Aircraft.h new version vtable index
class Aircraft{

virtual int LoseHeight(); 0
virtual void SndMsg(faultNo); 1
virtual int GainHeight(); 2

};

Now the signature has been lost but not in such a way that type checking can
spot it, so a client invocation of the form

if (height < CRITICAL) GainHeight();

would crash the plane and not just the computer!

This is known as the fragile base class problem [17]. A robust base class should
allow previously compiled clients to run without re-compilation or error, since the
inclusion of the new method (for new clients) should have no bearing on the original
contract. The fragile base class however breaks the contract needlessly, dictating
that tedious re-compilation will be required for every client application.

3 DYNAMIC LOADING AND LINKING

The fragile base class problem arises in C++ because the C loader requires that
its binaries are direct memory images. It is possible to construct implementations,
which avoid or ameliorate the problem [7] but only at the cost of increased complexity
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of the implementation and, in some cases, of reduced object-oriented capabilities of
the language[11, 26]. By contrast, a Java class loader does more of the work at
load-time and thus relaxes this stringent constraint on the Java compiler. Instead,
for each reference in the source code, the Java compiler embeds symbolic information
into the binary. This must include:

• the name of the entity referred to (the target) together with sufficient qualifiers
to locate it in the class/interface hierarchy,

• for field references, appropriate (symbolic) type information,

• for constructor invocations, symbolic references to the types of the parameters,

• for method invocations, symbolic references to the parameters and the return
type.

At load-time the class loader uses this link information to locate targets and
thus to resolve the references dynamically. Naturally, the binary representations of
these target entities must contain the corresponding type information for subsequent
type-checking by the verifier.

When a particular class is modified and re-compiled, its link information will be
generated anew. If the modifications made do not actually alter the link information
in any way, then the loader will be able to link this new binary with all the old
binaries. Such modifications are termed binary compatible changes. The implication
of binary compatibility is that clients can continue to run their original binaries
and the effects of the modifications will be felt straight away. The most significant
binary compatible changes are listed in Table 1 [11, 26, 16].

Note that the word ‘compatibility’ here refers strictly to the ability of the bi-
naries to link and run together. There is no guarantee that the new modifications
will not introduce semantic errors at runtime. This has led to a distinction be-
ing drawn between syntactic binary compatibility (as defined above) and semantic
binary compatibility where the program’s integrity and/or the intentions of the
modifier are somehow guaranteed [16]. Semantic binary compatibility will not be
considered further here, and binary compatibility will be taken to mean syntactic
binary compatibility.

The binary compatibility of Java programs is a by-product of Java’s dynamic
loading mechanism. Even though the modified classes may link correctly, a binary
compatible modification can affect the client in unexpected ways. For example,
sometimes a client may not experience the effect of the change until it is re-compiled.
We have named these blind clients. Some examples of how blind clients can come
about in Java and also in C# are given in Appendix A. In other cases the client’s
sources may not re-compile without error. We have termed these fragile clients, and
Appendix B shows some ways in which these can come about.
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Binary Compatible Modifications Reason

a

Correcting methods and constructors
that previously threw unwanted excep-
tions, or otherwise failed. Enhancing
the performance of methods and con-
structors.

There are no changes to the type
information, so the client binaries will
link to the new code.

b

Reordering type declarations or remov-
ing fields and methods whose accessi-
bility is internal (i.e. private within a
class, default within a package – assum-
ing the whole package is re-compiled).

No client reference targets have been
removed – only relocated. Since the
link information is symbolic, the loader
can still find them.

c
Inserting new classes or interfaces into
the type hierarchies.

The name qualifiers held in the original
client binaries point directly to the
original targets – this is sufficient to
locate them.

d
Adding new fields and methods to an
existing class or interface.

New entities allow new contracts with
new clients. Even where fields are
shadowed and methods overridden, the
old client binaries contain the locations
of the original target.

e
Moving a method or field upward in
the class hierarchy.

The method/field will still be found
using the ordinary runtime mechanism
for finding methods/fields in a class
hierarchy.

Table 1: Binary compatible modifications
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Runtime
(Re-)build time No effect Effect Error
No effect blissful ignorance forgetful?
Effect blind blissful binary
Error blind and fragile fragile incompatible

Table 2: Modification effects

Modification Effects

In order to understand the impact of different modifications and to exercise some
control over the emergence of undesirable consequences, like blind and fragile clients,
it is necessary to consider not only the nature of the modification (whether it is
binary compatible or not) but also the phase at which the modification makes itself
felt – immediately, at runtime, or subsequently at the next client build-time. 1

There are three possibilities:

1. the modification may make no impact whatever (No Effect);

2. the modification may emerge as intended (Effect);

3. the modification may break the system (Error).

