
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 4, Mai-June 2006

Cite this article as follows: László Lengyel, Tihamér Levendovszky, Hassan Charaf: “Constraint
Validation in Model Compilers”, in Journal of Object Technology, vol. 5, no. 4, Mai-June 2006, pp.
107-127 http://www.jot.fm/issues/issue_2006_05/article3

Constraint Validation in Model
Compilers

László Lengyel, Tihamér Levendovszky, Hassan Charaf, Budapest
University of Technology and Economics, Hungary

Abstract
Model transformation has become one of the most focused research field, motivated by
for instance the OMG’s Model-Driven Architecture (MDA). Metamodeling is a central
technique in the design of visual languages, and it reuses existing domains by
extending the metamodel level. Metamodel-based software development requires the
transformation of the models between various stages. These transformation steps must
be formally and precisely specified, which can be accomplished along with constraints
enlisted in transformation steps. Our metamodel-based approach uses graph rewriting
techniques for model transformation. This paper summarizes our results related to the
metamodel-based constraint validation during the model transformation. This work
presents the Rule Constraint Validator (RCV) algorithm, the Invariant Analysis (IA)
algorithm, the Persistent Analysis (PA) algorithm and the combination of the RCV and
PA algorithms which results the Optimized Rule Constraint Validator (ORCV) algorithm.
An illustrative case study for constraint validation in rewriting rules is also provided.

1 INTRODUCTION

OMG’s Model Driven Architecture [OMG MDA] offers a standardized framework to
separate the essential, platform independent information from the platform dependent
constructs and assumptions. A complete MDA application consists of a definitive
platform-independent model (PIM), and one or more platform-specific models (PSM) and
complete implementations, one on each platform that the application developer decides to
support. The platform-independent artifacts are mainly UML models containing enough
specification to generate the platform dependent artifacts automatically by so-called
model compilers. Hence software model transformation provides a basis for model
compilers, which plays central role in the MDA architecture.

Model transformation means converting an input model that is available at the
beginning of the transformation process to an output model, and it is a possible solution
for model compiler realization. Model compilers can support properties to guarantee,
preserve or validate them, and the presented approach is a practical application of these
mechanisms.

CONSTRAINT VALIDATION IN MODEL COMPILERS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

Models can be considered special graphs; simply contain nodes and edges between
them. This mathematical background makes possible to treat models as labeled graphs
and to apply graph transformation algorithms to models using graph rewriting
[Levendovszky04a] [Levendovszky04b]. The steps of graph transformation are rewriting
rules, each rewriting rule consists of a left-hand side graph (LHS) and right-hand side
graph (RHS). Previous work [Levendovszky04a] has introduced an approach, where LHS
and RHS of the rules are built from metamodel elements It means that an instantiation of
LHS must be found in the graph to which the rule is applied to (host graph) instead of the
isomorphic subgraph of the LHS. Hence LHS and RHS graphs are the metamodels of the
graphs which we search and replace in the host graph.

Often it is not enough to match graphs based on the topological information only, we
want to restrict the desired match by other properties, e.g. we want to match a subgraph
with a node which has a special property or there is a unique relation between the
properties of the matched nodes. For example we want to match a node with a special
integer type property which value is between 3 and 7. The metamodel-based specification
of the rules allows assigning OCL [OMG OCL] constraints to the rules, using the
guidelines of the UML standard [OMG UML]. Because these constraints are bound to the
rules, they are able to express constraints local to the host graph area affected by the
rules. This approach is inherently a local construct, because the elements not appearing in
LHS or RHS cannot be directly included in the OCL statements. Although the
specification has this local nature, it does not mean that validating them does not involve
checking other model elements in the input model: constraint propagation needs to be
taken into account by both the algorithms and the user of the transformation on
specifying constraints. The OCL constraints which are enlisted in LHS and RHS graphs
affect the matched instances of LHS and RHS graphs. A transformation and a finite
sequence of steps consist of n number of rewriting rules (where n > 0) in an ordered
sequence. This sequence defines the execution order of the containing rewriting rules.
The difference between a transformation and a finite sequence of steps is that a finite
sequence of steps always terminates. A transformation, however, can contain infinite
number of steps.

Constraints (pre- and postconditions) facilitates to specify precisely the execution of
the transformation steps and the whole transformation. Using constraints, we can specify
the conditions of step firing and the required outputs.

If a transformation contains steps specified properly with the help of constraints, and
the transformation has been executed successfully for the input model, then the generated
output model is in accordance with the expected result, which is described by the steps of
the transformation refined with the constraints. It means that the modeler’s task is to
create proper transformation steps and fully specify them with constraints (pre- and
postconditions) then if the execution of the transformation finishes successfully, it
produces a valid result. A sample transformation step is presented in Fig. 1.

This work discusses new results, experiences and consequences evolved from the
implementation and further conceptual development of constraint validation and
application in a metamodel-based model transformation system. Our base algorithm is

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 109

called Rule Constraint Validator (RCV) algorithm, which firstly finds the matches in the
graph to which the rewriting rule is being applied, and having found the matches, it
checks the constraints contained by the rewriting rule. If all of the preconditions are
satisfied, the algorithm fires the transformation step. The aim of the work presented here
was to analyze the possibilities of the acceleration and the optimization of the RCV
algorithm. The main idea of the optimization is that the constraint validation is performed
before and during the matching process and not after the matching. This early constraint
validation accelerates the whole transformation process, since with the help of this
method it is discovered earlier whether there is no proper match in a given position
because of constraint contradiction. This work presents the Invariant Analysis (IA)
algorithm which examines the constraints in the rewriting rule against the metamodel,
and the Persistent Analysis (PA) algorithm which executes the constraint validation in the
matching time. The paper analyses the computational complexity of the algorithms and
the computational time that we can save using them.

