
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 8, November-December 2006

Cite this column as follows: Douglas A. Lyon and Francisco Castellanos “The Initium RJS
Screensaver: Part 4, Automatic Deployment”, in Journal of Object Technology, vol. 5. no. 8,
November - December 2006, pp. 31-40 http://www.jot.fm/issues/issue_2006_11/column4

The Initium RJS Screensaver: Part 4,
Automatic Deployment

By Douglas A. Lyon and Francisco Castellanos

Abstract
The Intium RJS System makes use of screensavers to perform CPU scavenging for grid
computing. This article shows how to automate the installation of the IRJS screensaver.
The manual installation of the IRJS screensaver, presented in parts 1 and 2 of this
series, has been automated to ease installation. A Java Web Start application has been
created to complete the installation of the screensaver for Windows and Unix/Linux
platform. This application performs an operating system identification and proceeds to
download, install, and configure the screensaver files. The installation of the
screensaver is a function of the OS, due to differences in screensavers support. Our
three previous papers showed how to create screensavers in Java for Windows, Linux
and Mac operating systems.

1 INTRODUCTION

This article presents a deployment method for the Initium RJS screensaver. The
screensaver is based on the SaverBeans [Saverbeans] framework, which has its roots in
the JDIC project (JDesktop Integration Components). The JDIC mission is to enable
seamless desktop/Java integration [JDIC1]. The kit is available from [JDIC2] as an open-
source distribution.

The deployment process is a part of the overall project that aims to utilize a cross-
platform screensaver as a launching facility for a Compute Server (CS), improving grid
integration. In parts 1, 2, and 3 of this series, we described the process of building,
compiling, and deploying a Saverbeans screensaver in Unix, Windows and the
Macintosh. This paper describes the automation of deployment for the IRJS screensaver
in the Windows and Unix platforms. The automation of deployment for the Macintosh
platform is described in part 3 of this series.

THE INITIUM RJS SCREENSAVER: PART 4, AUTOMATIC DEPLOYMENT

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

2 ARCHITECTURE

We use Java Web Start technology to deploy the screensaver. The application is
downloaded from a web server. A user volunteers a computer into the grid by running a
web start application. The application checks the platform type and sets the location
where the resources reside. These include the location of screensaver support files. The
web start application beams the resource files into the computer from a web server,
updating them, automatically, when needed. The files are decompressed and verified
before they are installed. Lastly, the web start application configures the screensaver
according to OS requirements.

Figure 2-1 shows an overview of the events, and the parties involved, in first
deploying and installing the screensaver and second in volunteering the user’s computer
to a grid. This article addresses events 1 and 2 in Figure 2-1.

Figure 2-1. A diagram of part of the IRJS System Architecture

3 OPERATING SYSTEM IDENTIFICATION

Identification of the user’s operating system is an important step in the installation
process, due to the differences between the operating systems in supporting screensavers.
Different flavors of the Windows OS have different ways of supporting screensavers. In

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 33

particular, the screensaver files belong to different directories depending on the version of
Windows. The web start application uses some utility methods, as shown in Example 3-1,
to help in the task of identifying the OS. These methods utilize the System.getProperties()
method from the Java API which determines the system properties and returns a
Properties object.

Example 3-1

public static String getOsName() {
 Properties prop = System.getProperties();
 return prop.getProperty("os.name");
}
public static boolean isWindows(String str) {
 if (isWindows()) {
 String os = getOsName().toLowerCase();
 if (os.indexOf(str) > -1) return true;
 }
 return false;
}
public static boolean isOsPrefix(final String prefix) {
 String os = getOsName();
 return os != null &&
os.toLowerCase().startsWith(prefix) ?
 true :
 false;
 }
public static boolean isWindowsXp() {
 return isWindows("xp");
 }
…
public static boolean isLinux() {
 return isOsPrefix("linux");
 }

4 BEAM OVER AND DECOMPRESSION

A file-transfer process, called “beam over” enables the transfer of native resources into
critical file areas. The web start application beams over the IRJS screensaver files, based
on the OS identified. Beam over and decompression takes care of the job of downloading
needed resources, and placing them where appropriate. Resources needed, and their
location, are a function of the OS, as shown in Example 4-1.

THE INITIUM RJS SCREENSAVER: PART 4, AUTOMATIC DEPLOYMENT

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

Example 4-1

properties.put(SS_WIN_URL,
"http://www.myjavaserver.com/~fsophisco/thesis/libs/screensave
r/win/rjssaverjar.jar");

properties.put(SS_UNIX_URL,
"http://www.myjavaserver.com/~fsophisco/thesis/libs/screensave
r/unix/rjssaverjar.jar");

Example 4-2 shows the location where files will be installed.

