
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006 

 
Vol. 5, No. 8, November-December 2006 

 
 
 

Cite this column as follows: Dave Thomas, “Programming with Models – Modeling with Code. The 
Role of Models in Software Development”, in Journal of Object Technology, vol. 5, no. 8, 
November -December 2006, pp. 15-19 http://www.jot.fm/issues/issue_2006_11/column2 

Programming with Models – Modeling 
with Code 
The Role of Models in Software 
Development 

Dave Thomas, Bedarra Research Labs 

1 MODELS AND MODEL RELATIONSHIPS 

A model is a simplified description/representation of a more complex entity or process. It 
is used frequently to simplify and analyze a complex entity usually by focusing on one or 
more aspects. We use models to understand, communicate, explore alternatives, simulate, 
emulate, calibrate, evaluate and validate. All models lie a little; some lie a lot! By 
definition, a model is an abstraction of the real thing. 

In practice, engineers work with partial descriptions (models) and add/remove model 
elements at each level of abstraction. Models describe a slice of life – not life itself. 
Modelers use many different models to explore different aspects of the thing being 
modeled such as requirements, data, behavior, event/time, security, flow, process, 
activity, performance, quality, usability, etc. These models can take many forms and be 
expressed through many different tools including systems dynamics, prototypes, textual 
and visual models of artifacts and their relationships. It is important to note that UML is 
just one of many models representations which may be used in this process. 

The set of central relations in model-driven engineering and object-oriented 
technology are fundamentally different. The two central relations in object-oriented 
technology are isA and isPartOf. In model engineering the key relations are isBasedOn, 
isLike, and isRepresentedBy. These inherently one-to-many and partial relationships are 
often mistakenly confused with OOP relationships. Trying to use one set of relations, as a 
central interpretation, in the wrong context, can lead to serious problems. Models provide 
a representation of partial truths about the software system, but only the final code 
contains the actual truth. 



 
PROGRAMMING WITH MODELS – MODELING WITH CODE 

THE ROLE OF MODELS IN SOFTWARE DEVELOPMENT 
 
 
 
 

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 9 

2 MODEL-DRIVEN DEVELOPMENT – EXPRESSING MODELS AS 
CODE 

Simula [1], the source of today’s object technology, originated an approach to software 
architecture, design and implementation that is based on building software by building 
simulation models. In this approach models are expressed in code, augmented where 
appropriate by tabular or graphical visualizations of the static or dynamic structure of the 
system. This Model-Driven Development approach advocates iterative modeling of the 
system to be built using successive levels of refinement – requirements, architecture, 
components and features are all refined from concept to final code. This very much 
parallels the approach in other engineering disciplines where one starts with conceptual 
models which allow for high level conceptual agreement, moving next to successively 
fine-grained prototypes and simulation models where one can achieve behavioral 
agreement, then building an emulation model where one can obtain functional and 
nonfunctional agreement, and finally refining that to the actual product. 

One advantage that software developers have over physical engineers is that we can 
use our core tools and techniques throughout the development cycle. Other engineering 
disciplines are forced to use specialized tools such as simulators, CAD tools, physical 
prototypes, multiple languages, emulators, etc. We have the huge benefit of being able to 
program from start to finish. We note in passing that hardware engineers have largely 
abandoned visual notations as implementation tools and instead use high level languages 
such as VHDL with the associated gains in productivity. 

The art of programming is about managing the half-truths at higher levels of 
abstraction in such a way that they are sufficiently correct to make progress, and 
sufficiently vague that they can be refined at the next level. Good software evolves like a 
book outline, starting with an initial set of key ideas which are ruthlessly refactored into 
the final form. Model refinements and compositions can at best be captured as a set of 
annotated hyperlinks which describe the evolution of the software as a literate program. 

The functional and dynamic communities, as well as the rapid application 
development 4GL community, all have substantial experience with model-driven 
development. This is greatly facilitated by properties of these languages, which allow 
models to be created easily and changed quickly. People who have used these languages 
just think differently about software than those who only have experience with compiled 
procedural languages. Design patterns in these languages are language idioms, rather than 
mechanisms which must be emulated in less powerful languages. Indeed Agile 
development has evolved directly from best practices used in the Smalltalk and Lisp 
communities. 

I remember the early days of Smalltalk, when people would stop me to ask how I 
could program before the analysis and design were done. I replied that the Smalltalk 
Browser was an active data dictionary and people were always impressed by such a neat 



 
 
 
 
 
 

VOL. 5, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 17 

tool for doing documentation. Little did they know the functional specs published from 
Smalltalk were already implemented and the specs were just the class/method comments! 