Fig. 1: Sample transformation step: (a) LHS of the transformation step, (b) RHS of the transformation step,
and lhs_C1, lhs_C2, rhs_C1, rhs_C2 are the constraints (pre- and postconditions) assigned to the rule nodes

The rest of the paper is organized as follows: Section 2 describes the backgrounds and the
related work, Section 3 (i) introduces the Visual Modeling and Transformation System
(VMTS) [VMTS], which is our implemented metamodel-based transformation system,
(ii) presents the RCV algorithm, (iii) provides the optimization possibilities (IA, PA,
ORCV algorithms) and (iv) discusses the computational complexity of the presented
algorithms. In Section 4 a case study illustrates the constraint checking facilities of the
presented method, and in Section 5 conclusions are drawn and future work is presented.

2 BACKGROUNDS AND RELATED WORK

The purpose of contracts [Meyer88] is to help to build better software by organizing the
communication between software elements through specifying the mutual obligations.
Contracts are used to guarantee that these communications occur on the basis of precise
specifications of what these services are going to be. For the software to be able to
guarantee any kind of correctness and robustness properties, they must know the precise
constraints over such communications. In a client/supplier relationship, where the client

CONSTRAINT VALIDATION IN MODEL COMPILERS

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

needs a certain service and the supplier provides that service, the client has to fulfill
certain obligations before calls the supplier. These preconditions are obligations for the
client. In the other direction, we are going to express the conditions that the supplier
routine must guarantee to the client on completion of the supplier's task. That is the
postcondition of the contract, specifically, the postcondition of that particular routine.
The postcondition is also an obligation for the supplier. Besides pre- and postconditions
the third fundamental elements of contracts are invariants. A class invariant is a condition
that applies to an entire class. It describes a consistency property that every instance of
the class must satisfy.

The Object Constraint Language [OMG OCL] is a formal language for analysis and
design of software systems. It is a subset of the industry standard Unified Modeling
Language [OMG UML] that allows software developers to write constraints and queries
over object models. A constraint is a restriction on one or more values of an object-
oriented model or system. There are four types of constraints: (i) An invariant is a
constraint that states a condition that must always be met by all instances of the class,
type, or interface. (ii) A precondition to an operation is a restriction that must be true at
the moment that the operation is going to be executed. The obligations are specified by
postconditions. (iii) A postcondition to an operation is a restriction that must be true at
the moment that the operation has just ended its execution. (iv) A guard is a constraint
that must be true before a state transition fires. Besides these applications, OCL can be
used as a navigation language as well.

Graph rewriting [Rozenberg97] [Ehrig97] [Blostein95] is a powerful tool for graph
transformation with strong mathematical background. The atoms of graph transformation
are rewriting rules, each rewriting rule consists of a left-hand side graph (LHS) and right-
hand side graph (RHS). Applying a graph rewriting rule means finding an isomorphic
occurrence (match) of LHS in the graph to which the rule is being applied (host graph),
and replacing this subgraph with RHS. Replacing means removing elements which are in
LHS but not in RHS, and gluing elements which are in RHS but not in LHS. Replacing
process consists of two steps: removing and gluing, this approach is the so-called double
pushout (DPO) [Rozenberg97].

The metamodel-based constraint checking method presented later benefits from the
results of the mathematical background of formal languages, graph rewriting and research
related to the metamodel-based software model transformation. It also incorporates
several ideas from other existing environments [Akehurst03], [Hamie98] [Loecher03],
which implement the OCL, and enable constraints to be checked over models.

The GReAT framework [Karsai03] is a transformation system for domain specific
languages (DSL), it is built on metamodeling and graph rewriting concepts; it uses a
proprietary notation and interpretation instead of instantiation between the rules
expressed with meta elements and the match.

PROGRES [PROGRES] is a visual programming language in the sense that it has a
graph-oriented data model and a graphical syntax for its most important language
constructs. PROGRES supports pre- and postconditions. The precondition of a
transaction is a query, which should never fail, being applied to the input graph of the

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 111

surrounding transaction. Similarly the postcondition of a transaction is a query, which
should never fail, being applied to the output graph of the surrounding transaction.

3 CONSTRAINT VALIDATION

The Visual Modeling and Transformation System

The block diagram of the Visual Modeling and Transformation System (VMTS)
[Levendovszky04a] [VMTS] is depicted in Fig. 2. VMTS is an n-layer multipurpose
modeling and metamodel-based transformation system. The user interface (Adaptive
Modeler) are functionally separated from the model storage unit (AGSI Core - Attributed
Graph Architecture Supporting Inheritance), which uses an RDBMS to store the model
information. The model transformation can be accomplished by Traversing Model
Processors [Levendovszky04b], Rewriting Engine and other applications. The AGSI Core
exposes its interface to any other applications, which may use a proprietary technique to
process AGSI data.

Fig. 2: Block diagram of VMTS

Using this environment it is easy to edit metamodels, design models according to
their metamodels, transform models using graph rewriting [Levendovszky04a]
[Levendovszky04c]. The Validation Module, which is a part of the AGSI Core facilitates
to check constraints contained by metamodels during the metamodel instantiation, and to

CONSTRAINT VALIDATION IN MODEL COMPILERS

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

validate the constraints in the rewriting rules during the graph transformation process
[Lengyel05a].

