
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 8, November-December 2006

Cite this article as follows: Alan Ward: “Encrypting the Java Serialized Object”, in Journal of
Object Technology, vol. 5, no. 8, November - December 2006, pp. 49-57
http://www.jot.fm/issues/issue_2006_11/column6

Encrypting the Java Serialized Object
Alan Ward, Data-transmission Security Research Group, University of Andorra

Abstract
The cryptographic classes incorporated into Sun’s releases of the Java Virtual Machine
are often used in e-commerce and other applications. A mechanism exists for signing a
Java Class. However, little notice has been given to the possibility of encrypting the
Java object instance itself, either for transmission or to maintain state during storage. In
this article, we discuss the applicable techniques and benefits of using DES, Triple-
DES, Blowfish and AES symmetric secret-key algorithms to encrypt a Java serializeable
object using technology available through public means.

1 INTRODUCTION

As the amount of various APIs available for Java grows, so does their use in both Web-
based services (applets and servlets) and independent networked and mobile applications:
Swing-based client-side programs, EJBs, and more. One of the main factors we think has
accelerated this spreading use of Java is the availability for some time now of
cryptographic libraries that help ensure security across distributed software platforms.

However, it is one thing to ensure security during transmission, and another
altogether to be able to assert that data is not compromised during storage. As has been
pointed out in [SMA06], it makes more sense for a hacker to spend time compromising
the security of a server that holds several thousands of files, than to eavesdrop a
communication line for a potential nugget.

So it is important to pay attention to security measures not just at transmission level,
but also to individual files … and perhaps go further, to the level of individual objects.

In this article, the pros and cons of encrypting Java objects are examined, not in
terms of Class files that can be signed, transmitted through secure channels (such as SSL)
and stored in protected volumes on disk, but rather as serialized objects that can do all
that – and maintain their state through transmission as well. The fact they have a smaller
size in bytes was not an issue.

The test series used was centered on statistical measures of both the original
serialized object and the encrypted streams with symmetric cryptography. After
reviewing the technological choices made, the results thereof and a short comparison with
the assymetric RSA algorithm are presented.

ENCRYPTING THE JAVA SERIALIZED OBJECT

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

2 OBJECTIVES AND DESIGN

The main purpose of this series of tests was to study the particularities of the serialized
Java object as regards being encrypted. Specifically, it was decided to use stream
cryptography, since using the combination of Java’s Object and Cipher Streams seemed
interesting.

Specific questions posed were:
• Can a serialized Java object stream be encrypted & decrypted without loss of

state?
• What are the specificities of Java serialized objects are regards cryptography?
• Which symmetric algorithms give more speed – and are the differences between

algorithms significant?
• Which symmetric algorithms – among the more standard – hide best the nature of

the object transmitted?
As for the choice of symmetrical cryptographic algorithms versus public/private key
schemes, it was noted very early on that asymmetrical cryptography is expensive in terms
of computing time. So when public/private key algorithms are used, they are currently
used only in an initial stage of the communication process, in order to exchange a once-
off symmetric cryptographic key. This is then used for the bulk of transmission.

For example, during an SSL session, an RSA public certificate is used to connect to
the server. A symmetric key is then generated, and the rest of the communication for this
session only is encrypted with this second key, often using the DES algorithm.

For this reason, it was decided to concentrate on some of the most widespread
symmetrical algorithms, including DES, 3-DES (Triple-DES), Blowfish and AES (all
included in the Sun cryptographic Provider). A final test was done with the RSA
algorithm, but further research should be done on the asymmetric protocol side.

3 TECHNOLOGICAL ASPECTS

Two technological aspects were studied in more detail are regards the implementation of
encrypting a serialized object. One was the structure of the Java object itself, in serialized
form: i.e. the byte sequence produced when an object is serialized and sent through an
ObjectOutputStream. This differs significantly from the structure found in the Class file
structure on disk.

The second aspect was the treatment of bytes by the Java system of Streams which,
as is noted in Sun’s JDK documentation [Sun04], still contains several interesting
features.

Finally, a choice had to be made between the several dozen symmetric and
asymmetric cryptographic algorithms available, either through Sun’s own cryptographic
provider or other plug-in providers such as BouncyCastle (www.bouncycastle.org).