Modeling through code isn’t an attempt to justify premature hacking of code. Rather 
it is about writing code to understand what one is building. It is unfortunate that many 
people don’t seem to appreciate that often code can provide the best expression of a 
model. 

3 LITERATE MODELING 

The Agile Manifesto emphasizes the importance of code. Unfortunately many 
misinterpret “code” to mean just the program text, whereas what was meant was literate 
programming, where code is written to be read, and all of the artifacts are available to the 
reader. One of the major reasons for collective ownership and pair programming is to 
develop code which can be easily understood by others. Some AgileXP zealots insist that 
code needs no comments or documentation since the code should be easily understood 
from its own clarity and its associated unit and acceptance tests. They have a well-
founded concern about the tendency for a comment to be outdated or not refactored when 
the code is changed. However, this concern doesn’t, in my experience, justify the 
omission of properly structured comments which improve the readability and 
understandability of the code. Hopefully in the future IDEs will allow one to treat the 
comment as a true part of the code [7]. 

The focus in Agile development is in producing high quality code artifacts that are 
written well enough that the code itself serves as the primary artifact in the system. 
Documentation artifacts are associated with the code where necessary to enhance the 
models expressed in the code by providing the pragmatics and semantics that cannot be 
inferred directly from the code itself. For example, OO languages lack the ability to 
describe relationships between objects. Many to many relationships require an explicit 
relationship to be made manifest in the code, however, clever developers know that one 
to many relationships can be implemented directly using a collection. Unless the code is 
annotated appropriately or modeled as a relationship the implicit relationship will be 
hidden and can easily be overlooked in the relationships changes from one to many to 
many to many. 

Since it is tedious to write effective documentation in a programming IDE, 
especially for requirements, we have found Wikis to be a simple and effective mechanism 
for capturing such information, with annotations linking to the code and vice versa 
(http://trac.edgewall.org/). Wikis and annotations should also reference more extensive 
artifacts, such as models, standards and prototypes, which can elaborate the requirements. 
Modern web technology allows code to be hyperlinked with documentation, providing 
the best of both worlds. 



 
PROGRAMMING WITH MODELS – MODELING WITH CODE 

THE ROLE OF MODELS IN SOFTWARE DEVELOPMENT 
 
 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 9 

4 BENEFITS OF MODELS AS CODE 

There are many advantages to expressing models in code. Models can be delivered to 
both customers and developers as a means for communicating the essence of the system 
both externally and internally. Models as code provide a single expression of the system 
in the form of a literate program. Since the models themselves are code, they can be 
readily understood by developers. This approach eliminates the need for multiple 
representations using ADL, UML, etc., while allowing such representations to be 
generated automatically from code models. 

Models can be developed using powerful IDEs and can leverage modern language 
features such as annotations and documentation capabilities. Models are version-managed 
as part of the overall development process, which allows all artifacts to be traced through 
their evolution. Refactoring tools can be used to support model evolution. Finally, 
modern IDEs integrate with visual modeling and display tools to provide multiple visual 
perspectives. Recent work in the AOP community has demonstrated that architectural 
constrains/styles can be enforced using an architecture expressed in code. 

REFERENCES 

1. Ole-Johan Dahl, The Birth of Object-Orientation, http://folk.uio.no/olejohan/birth-of-
oo.pdf June 2001 

2. J.Sklenar, Introduction to OOP in Simula, http://staff.um.edu.mt/jskl1/talk.html, 1997 

3. Ole Lehrmann Madsen, What mainstream OO can learn from SIMULA and BETA, 
http://www.jaoo.dk/file?path=/2006/slides/OleLehrmannMadsen_WhatMains
treamOOCanLearn.ppt, Oct 2006 

4. Wikipedia, Literate programming, http://en.wikipedia.org/wiki/Literate_programming 

5. Christopher Lee, Literate Programming – Propaganda and Tools, Carnegie Mellon 
University http://vasc.ri.cmu.edu/old_help/Programming/Literate/literate.html 

6. Donald E. Knuth, Literate Programming, CSLI Lecture Notes, no. 27, 1992 
http://www-cs-faculty.stanford.edu/~uno/lp.html 

7. Hanspeter Mössenböck, Kai Koskimies, Active Text for Structuring and 
Understanding Source Code (1995) 



 
 
 
 
 
 

VOL. 5, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 19 

About the author 

Dave Thomas is cofounder/chairman of Bedarra Research Labs 
(www.bedarra.com), www.Online-Learning.com and the Open 
Augment Consortium (www.openaugment.org) and a founding director 
of the Agile Alliance (www.agilealliance.com). He is an adjunct 
research professor at Carleton University, Canada and the University of 
Queensland, Australia. Dave is the founder and past CEO of Object 

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM 
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him 
at dave@bedarra.com or www.davethomas.net. 