A precondition (postcondition) assigned to a rewriting rule is a boolean expression
that must be true at the moment when the rewriting rule is fired (after the completion of a
rewriting rule). If a precondition of a rewriting rule is not true then the rewriting rule fails
without being fired. If a postcondition of a rewriting rule is not true after the execution of
the rewriting rule, the rewriting rule fails. A direct corollary of this is that an OCL
expression in LHS is a precondition to the rewriting rule, and an OCL expression in RHS
is a postcondition to the rewriting rule. A rewriting rule can be fired if and only if all the
conditions enlisted in LHS are true. Also, if a rewriting rule finished successfully, then all
the conditions enlisted in RHS must be true. There are three properties: validation,
preservation, and guarantee, which are checked during the rewriting process
[Lengyel05a].

The Rule Constraint Validator (RCV) Algorithm

Fig. 3 presents a block diagram to illustrate how the RCV algorithm [Lengyel05a] of the
VMTS checks the constraints contained by the rewriting rule during the rewriting
process. Recall that LHS and RHS of the rewriting rules are built from the metamodel
elements. It is possible in VMTS that LHS and RHS use different metamodels, but for the
sake of simplicity in the block diagram they have common metamodel. The rewriting rule
contains OCL constraints. VMTS does not interpret the constraints during the rewriting,
but a binary is used, which is generated by an OCL Compiler [Lengyel05b]. The
rewriting process uses matches found by the matching process and the compiled binary to
validate the constraints on the matched parts of the host graph. If and only if a match
satisfies the constraints (preconditions), then the rewriting process generates the rewriting
result, and if and only if the rewriting result satisfies the postconditions, then the step was
successful. In Fig. 3 the rewriting result is also an instance model of the metamodel,
because LHS and RHS use the same metamodel.

Fig. 3: The block diagram of the constraints checking during the rewriting process (RCV algorithm)

Proposition 1. The computational complexity of the RCV algorithm for constraint
checking is the following.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 113

a) O(s) + O(lg vm) – once for a rewriting rule, and
b) O(lg v) – for each rule firing.

Where s is the number of the symbols in the OCL constraints, vm is the number of the
metamodel vertices and v is the number of the host graph (model) vertices.

The following pseudo codes illustrate the transformation execution
(EXECUTE_TRANSFORMATION) and the constraint validation (CHECK_CONSTRAINTS). The
EXECUTE_TRANSFORMATION method executes the rewriting rules contained by the given
transformation on the passed match. If the rewriting rule has no generated validation
binary, then it generates the validation code and binary based on the constraints contained
by the rewriting rule. It means that for each rewriting rule this step has to be performed
only for the first time. If a step has a precondition, the CHECK_CONSTRAINTS method is
called, and if it returns false then the execution of the step and the whole finite sequence
of steps fails, thus the algorithm returns false. Otherwise the EXECUTE_TRANSFORMATION
method calls the FIRE_RULE function, and after that if the rule has a postcondition then
the procedure is similar to that of the preconditions. The pseudo codes of the algorithm
are as follows:

EXECUTE_TRANSFORMATION (VMTSTransformation transformation,
VMTSMatch match): bool
 foreach VMTSRule rule of
 transformation.getRulesInOrderedSequence()
 if not rule.HasGeneratedValidationCode and not
 GENERATE_VALIDATION_CODE(rule.Constraints)
 then return false
 if rule.hasPrecondition and not
 (CHECK_CONSTRAINTS(rule.PreConditions, match))
 then return false
 FIRE_RULE(rule, match)
 if rule.hasPostcondition and not
 (CHECK_CONSTRAINTS(rule.PostConditions, match))
 then return false
 end foreach
 return true

CHECK_CONSTRAINTS (VMTSConstraint[] constraints, Hashtable
match): bool
 foreach VMTSConstraint constraint of constraints
 destNode = NAVIGATE_TO_DESTNODE(constraint, match)
 if not CHECK(constraint, destNode) then return false
 end foreach
 return true

CONSTRAINT VALIDATION IN MODEL COMPILERS

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

The Invariant Analysis (IA) Algorithm

We assume the case that all model conforms to its metamodel, every host graph satisfies
its constraints defined in the metamodel. We can make that assumption without
restricting the generality, because using metamodel-based tools the created models have
to conform to their metamodels. Since a rewriting rule in VMTS is built from metamodel
elements, we can apply a rewriting rule for a host graph if and only if the host graph and
LHS of the rewriting rule have the same metamodel, or the metamodel of the host graph
contains the metamodel of LHS graph. In other cases it is not possible to find match in
host graph because LHS graph of the rewriting rule and the metamodel of the host graph
contain different types.