Example 4-2

windowsSystemDir = "";
if (OsUtils.isWindows98()){
 windowsSystemDir = "C:" + File.separator +
 "windows" + File.separator +
 "system" + File.separator;
 }
else if (OsUtils.isWindowsNt()){
 windowsSystemDir = "C:" + File.separator +
 "winnt" + File.separator +
 "system" + File.separator; }

File beam over enables downloads on demand. This simplifies resource bundling and
lowers average download time (since only the resources that are needed are downloaded).
This is shown in Example 4-3.

Example 4-3

public static void downloadScreenSaverJar(File outputJarFile,
String urlStr) throws IOException {
 URL screenSaverUrl = getResourceUrl(urlStr);
 UrlUtils.getUrl(screenSaverUrl, outputJarFile);
}
…

//Beam over jar file for Windows
outputJarFile = new File (windowsSystemDir + File.separator +
SSInstallerUtil.getJarName() + ".jar");
String urlString = SSInstallerUtil.getSSWinUrl();
try{
 SSInstallerUtil.downloadScreenSaverJar(outputJarFile,
urlString);
}catch(Exception e){
 return "Error Downloading Jar File: " + e.toString();
}
return "";
…

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 35

//Beam over jar file for Unix
outputJarFile = new File (ssHome + File.separator +
SSInstallerUtil.getJarName() + ".jar");
String urlString = SSInstallerUtil.getSSUnixUrl();
try{
 SSInstallerUtil.downloadScreenSaverJar(outputJarFile,
urlString);
}catch(Exception e){
 return "Error Downloading Jar File: " + e.toString();
}
return "";

Once the jar files are downloaded, the web start application uncompresses them as shown
in example 4-4.

Example 4-4

public static void uncompressScreenSaverJar(File jarFile){
 Unzipper.uncompressJarFile(jarFile);
 jarFile.deleteOnExit();
}
…
public String uncompressFiles(){
try{
 SSInstallerUtil.uncompressScreenSaverJar(outputJarFile);
}catch(Exception e){
 return "Error uncompressing Jar File: " +
e.toString();
} return "";
}

5 CONFIGURATION

Up until this point, deployment has been platform independent. However, differences in
how screensavers are supported make the configuration task non portable. For example,
the screensaver files for the Windows OS must be placed in the directory system or
system32 under the Windows directory. These directories are part of the OS itself;
therefore administrators may choose to protect them from being modified. Due to this
type of constraint, we require that the installer have privileges to write to these
directories.

For Windows screensaver configuration, the web start application places the
screensaver files in version sensitive directories. For example:

For Windows 98: C:/windows/system/.
For Windows NT: C:/winnt/system/.
For other version: C:/windows/sytem32/.

THE INITIUM RJS SCREENSAVER: PART 4, AUTOMATIC DEPLOYMENT

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

The screensaver file-package contains a file with extension .scr
E.g.<scrensaverName>.SCR. This file allows the screensaver to be visible on the Display
Properties screen next time it is opened, as shown in Figure 5-1. After the screensaver
installation is complete there is a manual step that the user must accomplish. He/She must
select the rjsssaver from the screensaver list, as shown in Figure 5-1, and set the time to
“wait before launching”. This step completes the IRJS screensaver configuration for the
Windows platform.

Figure 5-1 Display properties-user interface for the Windows platform.

In Linux/Unix OS, the IRJS screensaver configuration is a little more challenging. The
[Saverbeans] SDK relies on a software called Xscreensaver; which is often part of the OS
installation package. The Xscreensaver program waits until the keyboard and mouse
have been idle, and then runs a graphics demo. It turns off as soon as there is any mouse
or keyboard activity [Zawinski]. Xscreensaver consists of two parts: a driver or daemon
that detects idleness and does locking, and the many graphics demos that are launched by
Xscreensaver [Zawinski]. To learn more about this package visit
http://www.jwz.org/xscreensaver/.

The first part of the configuration happens in the beam over and decompression task.
There are no strict requirements that dictate the location of screensavers in the file
system. Therefore, for convenience and to prevent any access issues the web start
application installs the screensaver files in the user home in the directory
<userHome>/ss/<screensaverName> as shown in Example 5-1.

