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We present a static analysis for computing a parametric upper-bound of the amount of
memory dynamically allocated by (Java-like) imperative object-oriented programs. We
propose a general procedure for synthesizing non-linear formulas which conservatively
estimate the quantity of memory explicitly allocated by a method as a function of
its parameters. We have implemented the procedure and evaluated it on several
benchmarks. Experimental results produced exact estimations for most test cases,
and quite precise approximations for many of the others. We also apply our technique
to compute usage in the context of scoped memory and discuss some open issues.

1 INTRODUCTION

The embedded and real-time software industry is leading towards the use of object-
oriented programming languages such as Java. This trend brings in new research
challenges.

A particular mechanism which is quite problematic in real-time embedded con-
texts is automatic dynamic memory management. One problem is that execu-
tion and response times are extremely difficult to predict in presence of a garbage
collector. There has been significant research work to come up with a solution
to this issue, either by building garbage collectors with real-time performance,
e.g. [1, 24, 25, 39, 42], or by using a scope-based programming paradigm, e.g.
[3, 8, 20, 21]. Another problem is that evaluating quantitative memory require-
ments becomes inherently hard. Indeed, finding a finite upper- bound on memory
consumption is undecidable [22]. This is a major drawback since embedded systems
have (in most cases) stringent memory constraints or are critical applications that
cannot run out of memory.

In this paper we propose a novel technique for computing a parametric upper-
bound of the amount of memory dynamically allocated by Java-like imperative
object-oriented programs. As the major contribution, we present a technique to
quantify the explicit dynamic allocations of a method. Given a method m with pa-

Cite this article as follows: : A Static Analysis for Synthesizing Parametric Specifications of
Dynamic Memory Consumption, in Journal of Object Technology, vol. 5, no. 5, Special Issue,
June 2006, pages 31–58,
http://www.jot.fm/issues/issues 2006 05/article2

http://www.jot.fm/issues/issues_2006_05/article2


A STATIC ANALYSIS FOR SYNTHESIZING PARAMETRIC SPECIFICATIONS OF DYNAMIC MEMORY
CONSUMPTION

rameters p1, . . . , pk we exhibit an algorithm that computes a non-linear expression
over p1, . . . , pk which over-approximates the amount of memory allocated during the
execution of m.

Roughly speaking, our technique works as follows. For every allocation state-
ment, we find an invariant that relates program variables in such a way that the
amount of consumed memory is a function of the number of integer solutions of
the invariant. This number is given in a parametric form as a polynomial where
unknowns are method parameters. Our technique does not require annotating the
program in any form and produces parametric non-linear upper-bounds on mem-
ory usage. The polynomials are to be evaluated on program (or method) inputs to
obtain the actual bound.

To get a flavor of the approach, consider for instance the following program:

void m1(int k) {

for(int i=1;i<=k;i++) {

A a = new A();

m2(i);

}

}

void m2(int n) {

for(int j=1;j<=n;j++) {

B b = new B();

}

}

For m2, our technique computes the expression size(B) · n which is the amount of
allocated memory if the program starts at m2 1. For m1, the computed expression
is size(A) · k + size(B) · 1

2
(k2 + k) because starting at m1, the program will invoke

m2 k times and, at each invocation i ∈ [1, k], m2(i) will allocate i instances of B,
resulting in a total amount of

∑k
i=1 i = 1

2
(k2 + k) instances of B, which have to be

added to the k instances of A directly allocated by m1.

Combining this algorithm with static pointer and escape analyses, we are able
to compute memory region sizes to be used in scope-based memory management.
Given a method m with parameters p1, . . . , pk, we develop two algorithms that
compute non-linear expressions over p1, . . . , pk which over-approximate, respectively,
the amount of memory that escapes from and is captured by m.

These techniques can be used to predict explicit memory requirements, both dur-
ing compilation and at runtime. Applications are manyfold, from improvements in
memory management to the generation of parametric memory-allocation certificates.
These specifications would enable application loaders and schedulers (e.g., [29]) to
make decisions based on available memory resources and the memory-consumption
estimates.

It should be noted that our analysis only copes with allocations explicitely made
by a program through new statements in its code. The amount of “hidden” memory

1For simplicity, we assume here the constructor B() does not allocate memory. This issue will
be handled later when we present the technique in detail.
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allocated by native methods or by the virtual machine itself cannot be quantified
with this technique. This is a very important issue that deserves further research.

Related Work

The problem of dynamic memory estimation has been studied for functional lan-
guages in [26, 27, 43]. The work in [26] statically infers, by typing derivation and
linear programming, linear expressions that depend on function parameters. The
technique is stated for functional programs running under a special memory mecha-
nism (free list of cells and explicit deallocation in pattern matching). The computed
expressions are linear constraints on the sizes of various parts of data. In [27] a vari-
ant of ML is proposed together with a type system based on the notion of sized types
[28], such that well typed programs are proven to execute within the given memory
bounds. The technique proposed in [43] consists in, given a function, constructing a
new function that symbolically mimics the memory allocations of the former. The
computed function has to be executed over a valuation of parameters to obtain a
memory bound for that assignment. The evaluation of the bound function might
not terminate, even if the original program does.

For imperative object-oriented languages, solutions have been proposed in [9, 10,
22]. The technique of [22] manipulates symbolic arithmetic expressions on unknowns
that are not necessarily program variables, but added by the analysis to represent,
for instance, loop iterations. The resulting formula has to be evaluated on an in-
stantiation of the unknowns left to obtain the upper-bound. No benchmarking is
available to assess the impact of this technique in practice. Nevertheless, two points
may be made. Since the unknowns may not be program inputs, it is not clear how
instances are produced. Second, it seems to be quite over-pessimistic for programs
with dynamically created arrays whose size depends on loop variables. The method
proposed in [9, 10] relies on a type system and type annotations, similar to [27]. It
does not actually synthesize memory bounds, but statically checks whether size an-
notations (Presburger’s formulas) are verified. It is therefore up to the programmer
to state the size constraints, which are indeed linear.

Our approach combines techniques used for performance analysis [18], cache
analysis [12], data locality [33], worst case execution time analysis [31], and mem-
ory optimization [23, 45]. To our knowledge, their use to automatically synthesize
method-centric parametric non-linear over-approximations of memory consumption
is novel.

Document Structure

In Section 2 we introduce useful definitions, notations, and some already developed
techniques we rely on. In Section 3, we explain our general method for calculating
memory consumption. In Section 4 we show our method for region-size estimation
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in scope-based memory management. In section 5 we show the results of applying
our technique to some well known benchmarks. Section 6 discusses some extensions
and future work. Section 7 presents some conclusions.