Fig. 4: Metamodel of the statechart diagram

Invariant Analysis means the comparison of the constraints contained by the metamodel
and the rewriting rule. The goal of the Invariant Analysis is to find out immediately after
the rewriting rule creation if a constraint in the rewriting rule contradicts to a constraint in
the metamodel. This is an earlier phase where we can explore whether there is any
contradiction between the constraints. Invariant Analysis can modify the
IsAlreadyChecked property of a constraint in the rewriting rule to true if it is follows from
a constraint contained by the metamodel that the examined rewriting rule constraint holds
in every case. The following constraints provide an example. Constraint from metamodel
(in Fig. 4 is depicted the metamodel of the statechart diagram):

context EndState inv InTransitions_metamodel:
self.NumberOfInTransitions = 2

Constraint from rewriting rule:
context EndState inv InTransitions_rewriting_rule:
 self.NumberOfInTransitions >= 1 and

self.NumberOfInTransitions <= 3

Invariant Analysis is an offline validation; it is not possible to validate pre- and
postconditions offline, but we can check those constraints which use only type and not
instance-specific properties.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 115

After the creation of a rewriting rule the rule is modified only few times, but it is
fired optional times. IA is independent from the rule firing; it runs only few times for a
rewriting rule, immediately after the rule creation and modification, therefore the
complexity of the IA does not increase the complexity of the transformation process.

To summarize the Invariant Analysis compares the constraints contained by the
metamodel and the rewriting rules, and decides which constraints in the rewriting rule
will be certainly proper and which not. The pseudo code of the algorithm is as follows:

INVARIANT_ANALYSIS (int ruleID, out
VMTSConstraintContradictionList contradictionList): bool

VMTSRuleNode[] ruleNodes = getRuleNodesByRuleID(ruleID)
foreach VMTSRuleNode ruleNode in ruleNodes
 VMTSNode typeNode = getMetaNodeByID(ruleNode.TypeID)
 VMTSConstraintContradictionList currentContradictionList
 = COMPARE_CONSTRAINTS(ruleNode.Constraints,
 typeNode.Constraints)
 if currentContradictionList != null then
 contradictionList.Add(currentContradictionList)
end foreach
if contradictionList.Count > 0 then return false
else return true

The INVARIANT_ANALYSIS method queries the rule nodes contained by the rewriting rule
based on the given ruleID. This method affects the rule nodes contained by both the LHS
and the RHS graph. In the foreach loop the algorithm queries the metamodel node
(typeNode) by the typeID of the actual rule node and calls the COMPARE_CONSTRAINTS
method with the rule node and the constraints contained by the typeNode. The
COMPARE_CONSTRAINTS method compares the passed constraints, and returns the
contradictions if any. If there are returned contradictions between the constraints
contained by the metamodel and the rewriting rule, then the algorithm places them into
the contradictionList, which is an output parameter. The return value of the
INVARIANT_ANALYSIS is false if there was at least one contradiction, true otherwise.

In AGSI Core the data is stored in datasets, which are an in-memory cache of the
data retrieved from the database. There is a dataset for the actually used metamodel, one
for the actually used model, and one for the actually used transformation. These datasets
contain only two data tables: one for nodes and one for edges. We denote the number of
the actual transformation (metamodel, model) nodes with vr (vm, v) and the edges with er
(em, e). It means that the data tables containing the actual transformation (rewriting rules)
nodes and edges have vr and er data rows. The complexity of finding a row in a data table
is O(lg n), where n is the number of the rows. In AGSI Core there are a Facade and a
Manager layers which means O(4) steps to move the objects through these layers.
Therefore the complexity to query a VMTSRuleNode or a VMTSRuleEdge from the
dataset of the actual transformation is O(4) + O(lg vr) = O(lg vr) and O(lg er) steps.
Similarly to obtain a metamodel (model) node or edge means O(lg vm) and O(lg em) (O(lg
v) and O(lg e)) steps.

CONSTRAINT VALIDATION IN MODEL COMPILERS

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

The complexity of the getRuleNodesByRuleID method is O(lg vr) and the complexity
of the getMetaNodeByID method is O(lg vm). The foreach loop runs for each rewriting
rule node. The complexity of the COMPARE_CONSTRAINTS method depends on the
number of the constraints contained by the passed rule node and the metamodel node. Let
cri be the number of the constraints contained by the ith passed rule node and cmi the
number of the constraints contained by the metamodel node of the same type. The
algorithm needs)*(miri ccΟ time to compare the constraints contained by the ith rule node
with the corresponding constraints in the metamodel node. The complexity of the

complete foreach method is ∑
=

+Ο
rv

i
mirim ccv

1

)*(lg .

If we use the Invariant Analysis during the rewriting rule creation, and the algorithm
detects that at least one of the constraints in the rewriting rule contradicts to a constraint
in the metamodel, then the algorithm marks the rewriting rule which interferes the
execution of the rule, because it would be unsuccessful and therefore the saved
computational time is IA

k
IA CnSC −≥ . SCIA denotes the saved computational time using

IA, nk is the complexity of the matching process (where n is the number of the host graph
nodes, and k is the number of nodes in the matched subgraph) and CIA is the
computational complexity of the IA.

Proposition 2.
a) The computational complexity of the Invariant Analysis algorithm

is ∑
=

+Ο+Ο
rv

i
mirimr ccvv

1
)*(lg)(lg .

b) The computational time which we can save using the Invariant Analysis algorithm
is IA

k
IA CnSC −≥ .

The saved computational time presented here stands only for the first time of rule firing,
because we can assume that after the warning the rule creator will correct the wrong
constraint. If the constraint is not fixed then the execution of the rule is interfered and the
saved computational time is nk at every try to fire the rule.