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 51

The Java Serialized Object

A modified filtering Stream class was used to collate data on the distribution of ASCII
character codes, byte values, on-line in the Stream as several different objects were
serialized and sent through. Results are graphed in Figure 1. Codes are grouped by 16-
value intervals for ease of visualization.

0-15 16-31 32-47 48-63 64-79 80-95 96-
111

112-
127

128-
143

144-
159

160-
175

176-
191

192-
207

208-
223

224-
239

240-
255

0

250
500

750
1000

1250

1500
1750

2000
2250
2500

2750
3000

ASCII codes

N
um

be
r

of
 b

yt
es

Figure 1. Serialized object character code distribution

As can be seen, a very large proportion of code values are found in the first group. In fact,
“0” values occur as more than 60% of all bytes transmitted, implying a high proportion of
null two- and four-bytes sequences as well.

Further tests show that this proportion varies slightly across the classes transported,
but holds in general. The only exception found so far are objects containing large
amounts of character or string data hard coded into variable initialization sentences.

This is naturally not good in cryptographic terms, as it could leave encrypted object
streams open to frequency analysis attacks.

Working with Streams

Sun’s JDK documentation [Sun04] indicates String data is now all encoded in a “slight
modification of the Unicode Standard”. While this is not a bad idea per se, it complicates
our task as the String is a convenient way of storing and moving around serialized
objects, and one we wanted to use. However, under UTF-8:

• Characters with byte values between 0 and 127 are transmitted as-is.
• In all other two- or three-byte character codes, the first byte has its most important

bit set to 1. Thus a byte value of 128 to 255 can only occur as a first byte (or
subsequent byte) of a multi-byte character code.

A short test sequence showed us that in pragmatic terms, we are not about to get away
with sending any byte value above 128 through the original assembly of Streams, shown
in Figure 2:

ENCRYPTING THE JAVA SERIALIZED OBJECT

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

Figure 2. Initial transmission scheme.

A means was then devised to by-pass this problem by inserting a pair of converting
Streams, the first one (ConverterOutputStream) converting the serialized object’s bytes to
MIME base-64 encoding, and the other (ConvertedInputStream) reconverting base-64-
encoded bytes to the original byte values in the 0 to 255 range.

These converter Streams were then modified to be used as a data-gathering
instrument as well, drawing up transmission statistics at a single point during the
transmission process.

Figure 3. Modified transmission architecture.

In this figure, the producer can be the original producer of the object, a transport emission
point, a data retrieval system or any other serialized object source. The consumer can
likewise be the final user of the object, a transport reception point, data storage system or
another object sink point. During transport, encrypted objects may be placed in short- or
long-term storage, or replicated – while maintaining their encryptation throughout.

The code used to convert a serialized object into a String is fairly neat:

 MyObject myObject = new MyObject();
 // MyObject implements Serializable
 String result;

 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 CipherOutputStream cout =
 new CipherOutputStream(bout, cipher);
 ConvertOutputStream convout = new ConvertOutputStream(cout);
 ObjectOutputStream oout = new ObjectOutputStream(convout);

 oout.writeObject(myObject); // repeat as needed
 oout.close();
 result = bout.toString();

Reception of the object at the other end is an analogous process.

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 53

4 TEST RESULT EVALUATION

The following data has been obtained by sending a total of 100 different objects,
amounting to a total about 4 Kbytes of data, through the system. Time includes object
creation, both encryption and decryption, as well as a final checkup on each object after
its’ being decrypted. The platform used was a Mobile Pentium IV at 2.4 GHz, running
Sun’s JDK version 1.5 under Linux.

Speed of the encryptation / decryptation process

Number of objects DES stream 3-DES stream Blowfish AES
Key length (bits) 52 168 128 128
100 2321 2319 2516 2341
200 3175 3056 3215 3080
400 4186 4193 4345 4405

Table 1. Algorithm times (in ms) for different numbers of objects

It should be noted that neither keys nor the objects themselves were stored on disk during
this process. The very small differences in duration for each test, as well as subsequent
profiling, lead to believe that most time is spent in key generation, object creation,
testing, and general housekeeping. The time spent in actual encrypting and decrypting is a
small fraction of the total.