So we can classify any individual modification in terms of its effect as shown in
Table 2. Ignoring the ‘binary incompatible’ modifications, which are important but
not interesting, we can see the categories into which blind and fragile clients may
fall.

In another category the client experiences the modification but, after being re-
built, finds that the effect vanishes. We have not been able to find an example where
this phenomenon occurs as a result of a single modification. Just in case somebody
else does, we would like to propose the term ‘Forgetful Client’ for this category.

Two categories have wholly satisfactory outcomes – firstly the case where the
client never experiences the modification (blissful ignorance) should occur when
the modification involves adding service facilities which are intended only for new
clients. In the second case (blissful) the modification is experienced immediately
and it persists after the client is rebuilt. This is desirable when errors in the service
module have been repaired and the corrections need to be painlessly propagated
to the client applications. These two categories are extremely important because
they offer service developers the opportunity, under certain circumstances, of field-
upgrading their software at client sites without requiring any action or even awareness
on the part of their clients and, most especially their clients’ users. This phenomenon
has been termed dynamic evolution.

1For static loading it is buildtime that happens immediately, and runtime that is subsequent.
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Support for dynamic evolution

Developers need to be aware of the fact that their modifications may have different
effects on their clients and that these may impact at different points in their ap-
plications’ life-cycles. Having such advanced knowledge is a necessary condition for
the developer to manage the deployment of service modifications and hence achieve
satisfactory dynamic evolution. However, it is not sufficient. To achieve this we
need tools capable of exploiting this knowledge in the service either of the developer
or the client.

The precise nature of such tools depends to a large extent on the architecture of
the runtime systems currently available to developers. Thus, for the Java Virtual
Machine (JVM), we designed Dejavu (the Distributed Evolution for JAVa Utility),
a tool targeted at the small or medium developer who needs to maintain a modest
class-library and to support clients across a network.

By contrast, Snap (for Strong-Name Assembly Propagator) was designed to
work at the sites of clients, managing upgrades by exploiting services embedded
in Microsoft’s .NET framework. These tools are described in detail in subsequent
sections. Although the tools are radically different, they share some very broad
design goals:

1. We wanted to work within the scope of programming languages as they are
currently defined, and not to propose new structures, functions or program-
ming conventions as these would serve to pass the problem on to the developers
themselves.

2. We rejected any requirement which demanded that clients should subscribe to
some server-side register for the purpose of achieving version control as this
would pass the problem on the to clients.

3. We stipulated that the client application’s users should experience trans-
parency with regard to the modifications instituted by our tools. This means
that it is imperative to deal sensibly with blind and fragile clients and to
preempt the introduction of binary incompatible modifications.

4 DEJAVU – DISTRIBUTED JAVA VERSION CONTROL SYSTEM

The Java compiler has to identify an exact location in the file system from where, at
runtime, the Java classloader can fetch the code pertaining to any particular class. If
a class is modified therefore, the new version needs to be placed in the same location
and thus it effectively replaces the original version. This arrangement cannot satisfy
the developer whose library must, on the same system, service multiple clients with
different versioning requirements.
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Figure 1: Dejavu Architecture

The solution chosen in Dejavu was to version at the level of the library as a
whole (rather than to try to support different versions of a class within a single
library), and to supply each client with a private copy of the library. 2 Because
deployment is distributed, Dejavu employs a client-server architecture, where the
server hosts multiple versions of each library it manages and undertakes to upload
an appropriate update when any client requests it. The upload consists of the entire
library.

The server maintains an interactive interface for the developer. Via this a new
version of a library can be downloaded. It can be explicitly tested for binary com-
patibility against any other version of the library present on the server, and the

2This solution is impractical where the library is very large or where there are a large number
of different clients at the same site. An alternative solution could be to provide each client with
a smarter customised classloader capable of detecting and fetching post-compilation versions of a
service class. However, this would require client developers to program ‘reflectively’ and could,
under some circumstances, make for very slow execution.
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Figure 2: Rule Server Index

results of all the tests are stored. Additionally, redundant versions of the library
can be removed in their entirety.

In order to use the library, the client must download an Updater component
to manage communications with the server, and a Library JMX mbean. Library

encapsulates the jar file of the client’s current library version together with a custom
classloader specifically configured for that version. Communications between the
mbean and Updater and between the mbean and the client application are handled
through a JMX agent – see Figure 1.