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 37

Example 5-1

public String createSSHome(){
 String ssloc = SSInstallerUtil.getUserHome() +
File.separator
 + SSInstallerUtil.getSSHome();
 ssHome = SSInstallerUtil.getUserHome() + File.separator
 + SSInstallerUtil.getSSHome() + File.separator
 + SSInstallerUtil.getSSName();
 try{
 SSInstallerUtil.createDir(ssloc);
 SSInstallerUtil.createDir(ssHome);
 }catch (Exception e){
 return "Error creating ss home: " + e.toString();
 }
 return "";
}

In Unix/Linux the Xscreensaver application uses a file named .xscreensaver, located at
the user home. This file lists user properties, active screensavers and their location. The
.xscreensaver file is created automatically the first time that the client application
(xscreensaver-demo) of the Xscreensaver is executed.

The web start application modifies the .xscreensaver file to make the IRJS
screensaver available. In particular the IRJS screensaver must be included and must be
selected as the only active screensaver. The web start application reads the contents of the
.xscreensaver file, makes modifications where necessary, and rewrites the file as shown
in Example 5-2.

Example 5-2

//mode: one -> one screensaver working
sloc = sline.indexOf("mode:");
if (sloc > -1){
 lines.add("mode:\tone");
 sline = raf.readLine();
 continue;
}

//Once it finds the string "programs:" insert the line with
the SS info into the List.
if (sloc > -1){
lines.add("\t\" " + SSInstallerUtil.getSSName() + " (java)\""
+ ssHome
 + File.separator + SSInstallerUtil.getSSName() + " -root -
jdkhome " + jhome +" \\n\\");
}

THE INITIUM RJS SCREENSAVER: PART 4, AUTOMATIC DEPLOYMENT

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

To complete the screensaver configuration in Unix/Linux platform, the web start
application grants executable privileges to the screensaver executables. This task is
necessary because when files are archived into a jar file and at later time extracted, they
do not retain file permissions. To overcome this issue, the web start application executes
a small shell script using the Runtime Java API as shown in Example 5-3.

Example 5-3

Script:
LOC=$HOME/ss/rjssaver
chmod +x $LOC/rjssaver $LOC/rjssaver-bin

public String changeFilePrivs(){
 String[] pc = new String[2];
 int exitValue = 0;
 //Grant executable permissions
 try{ pc[0]= "sh";
 pc[1]= ssHome + File.separator + scriptName;
 p = Runtime.getRuntime().exec(pc);
 exitValue = p.waitFor();
 }catch(Exception e){
 return "Error granting privs Exit Value: " + exitValue
+ e.toString();
 }
 if (exitValue != 0)
 return "Error granting privs Exit Value: " +
exitValue;
 return "";
}

Lastly, after the screensaver installation is completed there is one manual step remaining.
The user must execute the program xscreensaver-demo, so the .xscreensaver file is read
and the IRJS screensaver is recognized as one of the screensavers. This step completes
the IRJS screensaver configuration for the Unix/Linux platform.

6 INTERFACE

The web start application uses a small interface to indicate the steps of the installation.
Each step will be displayed in the interface at completion, as shown Figure 6-1 and
Figure 6-2. In case of a failure the interface describes the failed step and the exception
caught.

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 39

Figure 6-1 Installer interface indicating the installation steps for the Windows platform.

Figure 6-2 Installer interface indicating the installation steps for the Linux platform.

7 SUMMARY

This paper described the process followed to automate the deployment of the IRJS
screensaver for the Unix/Linux and Windows platforms. The automation of the
screensaver deployment is accomplished in a few steps. In the first step, the system
identifies the operating system of the user. In the second step, a file-transfer process
called beam over is used to download the appropriate IRJS screensaver files, according to
the OS identified. Lastly, the files are installed and configured based on the requirements
of each OS. We use Java Web Start technology to execute the installation and deploy the
IRJS screensaver to the user’s computer.

THE INITIUM RJS SCREENSAVER: PART 4, AUTOMATIC DEPLOYMENT

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8

REFERENCE

[JDIC1] Java.net : “JDIC project home”, https://jdic.dev.java.net/ Last accessed March
14, 2005.

[JDIC2] https://jdic.dev.java.net/documentation/incubator/screensaver/index.html Last
accessed March 14, 2005.

[SaverBeans] https://jdic.dev.java.net/documentation/incubator/screensaver/index.html
Last accessed March 14, 2005.

[Zawinski] Jamie Zawinski: “A screen saver and locker for the X Window System”
http://www.jwz.org/xscreensaver/

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Francisco Castellanos earned his bachelors degree with honors in
Computer Science at Western Connecticut State University. Francisco
Castellanos worked at Pepsi Bottling Group in Somers, NY as a
software developer. Currently he is working on a thesis to complete his
Master's Degree in Computer Engineering from Fairfield University.
His research interests include grid computing. Francisco Castellanos is

also employed by Access Worldwide in Boca Raton, FL as a software developer. He can
be contacted at fsophisco@yahoo.com.