This result is confirmed by statistical linear regression, which shows the very good
correlation expected:

 DES stream 3-DES stream Blowfish AES
Slope 6.05 6.17 6.03 6.84
Intercept 1815.5 1750.5 1951 1678.5
Correlation 0.990 0.998 0.998 1.000

Table 2. Slope = time (in ms) per object (creation, encrypting, decrypting and testing).

Intercept = time (in ms) for system setup, key generation and “housekeeping”

Attention is drawn to two specific points. In the first place, the difference in time per
object for each type of algorithm is not significant, even though their inner workings are
rather dissimilar (consider DES and Triple-DES).

On the other hand, the differences in setup time can be attributed mainly to the key
generation process, all other steps being identical – but the time spent is not at all
proportional to actual key length in bits.

ENCRYPTING THE JAVA SERIALIZED OBJECT

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

Statistical analysis of the encrypted streams

Since the results of the statistical analysis of serialized objects themselves was not good,
it remained to be seen if the algorithms were capable of introducing more entropy into the
encrypted streams.

In an ideal encrypted stream, each possible byte code would appear with the exact
average value of 1/256 – following the normal distribution -, and the standard deviation
of the whole would be null. Results for the encrypted object streams were:

 Serialized
object DES stream 3-DES stream Blowfish AES

Average 0.0039 0.0039 0.0039 0.0039 0.0039
Std. Deviation 0.0385 0.0075 0.0069 0.0068 0.0028

Table 3. Statistics for each algorithm used

In the first place, we are reassured that all cryptographic algorithms distribute byte-values
across the range, giving much “better” (i.e. lower) standard deviations than the original
stream. The these results also confirm what is common knowledge: i.e. that Triple-DES is
better than DES, and the other two algorithms are better than either of them in terms of
security.

More surprising was that, with equal-length 128-bit keys, AES outperformed
Blowfish to such an extent.

This can be seen more easily in Figure 4, showing the occurences of each byte code
grouped by 16-value intervals as before. The results of the AES-encoded stream
approximates rather well the ideal flat line.

0-15 16-
31

32-
47

48-
63

64-
79

80-
95

96-
111

112-
127

128-
143

144-
159

160-
175

176-
191

192-
207

208-
223

224-
239

240-
255

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70% Serialized object

DES st ream
3-DES stream
Blowfish
AES

ASCII codes

Fr
eq

ue
nc

y

Figure 4. Character code distribution comparison:

original class file and various encrypted data streams. Flattest distribution is best!

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 55

Comparing the symmetric algorithms to asymmetric RSA

Finally, a similar test was made with RSA public/private key cryptography. In this case,
our main problem was combining Cipher and Object streams: no bytes were transmitted
when the RSA cipher was used. Further analysis showed that the problem arose from the
process of separating data bytes into blocks:

• RSA block-cipher requires data to be separated into blocks of up to 117 bytes at
most, when 1024-bit keys are used. Encyphered output is twice the size of input.

• The RSA Cipher object was unable to do this correctly.
• DES and the other algorithms performing CBC or ECB encryptation need a

similar operation, but Cipher performs correctly in their case.
To get around this bug (feature?), we devised a wrapper around the Cipher update() and
doFinal() methods that broke down the serialized Java object stream into 64-byte chunks,
and padded the end up to a 64-byte boundary. We thus replicated the behaviour expected
of - but not obtained from - the Cipher object instanciated with:

Cipher cipher = Cipher.getInstance(“RSA/ECB/PKCS1Padding”);

As regards time efficiency, results are much as espected: RSA is slower, albeight not very
much so if we consider that key lengths are also much longer. It is interesting to note,
however, that efficiency grows with key size. We used 32-byte blocks with 512-bit keys
and 64-byte blocks with 1024-bit keys, giving a slope of 51.96 ms/object for the shorter
key and only 45.03 ms/object for the longer:

Number of objects AES RSA RSA
Key length (bits) 128 512 1024
100 2341 3021 3925
200 3080 6030 7096
400 4405 18171 17168

Table 4: Times (in ms) for the symmetric-key AES algorithm and assymmetric RSA.

Times are longer, but the number of bytes emitted is also twice as large as with
symmetric algorithms: this is not good as regards security, as a potential attack has more
data to work with.