The client initiates an update request which the server fulfils by uploading the
requisite jar file, if appropriate. Updater then initiates the update via the JMX
agent. Once the old jar file has been replaced, a new classloader is constructed,
configured for the new library, so that the next time the client application calls for
a component, the new version will execute. If Updater is called whilst the client
application is running then the upgrade will be a ‘hot-swap’.

The server side of Dejavu consists of a LibraryServer which encapsulates a
repository of libraries incorporating all current versions and the results of all inter-
version compatibility tests; and a RuleServer which the LibraryServer calls upon
to conduct these tests – see Figure 1. The RuleServer uses reflection to test two
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versions of a library against the binary compatibility requirements laid down in the
Rules database. Currently these consist of the 30 binary compatibility ’rules’ which
appear in the JLS [18] (see, for example, Figure 2). Each rule is referenced by its
section number within the JLS and is accompanied by methods which perform the
actual tests. On the basis of the results, the RuleServer flags whether or not the
two versions are binary compatible.

The Updater component of any given client can request one of two kinds of
updates. The standard request supplies the server with the client’s current library
version number and the server will provide the most recent binary compatible jar
file if one exists. If the new version incorporates any modifications which may make
the client fragile these are flagged for the Updater’s log, but the new version is
still ‘shipped’. The other kind of update is the maintenance request where the
client developer wants the absolutely latest version of the library for the purposes
of preventative maintenance, regardless of its compatibility status.

5 MICROSOFT .NET FRAMEWORK

.NET is a framework devised by Microsoft to promote the development of component-
based applications and to enable their efficient and effective deployment [25, 12]. The
core component of .NET is the Common Language Runtime (CLR) which is actually
a runtime environment. The CLR accommodates the interoperation of components
rendered into the Common Intermediate Language (CIL). Rather than interpret-
ing these statements for a virtual machine (as with the Java Virtual Machine) the
CLR uses a Just-in-Time (JIT) compiler to generate momentary native code for the
local platform. Having a common intermediate language means that applications
can compose components written in different source languages whilst the Platform
Adaptation Layer (PAL), together with the Framework Class Library, makes .NET
applications potentially highly portable across Windows platforms. Because C#
differs from Java and because our previous studies focussed exclusively on Java, we
examined the binary compatibility potential of C#. C# still causes blind and fragile
clients although there are some language-dependent differences [13].

A number of the .NET design goals [30] are particularly relevant to dynamic
evolution:

1. “Resolve intertype dependencies at runtime using a flexible binding mecha-
nism.” This is what makes it dynamic.

2. “Design runtime services to . . . gracefully accommodate new inventions and
future changes.” This is what is meant by evolution.

3. “Package types into portable, self-describing units.” ‘Portable’ means that
the packages are effectively components, as defined earlier, and in .NET are
referred to as assemblies. The ’self-describing’ means that the CLR need
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Figure 3: CLR Loading

not depend on a registry to compose components at runtime. Instead, each
assembly incorporates a manifest which lists the resources provided by the
assembly and the nature and locations of any resources it depends on from
external assemblies.

4. “Ensure isolation at runtime, yet share resources.” This implies a Dejavu
type repository that can hold multiple versions of a component and a runtime
system that can correctly select and use the different versions appropriate for
each application. In .NET this repository is known as the Global Assembly
Cache (GAC) and the runtime capability is referred to as ‘side-by-side’ oper-
ation. The runtime address space is divided into Application Domains (app-
domains). At runtime an Assembly Loader loads assemblies from secondary
storage (or a URL) into the appropriate appdomain on demand. Assemblies
loaded from the GAC are loaded into the Shared Domain where they are acces-
sible to any running application. Other domains exist for system services and
application-specific classes. Security checks are performed during the loading
process.

5. “Execute code under the control of a privileged execution engine . . . ”. The
CLR execution engine in Figure 3 performs ‘managed execution’ of code pro-
duced by the JIT compiler. When an executing object references an unloaded
class, the ClassLoader loads the class from the appdomain for compilation. If
the reference is to an unloaded assembly, the request is passed to the Assembly
Loader. Code verification is performed during JIT compilation.