The Persistent Analysis (PA) Algorithm

The PA algorithm checks the constraints continuously during the matching process. As it
has already been mentioned before, every constraint in the rewriting rule has a property
IsAlreadyChecked, this property is false at the beginning of the matching (except if the IA
algorithm changed it to true). If PA algorithm has all information to validate a constraint
(precondition) then checks it, and if holds then sets the IsAlreadyChecked property of the
constraint to true, otherwise if the constraint does not hold, the step fails. After the
matching process starts the rewriting, the first step of this process is the validation of all
the preconditions in the match, but in fact the algorithm has to check only the constraints
with false IsAlreadyChecked value. This method accelerates the whole algorithm,
because if it is revealed in the matching phase that one of the preconditions does not hold,
then we can leave the current branch, backtrack and continue the matching from another

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 117

position. This saves the computational time of finishing the matching at the given
position and the time having elapsed between the start of the rewriting and finding the
contradiction.

The computational complexity of the constraint validation during the matching

process is at most ∑
=

+Ο
k

i
iri cc

1

, where k is the number of nodes in the matched subgraph,

cri is the number of the constraints contained by the rule node, which is matched to the ith
host graph node, and ci is the number of constraints contained by the type node of the ith
matched host graph node. The expression ‘at most’ in the previous sentence refers to the
worst case: the algorithm does not find a contradiction, and has to validate all constraints,
otherwise if it finds an unsatisfied constraint then it does not have to continue the
constraint validation, and the computational complexity is less. In this algorithm we can
also assume the case that the host graph instantiates its metamodel, and in this case the

computational complexity is ∑
=

Ο
k

i
ric

1

. While each rule node contains constant number of

constraint, the computational complexity in fact is O(k). The saved computational time
depends on the time, when the algorithm finds the first not satisfied constraint. If all
preconditions are satisfied, the algorithm does not find a contradiction, and the saved
computational time comes only from the fact that the constraint evaluation is faster
during the matching because the host nodes are directly available. If there is at least one
unsatisfied constraint then the saved computational complexity is the complexity of the
unexecuted part of the matching algorithm. If we find a contradiction at the beginning,
the saved computational complexity is near nk.

Proposition 3.
a) The computational complexity of the constraint validation during the matching

process (PA algorithm) is at most O(k), where k is the number of nodes in the
matched subgraph.

b) The PA algorithm does not increase the total time of the rule firing, and using the
PA algorithm the saved computational time is rkn − – if the algorithm finds an
unsatisfied constraint, while validates the constraints on the rth matched host
graph node.

The Optimized Rule Constraint Validator (ORCV) Algorithm

The RCV algorithm validates constraints after the matches are found, the optimization
take advantage that it is possible to validate certain constraints during the matching
process. The ORCV algorithm completes RCV algorithm with PA algorithm which
results a more powerful constraint validation algorithm.

Proposition 4. The computational complexity of ORCV algorithm never exceeds the
computational complexity of RCV algorithm (The computational complexity of ORCV
algorithm only in the worst case reaches the computational complexity of RCV
algorithm):

CONSTRAINT VALIDATION IN MODEL COMPILERS

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

a) RCVORCV CC = (The computational complexity of ORCV algorithm equals with the
computational complexity of RCV algorithm), if PA algorithm can not validate
any constraint during the matching process.

b) The computational complexity of ORCV algorithm is less at least vp lg* than the
computational complexity of RCV algorithm, if the PA algorithm can validate p
constraints during the matching process and all of the constraints are satisfied. In
this case the saved computational time is vpSCORCV lg*≥ .
The saved computational time comes from the fact that the nodes on which the
algorithm has to validate the constraints are available during the matching
process. (The formula contains the ≥ operator because if the constraints contain
navigation steps and the host graph nodes, which are part of the navigation path,
are already matched then they are directly available.)

c) The computational complexity of ORCV algorithm is less at least rkn − than the
computational complexity of RCV algorithm, if PA algorithm finds an unsatisfied
constraint, while validates the constraints on the rth matched host graph node.
(The formula contains the ≥ operator, because if the algorithm finds a
contradiction, the saved computational time also contains the complexity of the
unexecuted part of the rewriting algorithm.)

Where CORCV is the computational complexity of ORCV algorithm and CRCV is the
computational complexity of RCV algorithm. p denotes the number of the validated
constraints by PA in the case when all the checked constraints are satisfied, v is the
number of the nodes in the host graph (lg v is the complexity of querying a host graph
node). SCORCV is the saved computational time using ORCV algorithm and rkn − is the
saved computational time if PA algorithm finds an unsatisfied constraint while validates
the constraints on the rth matched host graph node.

4 A CASE STUDY

Using a case study we introduce how VMTS generates the user interface handler code
based on the statechart model for a form designed with a Form Editor; and the
programmer needs to write the application specific parts only. The goal of this method is
that if the statechart is specified in detail, then the generated code will handle the user
interface of the system described by the statechart model.

In Fig. 5 a screenshot of VMTS Constraint Editor for Pattern Rule Node form is
presented, its operation is modeled with a statechart diagram (Fig. 6). The user interface
edition of the Constraint Editor for Pattern Rule Node form is accomplished with form
designer of the Visual Studio.NET, but the handler code is automatically generated from
the statechart model.