On the other hand, standard deviation of the resulting byte-stream values is down to
0.0009 – very much better than the 0.0028 AES best value for symmetric algorithms.
Distribution curves reflect this fact, giving a flatter curve for RSA:

ENCRYPTING THE JAVA SERIALIZED OBJECT

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

0-15 16-
31

32-
47

48-
63

64-
79

80-
95

96-
111

112-
127

128-
143

144-
159

160-
175

176-
191

192-
207

208-
223

224-
239

240-
255

3.0%
3.5%
4.0%
4.5%

5.0%
5.5%
6.0%
6.5%
7.0%

7.5%
8.0%

AES
RSA

ASCII codes

Fr
eq

ue
nc

y

Figure 5. Comparison of AES and RSA byte freqencies in crypted object streams.

5 CONCLUSIONS AND FURTHER REMARKS

With this series of tests it has been shown that Java serialized objects can go through a
process a encryptation and decryptation in the form of Cipher Streams, and survive.

It has also been shown that symmetric key cryptography algorithms are rather better
implemented than assymetric RSA in Sun’s JDK, as regards ease of use with Streams.

On the other hand, and concerning only the specific test object set used, the AES
algorithm outperformed the other three symmetric cryptographic series as regards
diguising the Java object stream’s unbalanced byte value distribution. It gave good
performace figures as well.

Finally, it can be confirmed that assymetric RSA encryptation is about twice as slow
as symmetric encryptation, and produces larger encrypted data streams, but on the other
hand it also produces much flatter byte distributions. This may be a conclusive factor
when cryptography needs to be used.

However, these results have been obtained with a small number of non-functional
objects, designed with the aim of representing the average behaviour of most
applications. They would need to be confirmed by further statistical studies on real-world
classes used in commercial or scientific applications, and possibly containing hard-coded
data forming particular distribution figures.

 At the same time, other cryptographic algorithms, whether included or not in the
basic Provider, are now being used in real-life applications. An example is assymetric
public/private key cryptography with the Elliptic Curve algorithm, that opens new and
interesting perspectives that should be compared both to symmetric and to RSA schemes.

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 57

REFERENCES

[APS99] George Apostopoulos, Vinod Peris, Debanjan Saha: Transport Layer
Security: How much does it really cost?, INFOCOM '99, IEEE, 1999.

[CMS04] Ajay Chander, Joh C. Mitchell, Insik Shin: Mobile Code Security by Java
Bytecode Instrumentation, Software Engineering and Applications 2004, MIT
Cambridge, USA, 2004.

[RoJS01] Volker Roth, Mehrdad Jalali-Sohi: Concepts and Architecture of a Security-
Centric Mobile Agent Server, Fifth International Symposium on Autonomous
Decentralized Systems, IEEE, 2001.

[Roth02] Volker Roth: Java Security Architecture and Extension in Practice, Dr.
Dobbs Journal, 2002(335), 2002.

[Shm] Anat Sarig Shmueli: Java Security, IBM Haifa Research Lab.

[SMA06] Ed Simon, Paul Madsen, Carlisle Adams: An Introduction to XML Digital
Signatures, O’Reilly Media Inc., available on-line at http://www.xml.com/,
2006

[StL00] Andreas Sterbenz, Peter Lipp: Performace of the AES Candidate Algorithms
in Java, AES Candidate Conference, 2000.

[Sun99] Sun Microsystems, Inc. (Santa Clara, CA, USA): JavaTM Cryptography
Architecture API Specification and Reference, available on-line at
http://java.sun.com, 1999.

[Sun02] Sun Microsystems, Inc. (Santa Clara, CA, USA): JavaTM Cryptography
Extension (JCE) Reference Guide, available on-line at http://java.sun.com,
1996-2002.

[Sun04] Sun Microsystems, Inc. (Santa Clara, CA, USA): JDKTM 5.0 Documentation,
available on-line at http://java.sun.com, 2004.

[Vil98] Antti Viljamaa, Jukka Viljamaa: Java and Internet Security, Report C-1998-
45, University of Helsinki, 1998.

About the author
Alan Ward is an associate professor at the University of Andorra (Principality of
Andorra, Europe). He can be reached at award[AT]uda.ad.