A .NET assembly that is capable of entering the GAC and participating in side-
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by-side operations must be identified by a strong-name. A strong-name incorporates
a name; a four-part version number divided into <major>, <minor>, <build> and
<revision> parts; a ’culture’ and a public key ID originating from the assembly
author. Any two assemblies are regarded as distinct if there is a variation in any
one of these. Thus even if two providers simultaneously update the same assembly
with the same version number increment, the public key information still allows the
system to distinguish between them. Assemblies which are not in the GAC (and
hence are not intended for side-by-side operation) need not be strong-named. 3

6 SNAP – STRONG-NAME ASSEMBLY PROPAGATOR

Rational Component Management

The strong-name assemblies in the GAC, which are so uniquely specified, are equally
uniquely referenced in the metadata of dependent (client) assemblies. Thus, every
time a client runs, it will only ever request the exact service assembly it was built
against. Any improvements arising in future versions will by default be lost to the
client until its next rebuild. This is deliberate:

“Historically, platform vendors forced users to upgrade to the latest ver-
sion shipped. Software developers . . . were (solely) responsible for resolv-
ing any resulting incompatibilities” [23]

and the result was dll Hell!

Instead, the default behaviour can be overridden because the Assembly Loader
consults a sequence of XML ‘policy’ files which can be used to redirect the load
operation. So

“the .NET Framework team (puts) complete control in the hands of
system administrators and developers who use the framework . . . ” [23].

3According to the .NET documentation [30] the CLR loader will try to match the version
specified in the Manifest with the component. If it can’t find the exact version, the CLR will
look for a close substitute version with the same major and minor numbers. The build number is
considered possibly compatible, and the revision number is also called the Quick Fix Engineering
number (QFE), and considered compatible. If the manifest doesn’t find the exact match, it will
load a version that differs only by the revision or build number if it is newer.

However, by experimenting with assemblies, we found that the QFE appeared to have been
disabled by default in the official .NET releases that we looked at. The versioning algorithm
used by the Assembly Resolver had been changed. For public assemblies, an exact version match
was required, the resolver no longer loaded the latest build and revision numbers. The “Runtime
Settings Schema” document under the “.NET framework Configuration File Schema” section of
documentation showed that the UseLatestBuildRevision XML element had been removed from the
config files, and it suggested that administrators use explicit redirection instead. This seems to
imply that programmers may have given changes quick fix status to avoid compatibility problems
when loading.
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One policy file is the Application Configuration file and another is the Machine
Configuration file, and these give some (manual) control to the client-side system
administrator. On the developer side, there is a Publisher Policy file. Taken to-
gether, these files can no doubt provide a dynamic evolutionary pathway for any
application provided that all parties with write-access to the policy files have full
information about component dependencies and versions (that is, they know the
information in the metadata and will act on it).

The aim of Snap [15] was to exploit the evolutionary facilities offered by .NET
to provide software support to application developers who wanted to migrate the
benefits of service component updates to their own products. However, this evolution
cannot occur at application loadtime (as with Dejavu) because the assemblies are
‘locked’ into the appdomain when they are loaded and any attempt to interfere with
the policy files looks to .NET’s security system very like a ‘spoofing’ attack. Instead
we envisaged a separate maintenance phase in which the user directs the tool to
update the GAC and/or the policy files.

It will be useful to list some terms and concepts derived from the theoretical
model [14] we derived:

Component A Component is a uniquely (strong-) named entity which requires a
set of import services, provides a set of export services and maintains a set
of required components (which collectively export those services which the
component imports).

Cache A Cache is a set of components.

Coherent A cache is coherent if every service required by each component in the
cache can be provided by one or more other components in the cache.

Add A component can be added to a coherent cache provided it is not already there
and providing that adding it does not compromise the coherence property of
the cache (i.e., it cannot require any service which is not, a priori, provided).

Remove A component can be removed from a coherent cache provided that this
does not compromise the coherence of the cache (i.e., there must be other
components that provide the services provided by the target component).

Where a sequence of ‘physical’ components (components actually stored in the
cache) represents the temporal evolution of a single ‘logical’ component (a compo-
nent designed to export a specific set of services), it is assumed that the ordering of
the sequence can be deduced by examining component (strong-)names. 4

4This should be possible if the 4-part .NET version number is used consistently. For our work
we assumed a simple linear sequence.
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Figure 4: GAC Administration via Snap

Tool Requirements

A tool to manage GAC assemblies in the way envisaged should:

1. allow a system administrator to add an assembly to the GAC. The GAC is
not a flat file-system, so this requirement involves creating an appropriately-
named path to a folder containing the relevant .dll file together with an .ini
file holding a copy of some of the manifest.