In VMTS it is possible to assign constraints to a selected rule node or to a
transformation which consists of several transformation steps. In the prior case we use the
Constraint Editor for Pattern Rule Node form for constraint specification. When the form

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 119

appears with an empty list box Constraints (lbConstraints), buttons New (btnNew) and
Cancel (btnCancel) are enabled and the rest of the controls are disabled. User can create
new constraint with button New or exit with button Cancel. Clicking on button New the
name of the newly created constraint appears in list box Constraints, the controls which
contains the properties of the constraints become enabled, the constraint name appears in
the text box Constraint name (txtConstraintName), and buttons Remove (btnRemove) and
OK (btnOK) become enabled. In this state the user can specify the constraint properties:
the transformation step (cmbRule), LHS and RHS rule nodes (cmbLHSNode and
cmbRHSNode), the type of the constraint (rdbValidate, rdbPreserve, rdbGuarantee), the
stereotype (cmbStereotype) and the text of the constraint (txtActual). If the user makes
some modification, then buttons Apply (btnApply) and Undo (btnUndo) become enabled.
Using Apply the user can accept, or using Undo reject the changes. If the user makes
some modifications, does not apply them and tries to create new constraint or select
another one from the list box Constraints, then the form shows a message box with the
following question: “Do you want to save your changes?”, on the message box there are
buttons Yes, No and Cancel, and user can decide how to continue the constraint
specification.

Fig. 5: Constraint Editor for Pattern Rule Node form of the VMTS

The incomplete statechart diagram of form Constraint Editor for Pattern Rule Node is
presented in Fig. 6, where only three events are modeled:
txtConstraintName_TextChanged, btnApply_Click and

CONSTRAINT VALIDATION IN MODEL COMPILERS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

lbConstraints_SelectedIndexChanged. The complete statechart diagram is too large to
present here but it can be accessed in [VMTS].

In Fig. 6 one can see that every event has at least one handler state. E.g. if the
On_btnApply_Click event is fired then the btnApply_Click state handles it. The
On_lbConstraints_SelectedIndexChanged event is managed by four states:
lbConstraints_SelectedIndexChanged, lbConstraintsCount1, lbConstraintsCount2, and
After_lbConstraintsCount. This event handler is decomposed because the handling code
depends on the value of the lbConstraints.SelectedItems.Count property.

Fig. 6: Statechart model of the Constraint Editor for Pattern Rule Node form

The case study uses the statechart model (Fig. 6) as input model and applies a rewriting
rule (Fig. 7) for it. In the rewriting rule (Fig. 7) the metamodel of LHS is the Statechart
metamodel [OMG UML] [VMTS] and the metamodel of RHS is the CodeDOM
metamodel [.NET] [VMTS]. On LHS of the rewriting rule there are two states whose
meta type is statechart state, and there is a transition between them with a 0..*
multiplicity on the side of the target state. It means that exhaustively applying this
rewriting rule for a statechart model, it will match all states with their target adjacent
states. The rule has to match the accessible adjacent states, because we need them to
generate the state-transitions into the source code. Of course it is possible that a state has
no outgoing transition, and the reason why we enable the 0 in the multiplicity is that we
want to match states having only incoming transitions to generate CodeDOM tree for
them. On RHS of the rewriting rule the CTypeDeclaration represents a type declaration
for a class, structure, interface or enumeration. CMemberField can be used to denote the

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

declaration for a field of a type, and CMemberMethod to phrase the declaration for a
method. CParameter represents a parameter declaration for a method, property, or
constructor, and CSnippetStatement means a statement using a literal code fragment. The
code generation is a syntax tree generation (CodeDOM tree) from which the framework
generates the C# source code.

Fig. 7: Rewriting rule of the case study

In a rewriting rule we can connect LHS elements to RHS elements, this relation between
LHS and RHS elements is called internal causality [Karsai03], which facilitates to assign
an operation to this connection. Causalities can express modification or removal of an
LHS element, and creation of an RHS element. In Fig. 7 the causalities are denoted as
dashed lines. The create operation and attribute transformation, which is one of the most
important part of the rewriting process, are accomplished by XSLT scripts. The XSLT
scripts can access the attributes of the object matched to LHS elements, and produce a set
of attributes for RHS element which the causality point to. VMTS stores models as
labeled graphs, every node and edge has a property XML, which contains the attributes of
the model element. In the case of current case study the VMTS rewriting engine
concatenates the property XML of the matched states and transitions and uses the result
as the input of the XSLT script.

Constraint Validation

To fully specify models and rewriting rules we assign constraints to model elements and
to the steps accomplished by generators. With the help of these constraints we get precise
and consistent models and transformation steps. In VMTS the principle of the constraint
validation is the relation between the pre- and postconditions and the OCL constraints
assigned to the rewriting rules.

In .NET when we initialize the controls e.g. change the Text value of a text box then
it is passed a TextChanged event, or set the SelectedIndex property of a combo box then it
gets a SelectedIndexChanged event. This behavior of the controls affects the operation of
the form in an inappropriate way. An example for it in the case study is when the user
selects an item in list box Constraints, the form has to show the properties of the selected
constraint, hence it has to change the Text value of text box Constraint name, the

CONSTRAINT VALIDATION IN MODEL COMPILERS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

SelectedIndex value of the Stereotype combo box and so on. The result of these
operations is that buttons Apply and Undo become enabled, but during the initialization
we do not want it, because it is not a real property modification. We can eliminate this
undesirable functioning with a constraint:

context CMemberMethod inv handle_changes:
if self.Type = ‘EventHandler’ then self.Statements.Count > 0
and self.Statements[0].Value = ‘if (!m_bHandleChanges)
return;‘

This invariant constraint describes that if the type of an CMemberMethod object is
EventHandler, it should have more than zero Statement, and the value of the first
statement should be ‘if (!m_bHandleChanges) return;’. A snippet statement is a code
fragment, and this statement guarantees that event handler functions do not handle the
events in that case if the value of m_bHandleChanges variable is false.