2 PRELIMINARIES

Counting the number of solutions of a constraint

Let I be an arithmetic constraint over a set of integer variables V = W ]P where P
represents a set of distinguished variables (called parameters) and W is the remaining
set of variables. We write v, p and w to denote assignments of values to variables.
I(v) is the result of evaluating I in v.

C(I, P ) denotes the symbolic expression over P which provides the number of
integer solutions of I for the set of variables W , assuming P has fixed values. More
precisely:

C(I, P ) = λp. #{ w ∈ Z|W | | I(w,p) }

There are several techniques which can be used to obtain these symbolic expres-
sions, e.g., [11, 18, 37, 44]. Here, we will briefly present the one described in [11, 44]
which applies to linear constraints.

A linear parametric set SP is defined as SP = { w ∈ Q|W | | Aw ≥ Bp + c }
where A and B are integer matrices, and c is an integer vector. SP is called a
parametric polytope whenever the number of points in SP is finite for each p.

A |P|-periodic number is a function U : Z|P | → Z for which there exists r ∈ N|P |

such that U(p) = U(p′) whenever pi ≡ p′i mod ri, for 1 ≤ i ≤ |P|. The least
common multiple of all ri is called the period of U .

A quasi-polynomial in |P| variables is a |P|-dimensional polynomial in variables
over |P|-periodic numbers. That is, the coefficients of a quasi-polynomial depend
periodically on the variables.

Ehrhart [16] showed that C(SP , P ) for a parametric polytope SP , can be rep-
resented as a quasi-polynomial, provided SP can be represented as a convex com-
bination of its parametric vertices, where each vertex is an affine combination of
the parameters with rational coefficients. This result can be extended to unions of
parametric polytopes defined as { w ∈ Q|W | | Aw ≥ Bp + c , Mw mod d ≥ e },
where M is an integer matrix, and d, e are integer vectors.

Example Consider, for instance, the linear parametric set S1 = {w | I1(w,p)},
where I1 is defined as follows:

I1 = {k = mc, 1 ≤ i ≤ k, 1 ≤ j ≤ i, n = i}
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where W = {k, i, j, n}, and P = {mc}. The corresponding Ehrhart polynomial is:

C(S1, mc) =
1

2
mc2 +

1

2
mc

For the linear parametric set S2 = {w | I2(w,p)}, with

I2 = {k = mc, 1 ≤ i ≤ k, 1 ≤ j ≤ i, n = i, j mod 3 = 0}

the Ehrhart polynomial is:

C(S2, mc) =
1

6
mc2 −

1

6
mc +

[
0, 0,−

1

3

]
mc

where the period is 3 and the last coefficient of the polynomial depends periodically
on mc as follows: [

0, 0,−
1

3

]
mc

=

 −
1

3
when mc mod 3 = 2

0 otherwise

The following illustration depicts the result of evaluating C(S2, mc) in the interval
[1, 6].

mc C(S2,mc)
1 0
2 0
3 1
4 2
5 3
6 5

When mc ∈ {1, 2}, the are no solutions, therefore C(S2, mc) = 0. For mc = 3, there
is only one solution given by k = mc = j = i = n = 3 (blue box), and C(S2, mc) = 1.
For mc = 4, there are two solutions (C(S2, mc) = 2), given by k = mc = 4, j = 3,
and i = n ∈ {3, 4} (cyan box). For mc = 5, the number of solutions is three
(C(S2, mc) = 3): k = mc = 5, j = 3 and i = n ∈ {3, 4, 5} (red box). For mc = 6,
the solution space is non-convex and contains C(S2, mc) = 5 points (magenta box). �

Several algorithms have been proposed for computing Ehrhart polynomials. The
first one is discussed in [11]. This algorithm is not complete and has exponential-
time complexity, even when the number of variables in the inequalities is fixed.
This happens because the periods are only bounded by the values of the coefficients
in the linear inequalities of the input. A more efficient algorithm proven to have
polynomial-time complexity for fixed dimensions has been developed in [44]. Still,
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the output polynomials can be relatively large in some degenerate cases. Recently, a
fast algorithm for computing Ehrhart polynomials that over-approximate C(SP , P )
has been proposed in [34]. All these algorithms are implemented in the Polyhedral
Library PolyLib [32] used in this article. Computing Ehrhart polynomials is quite
involved as it resorts to very technical results in discrete mathematics which are out
of the scope of this paper. The interested reader is referred to [11, 34, 44] for a
detailed explanation.

Notation for Programs

We define a program as a set {m0, m1, . . .} of methods. A method has a list Pm

of parameters (pm will denote the method arguments when m is called by another
method m′) and a sequence of statements.

Programs are sequential and non-recursive. We assume that there is no variable
name clashing including formal parameters, local and global variable names. For
the sake of the presentation, we assume that method parameters are of integer type.
This restriction is, however, not essential as later discussed in Section 6.

Example In Figure 1 we present the program we will use throughout the paper
to illustrate our approach. The program creates two arrays: a (bi-dimensional) and
e, whose cells can contain an Integer (new Integer) or an array of Integers (newA
Integer) depending on an expression evaluated over a loop variable. �

void m0(int mc) { Object[] m2(int n, RefO s) {
1: RefO h = new RefO(); 1: int j;
2: Object[] a = m1(mc); 2: Object c,d,e;
3: Object[] e = m2(2*mc,h); 3: Object[] f = newA Object[n]

}
Object[] m1(int k) { 4: for(j=1;j<=n;j++) {

1: int i; 5: if(j % 3 == 0) {
2: RefO l = new RefO(); 6: c = newA Integer[j*2+1];
3: Object[] b = newA Object[k]; }
4: for(i=1;i<=k;i++) { else {
5: b[i-1] = m2(i,l); 7: c = new Integer(0);

} }
6: Object[] c = newA Integer[9]; 8: d = newA Integer[4];
7: return b; 9: f[j-1] = c;

} }
class RefO { 10: e = newA Integer[1];

public Object ref; 11: s.ref = e;
} 12: return f;

}

Figure 1: Motivating example

Each statement in a program is identified with a control location ` = (m, n) ∈
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Label =def Method×N (a method and a position inside the method) which uniquely
characterizes the statement via the stm mapping (stm : Label → Statement). We
write mth(`) to denote m.

The call graph G ⊆ Method × Label × Method of a program is such that
(m, `, m′) ∈ G whenever ` = (m, n) and stm(`) is a method call to m′. A (finite)
path π in G is a sequence m1.`1. . . . mk.`k.mk+1, k ≥ 1, such that (mi, `i, mi+1) ∈ G.
|π |= k is the length of π. For j ∈ [1, |π |], we define π...j to be the sub-sequence
m1.`1. . . . mj.`j of π, and we write ploc(π, j) to denote the control location `j. For
j ∈ [1, |π| +1], pmth(π, j) denotes the method mj.