2. allow a system administrator to remove an assembly from the GAC. It is not
possible to apply a simple coherency test here since the target assembly may
be explicitly referenced in the required metadata of another GAC assembly
and hence not removable. If the target is explicitly referenced in an external
application, it would be necessary to rebuild the application before it could be
coherently removed.

3. allow an application developer to configure an application so that it utilises
the most recent binary compatible version (relative to that application). This
requirement involves creating and/or maintaining an Application Configura-
tion file. Note that this operation obviates the need to rebuild the application
mentioned above.

System Design and Use

In order to avoid the appdomain locking problem, it is necessary to extract the
GAC assembly metadata without loading the assembly. This function is performed
by an assembly called util which parses the byte-streams of each dll in the GAC and
constructs a table recording each assembly’s strong-name, its required assemblies
and a list of its strong-named clients.

This table is accessed by an assembly called GAC whose role is to encapsulate
the GAC. GAC exports methods which allow other components to gather assembly
data and to Add and Remove assemblies from the GAC.
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Figure 5: GAC Configuration

GACClient is the user-interface for system administrators, through which they
can view the GAC and intra-assembly dependencies, via GACTree; and Add and
Remove assemblies via GAC. Figure 4 illustrates the component configuration for
system administrators and Figure 5 shows a screenshot of the tool (labelled Con-
figure in Snap). All the assemblies in the GAC are listed and the listing can be
expanded to show each assembly’s dependencies. The dependencies are colour-coded
to distinguish between the required assemblies (red on the screen) and client assem-
blies (green on the screen).

The requirement for the Application Developer (requirement 3) involves the com-
parison of different versions of an assembly to discover whether the later one is binary
compatible with the earlier one relative to the application in question. In order to
do this it is necessary to establish whether the particular types, fields and methods
imported by the application match those exported by each version.

This information is extracted using reflection. The export metadata is easily
available via the ‘Managed’ Reflection API; however when it comes to import meta-
data, the Managed Reflection API does not reveal the token values needed to com-
pare with the corresponding exports. Therefore, the ‘Unmanaged’ Reflection API is
used to examine the assembly header files, and a Wrapper assembly was devised to
bring this unmanaged component into the managed fold. The comparison is done
in the BinaryCompatibilityChecker assembly (Figure 6), starting with the application
imports and recursing through the entire dependency tree. Any legitimate redirec-
tions are recorded in an Application Configuration file which is eventually deposited
in the application’s source directory.
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Figure 6: Application Configuration Client

7 RELATED WORK

As observed by Stuckenholz [29], advances aimed at improving the evolutionary pro-
cesses in component development can occur in three areas — amongst the concepts
embodied in the underlying component model; within the scope and constructs of
the programming languages used to design and build components, or in the frame-
works within which components are deployed, composed, and executed on systems.
Accordingly, this section seeks to document some of the recent work in each of these
categories.

Some of this work has been motivated by the problems of component adaptation
or dynamic update. Component adaptation is concerned with getting components
to collaborate through interfaces which are not directly compatible. This is usu-
ally managed throughconnectors which may be components in their own right, or
intelligent channels of one sort or another. Dynamic update (or hot-swapping) is
concerned with updating elements of an application while it is running.

Most researchers seem to share our reluctance to attempt to seek consensus on
a component model more elaborate than that defined by Szyperski [31]. However,
Steyaert et. al. [28] have proposed reuse contracts as a means of making the com-
ponent developer’s design commitments explicit, and Mezini [22] developed a smart
composition model as an extension of the Smalltalk runtime which could detect, at
the client site, modifications that rendered a service module incompatible. Brogi et.
al. [6] have proposed that behavioural information should be specified in component
interfaces in the form of sessions. By giving these sessions a formal description it
is possible to generate automatically the ‘response’ session (dual) of an idealized
interacting counterpart component. This gives a formal definition to the term com-
patibility and makes it possible to determine whether two components are indeed
compatible. They go on to show how in the case of incompatible components, it is
possible to generate an adapter component to act as a go-between [4]. The creation
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of such adaptors could be one way for an evolving component to continue to serve
former clients.