The C# source code of the lbConstraints_SelectedIndexChanged event handler
method which is generated based on the statechart diagram (Fig. 6) is as follows:

private void lbConstraints_SelectedIndexChanged(object sender,
System.EventArgs e)
{
 if (!bHandleChanges) return;
 bHandleChanges = false;
 if (bModified) displayMessageBox();
 btnApply.Enabled = false;
 btnUndo.Enabled = false;
 if (lbConstraints.SelectedItems.Count > 0)
 {
 btnRemove.Enabled = true;
 grpActualConstraint.Enabled = true;
 showSelectedConstraint(lbConstraints.SelectedItem);
 }
 if (lbConstraints.SelectedItems.Count == 0)
 {
 btnRemove.Enabled = false;
 txtConstraintName.Text = "";
 txtActual.Lines = new string[0];
 grpActualConstraint.Enabled = false;
 }
 bHandleChanges = true;
}

In VMTS it is required that all constraint has a name, therefore if one would like to apply
the changes, we have to validate that the length of the constraint name is more than 0.
Therefore, if the value of the txtConstraintName.Text.Length property is 0, we have to
prevent the save of the modifications until the user does not fill in the Constraint name
text box. The constraint which describes this condition is the following:

context CMemberMethod inv name_length:

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 123

if self.Name = ‘btnApply_Click’ then self.Statements.Count > 1
and self.Statements[1].Value = ‘if
(txtConstraintName.Text.Length == 0) return;‘

The generated C# source code of the btnApply_Click method is as follows:
private void btnApply_Click(object sender, System.EventArgs e)
{
 if (!bHandleChanges) return;
 if (txtConstraintName.Text.Length == 0) return;
 applyChanges((string)lbConstraints.SelectedItem, false);
 btnOK.Enabled = true;
}

When we generate source code from a statechart model, in the generated source code
usually there is a function for every state, which implements the behavior of the state
(transitions and internal transitions as well). In the form-based, event-driven development
the event handler methods of the controls provides the operation of the forms. Therefore
the goal of the case study is to generate the skeleton of the user interface handler code;
VMTS generates that part of the event handler methods for which it has enough
information in the statechart diagram. E.g. based on the incoming and outgoing
transitions and their conditions the generator can produce a complete event handler
function from several model states. An example for it in the case study is the
lbConstraints_SelectedIndexChanged event handler method which is generated from four
states and it’s if branches are generated from the transition conditions. Furthermore the
transformation generates the code fragments recommended by the constraints; a part of
this code can be assertion code. An assertion checks a condition and displays a message if
the condition is false, assertions support the testing procedure and contribute to the
correct operation.

Based on the presented principles, the whole process of the case study is the
following: OCL Compiler generates the constraints validation binary, the matching
process searches topological matches in the statechart model (host graph), the Validation
Module uses the validation binary, and it checks LHS graph containing constraints
(preconditions) continuously at matching time. If and only if a match satisfies the
preconditions, the rewriting process with the help of a user defined XSLT script generates
the rewriting result. The Validation Module checks RHS graph containing constraints
(postconditions) on the rewriting result. If and only if the rewriting result satisfies the
postconditions, the rewriting rule finished successfully.

5 CONCLUSIONS AND FUTURE WORK

Our metamodel-based specification of the rules allows assigning OCL constraints to the
rules, and they are able to express local constraints. However, it does not mean, that
validating them does not involve checking other model elements in the input model. OCL

CONSTRAINT VALIDATION IN MODEL COMPILERS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

constraints which are enlisted in the rewriting rules affect the instances of these rewriting
rules, to the matched and the replaced subgraphs.

We have shown how we can use the OCL constraints enlisted in the rewriting rules
to check validation, preservation and guarantee properties, or simply how to check
models with the help of metamodel-based graph rewriting during the rewriting process.

The main limitation of the constraint validation method is the local nature of the
rules. If one wants to specify a constraint for an element, it must be included in a
rewriting rule, or it must be referenced by the OCL traversal expressions assigned to the
rule elements.

One of the most important parts of the constraint checking method is that our
approach does not interpret the constraints; we generate source code and compile it to a
binary which validates the constraints contained by the metamodel and the rewriting rule.
This method facilitated to calculate precisely the complexity of the presented constraint
validation methods. Comparing the algorithmic results to other approaches, PROGRES
has language tools to support pre- and postconditions, but unfortunately its computational
complexity has not been published.

In this paper algorithms are provided to validate the graph-rewriting-based model
transformation with the help of the constraints contained by the rewriting rules. Invariant
Analysis algorithm is applicable for both LHS and RHS graph containing constraints,
while Persistent Analysis algorithm affects only the constraints in LHS graph
(preconditions of the transformation step). This work has discussed the computational
complexities of the presented algorithms and the computational time that we can save
during the model transformation using these algorithms.

Future work includes the design and implementation of branch conditions in rule
sequencing. With the help of branch conditions VMTS will support the branch during the
transformation using the constraints contained by RHS graph. The result of an RHS graph
containing constraint checking decides which transformation step is the following.
Furthermore the aspect-oriented constraint specifications in rewriting rules are currently
researched. This method will facilitate to create the rewriting rules and the constraints
separately, and using pointcuts to assign constraints to the rule nodes in the rewriting
rules. As a result the rewriting rules will not contain numerous constraints which make
them more tangled, constraints will be reusable several times and their modification will
be simpler.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 125

ACKNOWLEDGEMENTS

The activities described in this paper supported, in part, by Information Technology
Innovation and Knowledge Centre.