Example The call graph of our example is {(m0, 2, m1), (m0, 3, m2), (m1, 5, m2)}
(see Fig. 2). m0.2.m1.5.m2 is a path. For simplicity, in the examples we will only
use the position of the control location rather than the label. �

Representing a program state

For the sake of simplicity, we would not formally define program semantics. Such
a formalization is given in, for instance, [40]. Informally, a state σ of a program in
run-time is given by the values of the variables, the heap, the control location and
the call stack. A program run is a sequence σ1 . . . of states. Notice that, the absence
of recursion and name clashing implies that mapping variable names to values is
enough to model program data (i.e., no environment or data stacks are required).

A static analysis for safely estimating memory consumption requires defining
an abstraction that conservatively describes program states and runs in a suitable
way. In our case, this abstraction only needs to keep enough information about the
program state to be able to count the number of times object creation statements are
executed in a program run. For simplicity, we assume that counting only depends on
non heap-allocated2, integer-valued variables. Therefore, it is important to notice
that the heap in a program state can be abstracted away. This is due to the fact that
the points-to relationship between objects in the heap is not relevant for computing
the amount of explicitly allocated memory, which is, indeed, equal to the size of the
portion of the heap directly created by new statements in the program code.

For the purpose of the analysis, the program control state can be characterized
by the control location and the call stack. A control state ζ is the sequence π.`,
where ` ∈ Label is a location and π is a path to method mth(`) in the call graph G.

Example m0.2.m1.5.m2.3 is a control state. �

Let ζ = π.` be a control state and σ1 . . . σt be a finite run such that the location
of state σt is `, and the call stack of σt is π. Then, there exists a set of indexes

2We will discuss about relaxing this assumption in Section 6.
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{i1, . . . , i|π|}, such that the control state ζj of σij is π...j, j ∈ [1, | π |]. That is,
pmth(π, j) is the method on the top of the stack in state σij , ploc(π, j) is the control
location corresponding to the method call to pmth(π, j + 1), and pmth(π, |π| +1) is
mth(`). We say that run σ1 . . . σt reaches the control state ζ.

Example Let ζ be the control state m0.2.m1.5.m2.3. Consider the run σ1 . . . σ10

defined as: (m0.1, θ1) (m0.2, θ2) (m1.1, θ3) (m1.2, θ4) (m1.3, θ5) (m1.4, θ6) (m1.5, θ7)
(m2.1, θ8) (m2.2, θ9) (m2.3, θ10), where θi, 1 ≤ i ≤ 10, record the valuations of pro-
gram variables, the heap, and the call stack. We have that the σ1 . . . σ10 reaches ζ,
the call stack of σ10 is the path π = m0.2.m1.5.m2, and the set of indexes {2, 7}
is such that ζ1 = π...1 = m0.2 is the control state of σi1 = σ2, and ζ2 = π...2 =
m0.2.m1.5 is the control state of σi2 = σ7. These indexes correspond to the times
in the run where a method yet in the call stack of state σ10 (i.e., m1 at 2 and m2
at 7), or equivalently, in π, has been pushed (i.e., called). �

An invariant for a control state ζ is an assertion over program variables (local,
global and method parameters) that holds whenever such a control state is reached
in any run.

Given a method m and a control state ζ = π.` such that pmth(π, 1) = m, that is,
π is a path in the call graph G that starts in m, Im

ζ denotes an invariant predicate for
ζ. We call the pair (ζ, Im

ζ ) an abstract state as it is a conservative approximation of
the possible program states at location ` and stack π in any run starting at method
m. That is, for every run σ1 . . . σt starting at (m, 1), that reaches ζ, Im

ζ (σt) holds.

Example Let ζ = m0.2.m1.5.m2.8. The constraint Im0
ζ defined by set of linear

inequalities {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n} is an invariant for ζ. �

Whenever (m, `, m′) ∈ G (i.e., stm(`) is a method call), we assume the invari-
ant Im

ζ , for any ζ = π.`, constrains not only the values of variables local to the
caller m, but also equates actual parameters (local variables of the caller m) with
formal parameters (local variables of the callee m′). This assumption simplifies the
presentation.

Let m, m′ be two methods such that (m, `, m′) ∈ G, ζ = m1 . . . m.` and ζ ′ =
m′ . . . ms.`s be two control states, and Im

ζ and Im′

ζ′ be two invariants. We have that

ζ.ζ ′ is a control state and Im
ζ.ζ′ defined as Im

ζ ∧Im′

ζ′ is an invariant for ζ.ζ ′. In words,
the invariant of a control state obtained by concatenating two control states is the
conjunction of the respective invariants.

Example Let ζ = m0.2 and ζ ′ = m1.5.m2.8. We have that

Im0
m0.2 = {k = mc}, Im1

m1.5 = {1 ≤ i ≤ k, n = i}, and Im2
m2.8 = {1 ≤ j ≤ n}
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are invariants, which gives that

Im0
m0.2.m1.5 = {k = mc, 1 ≤ i ≤ k, n = i}
Im1

m1.5.m2.8 = {1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}
Im0

m0.2.m1.5.m2.8 = {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}

are also invariants. �

Given a control state ζ = m1.`1 . . . mk.`k, the property above provides means for
computing the invariant Im1

ζ as the conjunction
∧k

i=1 I
mi
mi.`i

. Each Imi
mi.`i

is called a
local invariant.

Example Table 1 shows invariants that define iteration spaces and corresponding
Ehrhart polynomials for some control states starting at method m0.�

ζ Im0
ζ C(Im0

ζ ,Pm0)

m0.2.m1.2 {k = mc} 1

m0.2.m1.5.m2.3 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.2.m1.5.m2.6 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 = 0}
1

6
mc2 −

1

6
mc + [0, 0,−

1

3
]mc

m0.2.m1.5.m2.7 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n, j mod 3 > 0}
1

3
mc2 +

2

3
mc + [0, 0,

1

3
]mc

m0.2.m1.5.m2.8 {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n}
1

2
mc2 +

1

2
mc

m0.2.m1.5.m2.10 {k = mc, 1 ≤ i ≤ k, n = i} mc

m0.3.m2.3 {n = 2mc} 1

m0.3.m2.6 {n = 2mc, 1 ≤ j ≤ n, j mod 3 = 0}
2

3
mc + [0,−

2

3
,−

1

3
]mc

m0.3.m2.7 {n = 2mc, 1 ≤ j ≤ n, j mod 3 > 0}
4

3
mc + [0,

2

3
,
1

3
]mc

m0.3.m2.8 {n = 2mc, 1 ≤ j ≤ n} 2mc

m0.3.m2.10 {n = 2mc} 1

Table 1: Some invariants and Ehrhart polynomials for m0

Counting the number of visits of a control state

Let (ζ, Im
ζ ) be an abstract state such that the invariant Im

ζ defines a polyhedral
iteration space [11], that is, a polytope that characterizes all possible values of
loop-control variables and parameters involved in a program interation that passes
through ζ.
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Example Let ζ be the control state m0.2.m1.5.m2.8. The invariant Im0
ζ defined

by set of linear inequalities {k = mc, 1 ≤ i ≤ k, n = i, 1 ≤ j ≤ n} defines a polyhe-
dral iteration space for ζ. �

Therefore, given an invariant Im
ζ that defines a polyhedral iteration space, it

follows that counting the number of integer solutions of Im
ζ yields an expression

that over-approximates the number of times a concrete state, whose abstraction is
(ζ, Im

ζ ), is reached in a run starting at m.