Other formal work on dynamic linking [26, 10, 9] has been extended by Mal-
abarba et. al. [21] to derive a definition of a (potentially type-safe) dynamic class
that can be hot-swapped. The definition of type-safety used here is marginally more
restrictive than the Java binary compatibility definitions given earlier [18], largely
because it does not deal explicitly with some of the Java accessibility modifiers,
such as final. Other workers [27, 5] recognized that the evolutionary behaviour of
components can be classified at the level of the component model by versioning. In
particular Brada [5] has used the SOFA CDL to classify modifications according as
to whether the new specification was

= an exact match of the old one

⊃ a specialization of the old one

⊂ a generalization of the old one

4 a mutation of the old one

Since the SOFA specification is decomposed into Provided, Behavioral, and Required
parts, it is possible to distinguish between degrees of compatibility as follows:

Compatibility Provided Behavioral Required
Equivalent = = =
Strongly Compatible ⊇ ⊆ ⊆
Conditionally Compatible ⊇ ⊇ /4 ⊇ /4
Incompatible ⊂ /4

Brada’s scheme is held to be the most complete analysis of component versioning
to date [29].

Ideally key elements of any component model would be explicitly incorporated
into general programming languages, although in reality this is not the case [8]. Re-
searchers thus have the option of proposing language extensions where broad accep-
tance is highly unlikely, or of proposing a special approach to program development,
supported by an appropriate class library. This was the strategy taken in Section 4
with Dejavu. Although their motivation is different, the same line was taken by da
Silva et. al. [8] who have developed a Java connector package which, if incorporated
with an application whose implementation embeds the appropriate interface, can
generate standardized connector components to manage inter-component interac-
tions. They plan to automate the process whereby a component-based architectural
description can be mapped to a Java implementation.

Bialek et al. [2, 3] have addressed the problem of dynamic update. Their analysis
identifies five problem areas that all hot-swapping solutions must address, as follows:

1. Compatibility – This refers to the problem areas we have been considering
under the designation of syntactic and semantic binary compatibility.
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2. Class Identity – This refers to the need to be able to maintain (and recognize)
multiple versions of a component.

3. Class Unloading – This is largely a runtime issue.

4. State Transfer – Another runtime issue.

5. Performance – This refers to the runtime overhead which dynamic evolution
might incur. This can be an issue for systems like Dejavu, but it is a secondary
consideration here.

On the whole dynamic update clearly embraces almost all of the concerns of
dynamic evolution, together with a number of runtime specific issues. Since it tends
to involve only a single runtime instance, however, hot swapping researchers tend
to consider neither the problem of serving multiple clients on a single system nor of
coping with distributed systems, and these are the essence of dll hell.

In their paper, Bialek et al. [3] outline a method of partitioning monolithic appli-
cations into independently updateable ‘components’. Each component is enveloped
in a mediator wrapper, which provides the Class Identity sought in 2 above, and
helps to accommodate multiple component versions at runtime (see 3). In addi-
tion, a modified Java classloader is employed which, by altering the class bytecode,
manages inter-partition transactions via proxies. By this means the State Transfer
problems of 4 can be solved.

Directly motivated by hot-swapping considerations, Malabarba et al. [21] de-
scribe their DVM (Dynamic (Java) Virtual Machine). This works with a custom
DynamicClassloader to allow hot-swapping of so-called dynamic classes which have
been carefully (and formally) defined to satisfy the Compatibility criteria (see 1).
Unlike the standard model, DynamicClassloader can reload or replace previously-
loaded classes, thus tackling Class Identity (see 2). Firstly, the DVM works with the
classloader to implement these features and also tackles the issues under 3 (using a
mark-and-sweep update algorithm allied to garbage-collection considerations). The
paper also considers performance issues mentioned at 4 together with a number of
additional security issues raised by the implementation of hot-swapping technology
(since malicious code can fairly easily masquerade as an ‘update’ to some existing
class, especially in a distributed environment).

Another example of the framework approach is described by Kon et al. [20] who
have introduced an automatic configuration architecture. The primary motivation
for this is concerned with the deployment of (largely) hardware resources, but the
framework provides mechanisms for dynamic evolution and even (in principle) hot-
swapping. Their architecture implements a component repository similar to early
versions of Snap [15]. Each component incorporates metadata which documents
pre-requisite specifications – although there is no automatic means of constructing
this metadata.
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At runtime, the metadata for each component is used to construct a unique com-
ponent configurator. This is an active component in its own right that manages the
dependencies exhibited by its allied component and that helps to synchronize re-
source usage amongst components via a number of system-wide services. The active
elements of each configuration need to be manually programmed. The configurators
play a role similar to connectors except that each component has its own configu-
rator. The Auto Configuration service permits the association of upgrades only to
those application currently requiring the upgrade (so-called ‘pull’ technology). This
leads to significant efficiencies because it is not necessary to download the upgrade
to all nodes and, since it is demand-driven, it is also not necessary to keep a register
of all of a component’s clients. Although dependencies can be specified in a number
of different ways, it is not stated in the paper how the directory service distinguishes
between different versions of the same component, or establishes which version is
the most appropriate candidate for any client.