REFERENCES

[Akehurst03] D. Akehurst, O. Patrascoiu: “OCL 2.0 - Implementing the Standard for
Multiple Metamodels”, Workshop Proceedings, 6th International Conference
on the Unified Modeling Language and its Applications, <<UML>>2003,
Electronic Notes in Theoretical Computer Science (ENTCS), October 2003.

[Blostein95] D. Blostein, H. Fahmy, A. Grbavec: “Practical Use of Graph Rewriting”,
Technical Report No. 95-373, Department of Computing and Information
Science, Queen’s University, Kingston, Ontario, Canada, January, 1995.

[Czarnecki00] K. Czarnecki et al.: “Generative programming: methods, tools, and
applications”, Addison-Wesley, 2000.

[Ehrig97] H. Ehrig (ed.): “Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations”, Vol. 2. World Scientific, Singapore, 1997.

[Hamie98] A. Hamie, J. Howse, S. Kent: “Interpreting the Object Constraint Language”,
Proceedings 5th Asia Pacific Software Engineering Conference (APSEC '98),
December 2-4, 1998, Taipei, Taiwan, 1998.

[Karsai03] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle: “On the Use of Graph
Transformations for the Formal Specification of Model Interpreters”, Journal
of Universal Computer Science, Special issue on Formal Specification of
CBS, 2003.

[Lengyel05a] L. Lengyel, T. Levendovszky, P. Kozma, H. Charaf: “Compiling and
validating OCL constraints in metamodeling environments and visual model
compilers”, IASTED on SE, Feb. 15-17, 2005, Innsbruck, Austria, pp. 48-54.

[Lengyel05b] L. Lengyel, T. Levendovszky, H. Charaf: “Implementing an OCL Compiler
for .NET”, In Proceedings of the 3rd International Conference on .NET
Technologies, Pilsen, Czech Republic, May-June 2005, pp. 121-130.

[Levendovszky04a] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf: “A Systematic
Approach to Metamodeling Environments and Model Transformation
Systems in VMTS”, International Workshop on Graph-Based Tools
(GraBaTs) Electronic Notes in Theoretical Computer Science, Rome, 2004

CONSTRAINT VALIDATION IN MODEL COMPILERS

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

[Levendovszky04b] T. Levendovszky, L. Lengyel, H. Charaf: “Implementing a
Metamodel-Based Model Transformation System”, Buletinul Stiintific al
Universitatii “Politehnica” din Timisoara, Romania Seria Automatica si
Calculatoare Periodica Politechnica, Transactions on Automatic Control and
Computer Science Vol.49 (63), 2004, ISSN 1224-600X.

[Levendovszky04c] T. Levendovszky, L. Lengyel, H. Charaf: “Software Composition
with a Multipurpose Modeling and Model Transformation Framework”,
IASTED 2004, Innsbruck, 2004, pp.590-594

[Levendovszky05] T. Levendovszky, H. Charaf: “Pattern Matching in Metamodel-Based
Model Transformation Systems”, submitted to Periodica Polytechnica
Electrical Engineering, ISSN 0324-6000

[Loecher03] S. Loecher, S. Ocke: “A Metamodel-Based OCL-Compiler for UML and
MOF. In OCL 2.0 - Industry standard or scientific playground”, Workshop
Proceedings, 6th International Conference on the Unified Modeling
Language and its Applications, <<UML>>2003, ENTCS, October 2003

[Meyer88] B. Meyer: “Object-Oriented Software Construction”, Prentice Hall, New
York, 1988

[.NET] Microsoft .NET Framework http://msdn.microsoft.com/netframework/

[OMG MDA] MDA Guide Version 1.0.1, OMG, doc. number: omg/2003-06-01, June
2003 www.omg.org/docs/omg/03-06-01.pdf

[OMG OCL] Object Constraint Language Specification (OCL), www.omg.org

[OMG UML] UML 2.0 Specifications, http://www.omg.org/uml/

[PROGRES] PROGRES system can be downloaded from http://www-i3.informatik.rwth-
aachen.de/research/projects/progres/main.html

[Rozenberg97] G. Rozenberg (ed.): “Handbook on Graph Grammars and Computing by
Graph Transformation: Foundations”, Vol.1 World Scientific, Singapore,
1997

[VMTS] VMTS Web Site, http://avalon.aut.bme.hu/~tihamer/research/vmts/

About the authors
László Lengyel is Ph.D student at Department of Automation and
Applied Informatics of the Technical University of Budapest. His
research field is Metamodeling, Graph rewriting-based software model
transformation, Model-driven development, Constraint validation,
Validated model transformation and Aspect-oriented techniques. E-
Mail: lengyel@aut.bme.hu

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 127

Tihamér Levendovszky received his Ph.D degree in 2006. He is
Professor Assistant at Department of Automation and Applied
Informatics of the Technical University of Budapest. His research field
is Metamodeling, Software modeling and design, Software model
transformation, Generative and extreme programming. E-Mail:
tihamer@aut.bme.hu
Hassan Charaf received his Ph.D degree in 1998. He is Associate
Professor at Department of Automation and Applied Informatics of the
Technical University of Budapest. His research field is Software
engineering, Distributed systems, Identification and control of nonlinear
systems using neural networks. E-Mail: hassan@aut.bme.hu