Example Let ζ = m0.2.m1.5.m2.8. We have that ζ is reached at most 1
2
mc2+ 1

2
mc

times in a run starting at m0 for any value of parameter mc.�

3 SYNTHESIZING MEMORY CONSUMPTION

In this section we present our technique for synthesizing non-linear formulas (ac-
tually, quasi-polynomials) to conservatively over-estimate memory consumption in
terms of method parameters. First, we show how to adapt the counting technique
discussed in Section 2 to cope with memory allocations. Second, we show how to
compute the total amount of memory allocated by a method.

Memory allocated by a creation site

We now focus on statements that create new objects (i.e., allocate memory): new

and newA statements. We assume that those statements only create object instances
and constructors are called separately and handled as any other method call. We
call creation site, and denote cs, a control state associated to such operations: cs ∈
CS = { π.` ∈ Label+ | stm(`) ∈ {new T, newA T[·] . . . [·]} }.

To compute the amount of memory allocated by a creation site cs we define the
function S (see below). Given an invariant Im

cs for cs and method m with parameters
Pm, S computes the parametric number of visits to cs and multiplies the resulting
expression for the size of the allocated object. This parametric expression over-
estimates the memory allocate by cs whenever cs is a new statement. Nevertheless,
when cs is an array allocation (i.e., newA T[e1] . . . [en]), this technique needs to be
slightly adapted considering the fact that an array is a collection of elements of the
same type. In fact, the newA T[e1] . . . [en] statement creates the same number of
instances (and, therefore, allocates the same amount of memory) as n nested loops
of the form:

for( h1 = 1; h1 ≤ e1; h1++ )

. . .
for( hn = 1; hn ≤ en; hn++ )

newA T[1]
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whose iteration space can be described by the invariant
⋃

i=1..n{1 ≤ hi ≤ ei}.
Thus, we define the function S as follows:

S(Im
cs, Pm, cs) // returns an Expression over Pm

` = last(cs); // (cs = π.`)
if stm(`)= new T

res:=size(T) · C(Im
cs, Pm);

else if stm(`)= newA T[e1] . . . [en]
Invarray:= Im

cs ∪
⋃

i=1..n{1 ≤ hi ≤ ei}
res:=size(T[]) · C(Invarray, Pm);

end if;

return res;

where size(T) is a symbolic expression that denotes the size of an object of type T,
and size(T[]) is a symbolic expression that denotes the size of a cell of an array of
type T 3. C is the symbolic expression that counts the number of integer solutions
for an invariant as defined in Section 2.

As linear invariants are conservative, S(Im
cs , Pm, cs) over-approximates, in gen-

eral, the amount of memory allocated by cs in any run starting at m. That is, for
any run σ1 . . . σt that starts at m and reaches cs, the amount of memory in the heap
of σt occupied by objects allocated by creation site cs is bounded by the result of
evaluating S(Im

cs , Pm, cs) in the values of parameters Pm in σ1.

Example Consider the creation site m0.3.m2.8, which corresponds to statement
d = newA Integer[4] in line 8 of method m2 when called from m0 at line 3.

S(Im0
m0.3.m2.8, mc,m0.3.m2.8) =

= size(Integer[]) · C(Im0
m0.3.m2.8 ∪ {1 ≤ h ≤ 4}, mc)

= size(Integer[]) · C({n = 2mc, 1 ≤ j ≤ n, 1 ≤ h ≤ 4}, mc)

= size(Integer[]) · C({1 ≤ j ≤ 2mc, 1 ≤ h ≤ 4}, mc)

= size(Integer[]) · 8mc 1 2 3 4

1
2
3
4
5
6
7

5 h

j

mc=1

mc=2

mc=3

The figure on the right depicts the sets of points in the invariant for several values
of parameter mc.�

Example Table 2 shows the polynomials that over-approximate the amount of
memory allocated for (some selected) creation sites reachable from method m0.�

3size(T[]) will be the same for all Object subclasses and will differ for arrays of basic types.
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cs S(Im0
cs ,Pm0, cs)

m0.2.m1.2 size(RefO)

m0.2.m1.6 size(Integer[]) · 9

m0.2.m1.5.m2.3 size(Object[]) ·
(1

2
mc2 +

1

2
mc

)
m0.2.m1.5.m2.6 size(Integer[]) ·

(1

9
mc3 +

1

2
mc2 + [−

1

6
,−

1

6
,−

5

6
]mc · mc + [0,−

4

9
,−

11

9
]mc

)
m0.2.m1.5.m2.7 size(Integer) ·

(1

3
mc2 +

2

3
mc + [0, 0,

1

3
]mc

)
m0.2.m1.5.m2.8 size(Integer[]) · (2mc2 + 2mc)

m0.3.m2.3 size(Object[]) · 2mc

m0.3.m2.6 size(Integer[]) ·
(4

3
mc2 + [2,−

2

3
,
2

3
]mc · mc + [0,−

2

3
,−

2

3
]mc

)
m0.3.m2.7 size(Integer) ·

(4

3
mc + [0,

2

3
,
1

3
]mc

)
m0.3.m2.8 size(Integer[]) · 8mc

Table 2: Polynomials of memory allocation.

Memory allocated by a method

Having shown how to compute the amount of memory allocated by a single creation
site, we determine how much memory is allocated by a run starting at method m.
Basically, our technique identifies the creation sites reachable from method m, gets
the corresponding invariants, computes the amount of memory allocated by each
one and finally yields the sum of them.

Let CSm ⊆ CS denote the set of creation sites reachable from method m that
is, the set of creation sites cs = π.` ∈ CS, where π is a path starting at m.