Stuckenholz [29] also proposes a component repository in which multiple versions
of interdependent evolving components are organized as a version readability graph.
Any application’s component dependencies can be represented as a subgraph of
this directed cyclic graph, and any upgrade will involve finding a more up-to-date
compatible, or at least minimally incompatible, subgraph. Considerations of how
this can be achieved lead him to an intelligent component swapping system. Work
on this approach is continuing.

8 CONCLUSION

The problems that emerge from the field of dynamic evolution overlap somewhat
with those of component adaptation and hot-swapping. Solutions to all these sorts
of problems can be approached through the elaboration of our conceptual model of
components per se; through refinements to our programming languages; or through
enhancements to our component frameworks.

The tools described in this paper fall into the last category. Dejavu is a server-
side repository that stores successive generations of an evolving Java class library,
whilst Snap provides some GAC housekeeping facilities for .NET clients. Their
efficacy will be tested and their functionality improved with future field testing.

Software maintenance is still a complex, expensive and comparatively manual
business compared with many other areas of software engineering. The development
of supporting tools can ameliorate this situation. However, more work needs to be
done in the areas of semantic binary compatibility and of automatic versioning before
these tools are likely to receive much recognition or acceptance.
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A BLIND CLIENTS

A blind client is a client binary that will link to a modified service binary without
error, but which will not see the effect of the modification until re-compilation. This
can occur in a number of situations.

Shadowed Fields

Adding a new field to an existing class is a binary compatible change. Where this
field has the same name and type as another field farther up the class hierarchy, the
new field shadows the old. However, previously compiled binaries will still be bound
to the shadowed variable.

Consider the following situation which can arise when programming in C#.
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public class Coffee{
public string purity="pure Arabica";

}
public class Columbia : Coffee{

public class SuesDiner{
public static void main(string[] args){

string cup = new Columbia().purity;

System.Console.WriteLine("Coffee - " + cup);

}
}

SuesDiner is the client. When compiled and executed it outputs Coffee - pure

Arabica Now suppose that Columbia were modified as follows

public class Columbia : Coffee{
new public string purity = "with chicory";

}

The original purity has been shadowed and any newly compiled reference will
be resolved in Columbia. Thus

public class ChrisCafe{
public static void main(string[] args){

string quality=new Columbia().purity;

System.Console.WriteLine("This coffee is " + quality);

}
}

will produce This coffee is cut with chicory. However, SuesDiner is still
bound to the old version of Columbia and so still displays Coffee - pure Arabica.
SuesDiner is blind to the modification until re-compilation, when it will be bound
to the new purity.

In object-oriented languages fields are shadowed and methods over-ridden. The
runtime system employs a dynamic dispatch mechanism to locate the hierarchi-
cally closest method for any given object and this evades the blind client problem.
Versions of the Java Development Kit subsequent to v.1.4.0 resolve field references
similarly so that Java clients can not become blind through shadowed fields.

Compile-time Constants

In Java, the keywords final and static are used together to denote a compile-
time constant - one whose value is embedded directly into the binary everywhere it
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appears. Clearly, it is good programming practice to declare, as constant only those
things that are truly constant, but if a maintainer were to change the value, none of
the client binaries would see the change, even though they could link without error.
The following example is taken from the Java Language Specification [18].

class Flags{final static boolean debug=true;}
class Test{

public static void main(String[] args){
if (Flags.debug) System.out.println("debug is true");

else System.out.println("debug is false");

}
}

When Test is compiled and run, the output debug is true is produced. Sup-
pose that Flags were modified so that debug=false and a new client Test1 written,
identical to Test. If Flags and Test1 are compiled and run then the output debug
is false will appear. However, when Test (which was not re-compiled) is run, it
still produces debug is true.

If the maintainer realized the problem and modified Flags once again, so the
keyword final were removed, then a new client, MyFlag say, could be written

class MyFlag{
public static void main(String[] args){

Flags.debug=!Flags.debug;

}
}

Here, one client changes a value at will, whilst earlier generation clients, although
they run without complaint, do not take any account of the change. One of the
main reasons for using final when the values are not truly constant is to prevent
clients like MyFlag from overwriting values. In Java, this is better done by means
of private static variables with bespoke access methods.