Example The creation sites of the example in Fig. 1 are:
CSm0 = { m0.1, m0.2.m1.2, m0.2.m1.3, m0.2.m1.6, m0.2.m1.5.m2.3,

m0.2.m1.5.m2.6, m0.2.m1.5.m2.7, m0.2.m1.5.m2.8,
m0.2.m1.5.m2.10, m0.3.m2.3, m0.3.m2.6, m0.3.m2.7, m0.3.m2.8,
m0.3.m2.10 }

CSm1 = { m1.2, m1.3, m1.6, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7, m1.5.m2.8,
m1.5.m2.10 }

CSm2 = { m2.3, m2.6, m2.7, m2.8, m2.10 }

Fig. 2 shows the call graph augmented with creation sites. This graph is automati-
cally constructed with the tool described in [4].�

Observe that, since we are not dealing with recursive programs, the number of
paths in the call graph and thus the number of control states is finite. Now, the
problem of computing a parametric upper-bound of the amount of memory allocated
by a method m can be reduced to: for each cs ∈ CSm, obtain an invariant, compute
the function S and sum up the results.
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Figure 2: Call Graph and Creation Sites

The function computeAlloc computes an expression (in terms of method param-
eters) that over-approximates the amount of memory allocated by a selected set of
creations sites:

computeAlloc(m, CS) =
∑

cs ∈ CS

S(Im
cs , Pm, cs) , where CS ⊆ CSm

Given a method m, the symbolic estimator of the memory dynamically allocated
by m is defined as follows:

memAlloc(m) = computeAlloc(m, CSm)

That is, for any run σ1 . . . that starts at m, the amount of memory, in the heap of
any state in the run, occupied by objects allocated by a creation site in CSm reached
by the run, is bounded by the result of evaluating memAlloc(m) in the values of
parameters Pm in σ1.

Notice that the over-estimation may arise because invariants are conservative,
but also as a consequence of summing up all creation sites reachable in the call
graph, which may not all be executed by a given run.

Example Table 3 shows the expressions computed for m0, m1 and m2.�

The complexity of the method depends on the number of configurations of the
call stack from the analyzed method to each creation site. Though this number is in
the worst case exponential in the number of methods, in many cases, the topology
of the call graph leads to few paths and thus the presented technique is still feasible.
This actually happens for the benchmarks analyzed in Section 5. Further discussion
on this topic can be found in Section 6.

Notice that, using the technique we are able to evaluate the consumption of a
program starting at any method m. For instance, in case of a batch program it
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memAlloc(m0) size(Integer[]) ·
(1

9
mc3 +

23

6
mc2 +([

29

2
,
71

6
,
25

2
]mc) ·mc+[11,

83

9
,
79

9
]mc

)
+ size(Integer) ·(1

3
m2 + 2mc + [0,

2

3
,
2

3
]mc

)
+ size(Object[]) ·

(1

2
mc2 +

7

2
mc

)
+ 2 · size(RefO)

memAlloc(m1) size(Integer[]) ·
(1

9
k3 +

5

2
k2 +[

23

6
,
23

6
,
19

6
]k ·k +[9,

77

9
,
70

9
]k

)
+ size(Integer) ·

(1

3
k2 +

2

3
k +

[0, 0,
1

3
]k

)
+ size(Object[]) ·

(1

2
k2 +

3

2
k
)

+ size(RefO)

memAlloc(m2) size(Integer[]) ·
(1

3
n2 + [

16

3
,
14

3
, 4]n · n + [2, 1,

2

3
]n

)
+ size(Integer) ·

(2

3
n + [0,

1

3
,
2

3
]n

)
+

size(Object[]) · n

Table 3: Memory allocated by methods m0, m1, and m2

would be reasonable to compute the consumption from the actual main method of
the program since the consumption usually depends on command line arguments
or contextual objects like the size of a referenced file. Nevertheless, the ability
to compute consumption for any given method is useful to get different context-
independent consumption specifications at a finer level of granularity. Besides, in
cases where the application model is reactive event-driven, the consumption should
be measured from a dispatched method according to the parameter values conveyed
in the event.

4 APPLICATIONS TO SCOPED-MEMORY

Scoped-memory management is based on the idea of grouping sets of objects into
regions associated with the lifetime of a computation unit. Thus, objects are col-
lected together when their corresponding computation unit finishes its execution. In
order to infer scope information we use pointer and escape analysis (e.g., [2, 41]). In
particular, we assume that, at method invocation, a new region is created which will
contain all objects captured by this method. When it finishes, the region is collected
with all its objects. An implementation of scoped memory following this approach
can be found in [20].

An object escapes a method when its lifetime is longer than the method’s lifetime,
and it cannot be safely collected when this unit finishes its execution. Let escape :
Method → P(CreationSite) be a function that given a method m returns (an over-
approximation of) the set of creation sites escape(m) ⊆ CSm that escape m.

An object is captured by the method m when it can be safely collected at the
end of the execution of m. Let capture : Method → P(CreationSite) be a func-
tion that given a method m returns (an under-approximation of) the creation sites
capture(m) ∈ CSm that are captured by m.

These functions can be computed using any escape analysis technique.
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Example For instance, for our example in Figure 1 we have:

escape(m0) = {}
escape(m1) = {m1.3,m1.5.m2.3,m1.5.m2.6,m1.5.m2.7}
escape(m2) = {m2.3,m2.6,m2.7,m2.10}

capture(m0) = {m0.1,m0.2.m1.3,m0.2.m1.5.m2.3,m0.2.m1.5.m2.6,m0.2.m1.5.m2.7,

m0.2.m1.5.m2.10,m0.3.m2.3,m0.3.m2.6,m0.3.m2.7,m0.3.m2.10}
capture(m1) = {m1.5.m2.10,m1.2,m1.6}
capture(m2) = {m2.8} �

Memory that escapes a method

In order to symbolically characterize the amount of memory that escapes a method,
we use the algorithm developed in Section 3, but we restrict the search to creation
sites that escape the method:

memEscapes(m) = computeAlloc(m, escape(m))

This information can be used to know how much memory the method leaves
allocated in the active regions (the caller region or their parent regions in the call
stack) after its own region is deallocated, or to measure the amount of memory that
cannot be collected by a garbage collector after the method terminates.

Example In Table 4 we show the memory-consumption expressions for the cre-
ation sites escaping m1. Observe that expressions are defined only on the method
parameters.�

memEscapes(m1)= size(Object[]) · k m1.3

+size(Object[]) ·
(1

2
k2 +

1

2
k
)

m1.5.m2.3

+size(Integer[]) ·
(1

9
k3 +

1

2
k2 + [

5

6
,
5

6
,
1

6
]k · k + [0,−

4

9
,−

11

9
]k

)
m1.5.m2.6

+size(Integer) ·
(1

3
k2 +

2

3
k + [0, 0,

1

3
]k

)
m1.5.m2.7

Table 4: Amount of memory escaping from m1.

Memory captured by a method

To compute the expression over-estimating the amount of allocated memory that is
captured by a method, we use the algorithm developed in Section 3, but we restrict
the search to creation sites that are captured by the method:

memCaptured(m) = computeAlloc(m, capture(m))
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Example Table 5 shows the expression that over-approximates the amount of
memory captured by each method for our example.�

memCaptured(m0) = size(RefO) m0.1
+size(Object[]) · mc m0.2.m1.3

+size(Object[]) ·
(1

2
mc2 +

1

2
mc

)
+ m0.2.m1.5.m2.3

+size(Integer[]) ·
(1

9
mc3 +

1

2
mc2 + [−

1

6
,−

1

6
,−

5

6
]mc · mc + [0,−

4

9
,−

11

9
]mc

)
m0.2.m1.5.m2.6

+size(Integer) ·
(1

3
mc2 +

2

3
mc + [0, 0,

1

3
]mc

)
m0.2.m1.5.m2.7

+size(Integer[]) · mc m0.2.m1.5.m2.10

+ size(Object[]) · 2mc m0.3.m2.3

+size(Integer[]) ·
(4

3
mc2 + [2,−

2

3
,
2

3
]mc · mc + [0,−

2

3
,−

2

3
]mc

)
m0.3.m2.6

+size(Integer) ·
(4

3
mc + [0,

2

3
,
1

3
]mc

)
m0.3.m2.7

+size(Integer[]) m0.3.m2.10

= size(Integer[]) ·
(1

9
mc3 +

11

6
mc2 + ([

9

2
,
11

6
,
5

2
]mc) · mc + [2,

2

9
,−

2

9
]mc

)
+

size(Integer) ·
(1

3
mc2 + 2mc + [0,

2

3
,
2

3
]mc

)
+ size(Object[]) ·

(1

2
mc2 +

7

2
mc

)
+

size(RefO)

Total

memCaptured(m1) = size(RefO) m1.2
+size(Integer[]) · 9 m1.6
+size(Integer[]) · k m1.5.m2.10
memCaptured(m2) = size(Integer[]) · 4n m2.8

Table 5: Memory captured by methods m0, m1 and m2

Assuming the resulting expression is a symbolic estimator of the size of the
memory region associated to the method’s scope, this information can be used to
specify the size of the memory region to be allocated at run-time, as required by the
RTSJ [3]. Moreover, it can be used to improve memory management algorithms.

5 METHOD VALIDATION

We have developed a proof-of-concept tool-suite to perform the initial experiments
aiming at validating our approach for Java applications. This section identifies
the key conceptual components of the technique, their associated challenges and
briefly describes the implemented solution that was suitable to treat some well-
known benchmarks.

Tool

The proof-of-concept architecture is shown in Fig.3. The tool can effectively analyze
single-threaded Java programs provided they do not feature recursion or complex
data structures.

Call graphs are obtained with Soot [38]. Invariants can be either provided by
programmer assertions “à la” JML [30], or computed using general analysis tech-
niques [14, 13] or Java-oriented ones[36, 19, 17, 7]. PolyLib [32] is used to compute
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Figure 3: Proof-of-concept tool-suite

Ehrhart polynomials. In the experiments, local invariants were generated using
Daikon[17]. It should be noted here that Daikon is a tool for dynamic dectection
of “likely” invariants by executing the program over a set of test cases. Even if the
properties generated by Daikon have a high probability of being true in all runs,
that is, being invariants, they might not be. In our experiments, we have manually
verified all properties to be invariants.

None of the techniques for computing invariants deal with our concept of control
state invariant since they only compute local invariants. Thus, the tool builds a
control state invariant by computing the conjunction of the local invariants that
hold in the control locations along the path as explained in Section 2.

Note that the precision of our analysis depends on the accuracy of both the
invariant generation and call graph generation techniques (specially in the presence
of dynamic binding). Weak invariants and unfeasible calls make our technique to
over-approximate too much. In section 6 we comment this issue in more detail.

In order to increase the precision of computed upper-bounds, it is preferable to
obtain invariants that only capture what is required to be known about the relevant
iteration spaces [11]. A key concept for our characterization of iteration spaces is the
set of inductive variables for a control location, that is, a subset of program variables
which cannot repeat the very same value assignment in two different visits of the
given control state (except in the case where the program halts). An invariant that
only involves parameters and an inductive variables is called an inductive invariant.
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To compute inductive variables we developed a conservative dataflow analysis
that combines a live variables analysis augmented with field sensitivity with a loop
inductive analysis [35]. This problem has been studied for programs that make
use of iteration patterns composed of for and while loops with simple conditions.
Handling more complex iteration patterns and types beyond integers is a challenging
issue related to finding variant functions for the iteration. In section 6 we brifely
discuss our general strategy and we show how the tool currently deals with an itera-
tion pattern pervading Java applications as it is the case of looping over collections.
Indeed, while not dealing with recursive programs is an underlying limitation of the
approach, handling complex data-structures (such as collections) is not precluded,
but is a challenge for building good linear invariants.

Experiments

The initial set of experiments were carried out on a significant subset of programs
from JOlden [6] and JGrande [15] benchmarks. It is worth mentioning that these are
classical benchmarks and they are not biased towards embedded and loop intensive
applications – the target application classes we had in mind when we devised the
technique.

Indeed, our method faced serious obstacles when dealing with these examples.
First, in most examples some of the memory-consuming methods reside into recur-
sive structures. Second, inductive variables include not only integer-typed variables
but also object fields and complex data-structures.

Despite these issues, the tool was able to synthesize very accurate and non-trivial
estimators for the number of object instances created (and memory allocated) in
terms of program parameters for two examples that do not feature recursion (mst
and em3d examples). In all test cases, execution times were less than 30 sec. in
a Pentium 4 3Ghz PC for the core components (Fig. 3): (1) find creation sites,
and compute (2) control-state invariants, (3) inductive variables, and (4) Ehrhart
polynomials. Moreover, the tool was also able to analyze most non-recursive (and
tail-recursive) application methods for the rest of the examples.

All these results were achieved using the original code as input for the method
and reducing human intervention to a minimum (i.e., creation of test cases for
Daikon, strengthening some of automatically detected invariants and reducing some
of automatically detected inductive sets). Remaining obstacles that prevent fully
automatic analysis of some examples are complex data-structures which must be
considered part of any set of inductive variables and thus, an integer interpretation
of them should be provided by the user to build a useful linear invariant.

These experimental results focused on the allocation estimation (Section 3). The
application of our technique to the scoped memory management (Section 4) needs
further work.

In order to make the result more readable, the tool computes the number of
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object instances created when running the selected method, rather than the actual
memory allocated by the execution of the method4. Also, we set aside analyzing the
standard Java library in order to keep examples manageable.