C# has no final keyword. Instead, the readonly keyword marks a field as con-
stant after initialization. When the above code is translated into C# and executed,
the Test client always displays the current (constant) value.

B FRAGILE CLIENTS

A fragile client is a client binary that will link to a modified service binary, but which
cannot subsequently be re-compiled from a single set of sources. This situation can
arise in a number of ways.
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Shadowed Fields

Consider the earlier example of a shadowed field. Suppose that Columbia were
modified as follows

public class Coffee{
int purity=100;

}

The original purity has been shadowed by a variable with the same name but
a different type. The class ChrisCafe could be written as

public class ChrisCafe{
public static void main(string[] args){

int percent=new Columbia().purity;

System.Console.WriteLine("Serving Arabica of purity "+percent+"%");

}
}

and produces Serving Arabica of purity 100% when run, while if the original
SuesDiner is executed, its version of purity is still bound to the Coffee class so
that it will once again output Coffee - pure Arabica.

However, if SuesDiner were to be compiled the error

Cannot implicitly convert type ’int’ to ’string’

will occur. Thus, if its two clients are to undergo their own maintenance, the Coffee
service hierarchy cannot simultaneously honour its contracts with both.

Access Modifiers

Java gives developers a degree of control over some aspects of the classes they create.
For instance, any field or method that is declared as private cannot be manipulated
(or even seen) outside of its containing class. This being the case, clearly any
modifications performed on private code or data are utterly binary compatible. The
opposite of private is public, which gives access to all and sundry. Between the
two there is a category protected that grants access within the class and within all
sub-classes in the hierarchy, but not outside. This is an important control mechanism
for developers – powerful methods can be provided to clients, but they can only be
run in pre-determined contexts dictated by the class environment.

Some consideration needs to be given to the inheritability of this access control.
If client developers can create sub-classes, should they be able to interfere with
the accessibility determined by the original author? The Java compiler takes the
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view that they should not be able to restrict access beyond that determined by the
original author. In practical terms this means that there will be a compile-time
error whenever an attempt is made to shadow a public field with a protected one
or to override a public method with a protected one. This gives yet another way to
make fragile clients. Suppose a Java developer creates a

class class Coffee{
protected void adulterate(){
System.out.println("add some milk");

}
}

and a client writes

class Homebrew extends Coffee{
protected void adulterate(){
System.out.println("3 spoons of sugar");

}
public static void main(String[] args){

Homebrew h = new Homebrew();

h.adulterate();

}
}

Homebrew produces the output 3 spoons of sugar because adulterate from
Coffee has been correctly and successfully overridden. If the author of Coffee

decided to make his version of adulterate public rather than protected and were to
re-compile Coffee, this would still link with the original binary of Homebrew, which
would produce the same output. However, were Homebrew to be re-compiled, the
compiler would not allow the protected adulterate to override the public method
in Coffee. In spite of the assertion to the contrary [18], this makes for a fragile client.

In C# the client developer has the choice of using the keyword override (the
local method will conform to the inherited access restrictions) or new (the local
method can define its own access parameter).

Interfaces

As a final example of the fragile client, consider a situation where one programmer
develops an interface and a second developer implements it in a class.

interface StatusReport{ void ShowHeight (double amount); }

Class Jet implements the interface StatusReport by defining the method ShowHeight.
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class Jet implements StatusReport{
double height; int speed;

Jet (double h, int s){
height = h; speed = s;

}
}
public void ShowHeight (double h){

System.out.println("Flying at "+h+".");

}

Then a program JumpJet is written which instantiates vtol, an object of type
Jet.

class JumpJet{
public static void main (String [] args){

Jet vtol = new Jet(5000, 550);

vtol.height = vtol.height - 50;

vtol.ShowHeight(vtol.height);

}
}

Subsequently, the original programmer introduces a new method ShowSpeed into
StatusReport. Adding a method to an interface is a binary compatible change.
Provided nothing else is re-compiled, JumpJet can still run. However, if Jet is
recompiled the error

Jet should be declared abstract;

it does not define ShowSpeed(int) in Jet

occurs, so Jet is a fragile client. Moreover, until the 1.3 release of the Java Developers
Kit (JDK), JumpJet was also fragile. If JumpJet were re-compiled with the original
binary of Jet, the following error occurred

Class Jet is an abstract class.

It can’t be instantiated.

In the equivalent C# test, the JumpJet assembly throws a TypeLoadException

at runtime so it is not really a binary compatible change.
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