Table 6 shows the computed polynomials, the analysis time (of core components),
and the comparison between real executions and estimations obtained by evaluating
the polynomials with the corresponding values of parameters. The last column
shows the relative error ((#Obs - Estimation)/Estimation).

Example:Class.Method Static Analysis Precision Analysis

#CSm memAlloc Time Param. #Objs Estim. Err%

mst:MST.main(nv) 13 (2+[ 14 , 0, 0, 0]nv)nv2 26.04s 10 240 245 2,00
+4nv + 5 20 940 985 5,00

100 22700 22905 1,00
1000 2252000 2254005 0,09

mst:MST.computeMST(g, nv) 1 nv − 1 10 9 9 0,00
20 19 19 0,00

100 99 99 0,00
1000 999 999 0,00

mst:Graph.Graph(nv) 6 (2+[ 14 , 0, 0, 0]nv)nv2 10 230 230 0,00
+3nv 20 920 960 4,17

100 22600 22800 0,88
1000 2251000 2253000 0,09

mst:Graph.addEgdes(nv) 2 2nv2 10 180 200 10,00
20 760 800 5,00

100 19800 20000 1,00
1000 1998000 2000000 0,10

Em3d.main(nN, nD) 28 6nD ·nN +4nN +14 30.57s (10, 5) 350 354 1,13
(20, 6) 810 814 0,49

(100, 7) 4610 4614 0,09
(1000, 8) 52010 52014 0,01

Bigraph.create(nN, nD) 22 6nD · nN + 4nN + 8 (10, 5) 348 348 0,00
(20, 6) 808 808 0,00

(100, 7) 4608 4608 0,00
(1000, 8) 52008 52008 0,00

Node.makeFromNodes 2 2 · this.fromCount 10 20 20 0,00
20 40 40 0,00

100 200 200 0,00
1000 2000 2000 0,00

Tree.createTestData(nb) 23 17nb + 26 7.22s 10 196 196 0,00
20 366 366 0,00

100 1726 1726 0,00
1000 17026 17026 0,00

Value.createTree(size,sd) 1 size − 1 2.74s 10 7 9 22,22
20 15 19 21,1

200 127 199 36,2
64 63 63 0,0

128 127 127 0,0
256 255 255 0,0

power:Root.<init> 14 32622 5.82s - 32412 32622 0,64

(*)health: (recursive) 8 11(4l − 1)/3 2 55 ∞ ∞
Village.createVillage(l, lab, b, s) 4 935 ∞ ∞

6 15015 ∞ ∞
8 240295 ∞ ∞

FFT.test(n) 10 4n + 8 5.02s 8 38 40 5,00
32 134 136 1,47

256 1030 1032 0,19
1024 4102 4104 0,05

JGFHeapSortBench.JGFinitialise 2 1000001 4.63s - 1000001 1000001 0,00
JGFCryptBench.JGFinitialise 7 9000113 5.76s - 9000113 9000113 0,00
JGFSeriesBench.JGFinitialise 1 20000 5.16s - 20000 20000 0,00

Table 6: Experimental results

These experiments showed that the technique was indeed efficient and very ac-
curate, actually yielding exact figures in most benchmarks. In some cases, the
over-approximation was due to the presence of creation sites associated with excep-
tions (which did not occur in the real execution), or because the number of instances
could not be expressed as a polynomial. For instance, in the bisort example, the

4For simplicity we assume that the function size(T)=1 for all type T
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reason of the over-approximation is that the actual number of instances is always
bounded by 2i − 1 being i = dlog2 sizee. Indeed, the estimation was exact for argu-
ments power of 2. For the (*)health example, it was impossible to find a non-trivial
linear invariant. It actually turns out that memory consumption happens to be ex-
ponential5 (the given result was calculated by hand). For fft, the argument n was
required to be a power of 2 for not throwing an exception.

Table 7 shows the polynomials that over-approximate the amount of memory
captured by methods of the MST and Em3d examples from JOlden. We show only
methods that capture some creation sites. For the others, the estimation yields 0 as
they do not allocate objects or they escape their scope.

m #CSm memCaptured(m)

mst
MST.main(nv) 13 size(mst.Graph) + (size(Integer) + size(mst.HashEntry)) · nv2 +

[1/4, 0, 0, 0]nv · size(mst.Hashtable) · nv2 + (size(mst.Vertex) +
size(mst.Vertex[])) · nv + 5 · size(StringBuffer)

MST.parseCmdLine() 2 size(java.lang.RuntimeException)+size(Integer)

MST.computeMST(g, nv) 1 size(mst.BlueReturn) · (nv − 1)

em3d
Em3d.main(nN,nD) 26 size(em3d.BiGraph) + nN · (2 · size(em3d.Node) + 4 ·

size(em3d.Node[]) · nD + 2 · size(double[]) · nD) + 8 ·
size(em3d.Node1Enumerate) + 4 · size(java.lang.StringBuffer) +
size(java.util.Random)

Em3d.parseCmdLine() 6 3 · size(Integer) + 3 · size(java.lang.Error)
BiGraph.create(nN,nD) 2 size(em3d.Node[]) · nN

Table 7: Capturing estimation for MST and Em3d examples.

Additional experiments and details about the the tool can be found in [5].

6 DISCUSSION AND FUTURE WORK

Dealing with recursion

As stated, currently we are not dealing with general recursion. This is probably the
most challenging theoretical obstacle for our method since some basic concepts are
rooted in the assumption of finite call chains. However, not supporting recursion
does not constitute a major drawback in many cases since our focus are embedded
applications where recursion is a “rara avis”. Nevertheless, we are looking for ways
of relaxing this limitation like counting the number of possible stack configurations
when recursion is eliminated.

5Some JOlden programs not considered here also lead to exponential memory usage
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Beyond classical iteration spaces

State of complex data-structures may impact the number of times a control state is
visited (e.g., iterating a collection). The basic idea to handle this problem is, firstly,
to abstract away data-structures into “integer views” (e.g., size of a collection, array
length, integer class-attributes, counters standing for iteration progress, largest in-
teger member of the collection, the size of the largest collection inside the collection,
the number of objects satisfying a given property, etc.). Then, inductive invariants
may be built using those integer-typed variables that capture the relevant state of
the data structure (e.g., current index position) and integer-typed expressions over
the data-structure that may serve as complexity parameters (e..g, size of array). The
tool provides basic functionality to apply this pre-processing for structures such as
collections and arrays.

As an example, we illustrate here how to handle collections. Consider an iteration
of the form:

Iterator it1= collection1.iterator();
while (it1.hasNext() && condition) {

a = (Type)it1.next();
...

}

To analyze this kind of pattern the following pre-processing is to be done:

1. As the counting method deals with integer-valued inductive variables, each
iterator it should be associated to a “virtual” counter it. This counter is
initialized when the iterator is created and incremented when the correspond-
ing it.next() is called. Consequently, loop invariants involving iterators will
include a constraint of the form {0 ≤ it < collection.size()}.

2. The parameter to be used when computing the invariant is its size.

Figure 4 shows a (very simple) implementation of a dynamic array using a list
of fixed sized nodes. The memory allocated by the method addAll depends on
the size of the collection passed as a parameter. The actual allocation takes place
in the method newBlock where a new block of memory is allocated only when the
previous block is full. Our method yields the following invariant for the control state
addAll.2.add.3:

IaddAll
addAll.2.add.3.newBlock.1 = {BSIZE = 5, 0≤ it< c.size(), len = it,

len mod BSIZE = 0, how = BSIZE}

and the corresponding allocation expression in terms of the collection size6:

S(IaddAll
addAll.2.add.3.newBlock.1, {c}) = c.size() + [0, 4, 3, 2, 1]c.size()

6The function S will add the constraint { 1 ≤ h1 ≤ how} since the involved creation site is a
newA statement.
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public class ArrayDim { Object[] newBlock(int how) {
Vector list; int len; 1: Object[] block=new Object[how];
final static int BSIZE = 5; 2: list.add(block);
ArrayDim() { 3: return block;

1: list= new Vector(); }
2: len = 0; } void addAll(Collection c) {
void add(Object o) { 1: for(Iterator it=c.iterator();

1: Object[] block; it.hasNext();)
2: if (len % BSIZE == 0) {
3: block = newBlock(BSIZE); 2: add(it.next());

else }
4: block=(Object []) }

list.lastElement(); }
5: block[len % BSIZE] = o;
6: len++;
}

Figure 4: Collection Example

Improving method precision

When programs feature if statements with non-linear conditions or polymorphic
invocations, it is usually the case of having control states that, by the control struc-
ture, are mutually exclusive but their invariants have non-empty intersection. This
implies that some statement occurrences are counted more than once by the current
technique.

Consider the following example:

0: void test(int n,Object a[]) {
1: for(int i=1;i<=n;i++) {
2: if(t(i))
3: a[i] = new Integer[2*i];
4: else
5: a[i] = new Integer[10];

}
}

If t(i) is abstracted away, the invariants at test.3 and test.5 will be identical:

Itest
test.3 = Itest

test.5 = {1 <= i <= n}
and their corresponding size expressions7:

S(Itest
test.3, n) = n2 + n, S(Itest

test.5, n) = 10n.

The computeAlloc function will sum up these expressions and yield the expres-
sion n2 + 11n . This result, although safe, would be too conservative. For instance,

7To simplify the explanation, we intentionally omit the size(Integer) factor.
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Figure 5: Evolution of size functions for the ”test” example

for n = 6, the estimated memory utilization for test will be 102. Nevertheless,
analyzing the program, it is easy to see that the maximum amount consumed is 62.
This corresponds to choosing creation site test.5 when i is between 1 and 5 and
taking creation site test.3 when i is greater than 5 (see figure 5). In [5] we show
some advances in the direction of improving precision.

Memory required to run a method

Computing good over-estimations of memory required to run a method in terms of its
parameters may have deep impact in software development. Possible applications of
this estimator are memory consumption certificates, over-estimation of heap usage,
scheduling and dynamic load of application based of memory requirements, etc.

Our general technique is unsensitive to the presence of a memory manager that
reclaims unused objects at runtime. Particulary, it does not leverage on the fact that
there is a scoped-memory manager that garbage collects unused regions, in which
case counting the number of visits to creation sites would yield a very pessimistic
upper-bound for the memory required to run. In fact, in this setting, although a
method can be potentially invoked several times, there will be at most one active
region per method whose size may change according to the calling context (the value
assigned to its parameters each time it is invoked).

Consider method m0 in the example of figure 1. At location m0.2, m0 calls
m1 which calls m2. At location m0.3, m0 calls m2. Under a scoped memory
management, there will be three active regions for the call chain m0 → m1 → m2,
and two active regions for the call chain m0 → m2. Memory requirements for
these two chains should not be summed up since their stack of regions are not
simultaneously active.

In [5] we present an initial approach that refines our consumption estimation
considering memory reclaiming. Central to this approach is the over-estimation of
the largest size required for a region associated to an invoked method. This requires
symbolically solving a maximization problem.
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Hybrid technique

Approaches like [9, 10] seem suitable for the verification of Presburger expressions
accounting for memory consumption annotations for class methods. We believe that
it is possible to devise a technique integrating our analysis together with those men-
tioned type-checking based ones. The approach would be as follows. While methods
for data container classes (like the ones provided by standard libraries) are anno-
tated and verified by type-checking techniques, loop intensive applications built on
top of those verified libraries may be analyzed using our approach. The idea is to
resort to verified annotations in the same spirit as we handle array creation. That
is, it would be not necessary to reach the underlying creation sites of the library.
Instead, invariants at the method invocation sites may be built by introducing an in-
teger variable with the Presburger expression as upper-bound. Benefits are twofold:
first, work done by our technique would be reduced since we would had to deal with
significatively smaller call graphs, and second, our ability to synthesize non-linear
consumption expressions would entail an increase of expressive power and usability
of type-checking based techniques.

7 CONCLUSIONS

We have developed a technique to synthesize non-linear symbolic estimators of dy-
namic memory utilization. We first presented an algorithm for computing the esti-
mator for a single method. We then specialized it for scope-based memory manage-
ment. Our approach resorts to techniques for finding invariants and counting integer
solutions of linear constraints. We believe that the combination of such techniques,
and in particular, their application to obtain specifications that predict dynamic
memory utilization is interesting and novel. Besides, it is suitable for accurately
analyzing memory utilization in the context of loop-intensive programs. Memory
estimators can be used both at compile- and run-time, for example, to set up the
appropriate parameters required by the RTSJ scoped-memory API, to over estimate
heap usage, to improve memory management and to accurately determine whether
a new program can be safely dynamically loaded and scheduled without disturbing
other programs behavior.

We have developed a prototype tool that allowed us to experimentally evaluate
the efficiency and accuracy of the method on several Java benchmarks. The results
were very encouraging. We are currently improving the tool in order to thoroughly
test the complete approach (in particular integration with escape analysis) and make
the approximations tighter.

Other aspect to explore is the optimization of our method. Slicing techniques
and techniques to find inductive variables could help in reducing the number of
variables and statements considered when building the invariants. On the other
hand, techniques like [22] can be used to eliminate from our analysis creation sites
that can be statically pre-allocated.
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