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Abstract 
Model transformation has become one of the most focused research field, motivated by 
for instance the OMG’s Model-Driven Architecture (MDA). Metamodeling is a central 
technique in the design of visual languages, and it reuses existing domains by 
extending the metamodel level. Metamodel-based software development requires the 
transformation of the models between various stages. These transformation steps must 
be formally and precisely specified, which can be accomplished along with constraints 
enlisted in transformation steps. Our metamodel-based approach uses graph rewriting 
techniques for model transformation. This paper summarizes our results related to the   
metamodel-based constraint validation during the model transformation. This work 
presents the Rule Constraint Validator (RCV) algorithm, the Invariant Analysis (IA) 
algorithm, the Persistent Analysis (PA) algorithm and the combination of the RCV and 
PA algorithms which results the Optimized Rule Constraint Validator (ORCV) algorithm. 
An illustrative case study for constraint validation in rewriting rules is also provided. 

1 INTRODUCTION 

OMG’s Model Driven Architecture [OMG MDA] offers a standardized framework to 
separate the essential, platform independent information from the platform dependent 
constructs and assumptions. A complete MDA application consists of a definitive 
platform-independent model (PIM), and one or more platform-specific models (PSM) and 
complete implementations, one on each platform that the application developer decides to 
support. The platform-independent artifacts are mainly UML models containing enough 
specification to generate the platform dependent artifacts automatically by so-called 
model compilers. Hence software model transformation provides a basis for model 
compilers, which plays central role in the MDA architecture. 

Model transformation means converting an input model that is available at the 
beginning of the transformation process to an output model, and it is a possible solution 
for model compiler realization. Model compilers can support properties to guarantee, 
preserve or validate them, and the presented approach is a practical application of these 
mechanisms. 
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Models can be considered special graphs; simply contain nodes and edges between 
them. This mathematical background makes possible to treat models as labeled graphs 
and to apply graph transformation algorithms to models using graph rewriting 
[Levendovszky04a] [Levendovszky04b]. The steps of graph transformation are rewriting 
rules, each rewriting rule consists of a left-hand side graph (LHS) and right-hand side 
graph (RHS). Previous work [Levendovszky04a] has introduced an approach, where LHS 
and RHS of the rules are built from metamodel elements It means that an instantiation of 
LHS must be found in the graph to which the rule is applied to (host graph) instead of the 
isomorphic subgraph of the LHS. Hence LHS and RHS graphs are the metamodels of the 
graphs which we search and replace in the host graph. 

Often it is not enough to match graphs based on the topological information only, we 
want to restrict the desired match by other properties, e.g. we want to match a subgraph 
with a node which has a special property or there is a unique relation between the 
properties of the matched nodes. For example we want to match a node with a special 
integer type property which value is between 3 and 7. The metamodel-based specification 
of the rules allows assigning OCL [OMG OCL] constraints to the rules, using the 
guidelines of the UML standard [OMG UML]. Because these constraints are bound to the 
rules, they are able to express constraints local to the host graph area affected by the 
rules. This approach is inherently a local construct, because the elements not appearing in 
LHS or RHS cannot be directly included in the OCL statements. Although the 
specification has this local nature, it does not mean that validating them does not involve 
checking other model elements in the input model: constraint propagation needs to be 
taken into account by both the algorithms and the user of the transformation on 
specifying constraints. The OCL constraints which are enlisted in LHS and RHS graphs 
affect the matched instances of LHS and RHS graphs. A transformation and a finite 
sequence of steps consist of n number of rewriting rules (where n > 0) in an ordered 
sequence. This sequence defines the execution order of the containing rewriting rules. 
The difference between a transformation and a finite sequence of steps is that a finite 
sequence of steps always terminates. A transformation, however, can contain infinite 
number of steps. 

Constraints (pre- and postconditions) facilitates to specify precisely the execution of 
the transformation steps and the whole transformation. Using constraints, we can specify 
the conditions of step firing and the required outputs. 

If a transformation contains steps specified properly with the help of constraints, and 
the transformation has been executed successfully for the input model, then the generated 
output model is in accordance with the expected result, which is described by the steps of 
the transformation refined with the constraints. It means that the modeler’s task is to 
create proper transformation steps and fully specify them with constraints (pre- and 
postconditions) then if the execution of the transformation finishes successfully, it 
produces a valid result. A sample transformation step is presented in Fig. 1. 

This work discusses new results, experiences and consequences evolved from the 
implementation and further conceptual development of constraint validation and 
application in a metamodel-based model transformation system. Our base algorithm is 
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called Rule Constraint Validator (RCV) algorithm, which firstly finds the matches in the 
graph to which the rewriting rule is being applied, and having found the matches, it 
checks the constraints contained by the rewriting rule. If all of the preconditions are 
satisfied, the algorithm fires the transformation step. The aim of the work presented here 
was to analyze the possibilities of the acceleration and the optimization of the RCV 
algorithm. The main idea of the optimization is that the constraint validation is performed 
before and during the matching process and not after the matching. This early constraint 
validation accelerates the whole transformation process, since with the help of this 
method it is discovered earlier whether there is no proper match in a given position 
because of constraint contradiction. This work presents the Invariant Analysis (IA) 
algorithm which examines the constraints in the rewriting rule against the metamodel, 
and the Persistent Analysis (PA) algorithm which executes the constraint validation in the 
matching time. The paper analyses the computational complexity of the algorithms and 
the computational time that we can save using them. 

 

Fig. 1: Sample transformation step: (a) LHS of the transformation step, (b) RHS of the transformation step, 
and lhs_C1, lhs_C2, rhs_C1, rhs_C2 are the constraints (pre- and postconditions) assigned to the rule nodes 

 

The rest of the paper is organized as follows: Section 2 describes the backgrounds and the 
related work, Section 3 (i) introduces the Visual Modeling and Transformation System 
(VMTS) [VMTS], which is our implemented metamodel-based transformation system, 
(ii) presents the RCV algorithm, (iii) provides the optimization possibilities (IA, PA, 
ORCV algorithms) and (iv) discusses the computational complexity of the presented 
algorithms. In Section 4 a case study illustrates the constraint checking facilities of the 
presented method, and in Section 5 conclusions are drawn and future work is presented. 

2 BACKGROUNDS AND RELATED WORK 

The purpose of contracts [Meyer88] is to help to build better software by organizing the 
communication between software elements through specifying the mutual obligations. 
Contracts are used to guarantee that these communications occur on the basis of precise 
specifications of what these services are going to be. For the software to be able to 
guarantee any kind of correctness and robustness properties, they must know the precise 
constraints over such communications. In a client/supplier relationship, where the client 
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needs a certain service and the supplier provides that service, the client has to fulfill 
certain obligations before calls the supplier. These preconditions are obligations for the 
client. In the other direction, we are going to express the conditions that the supplier 
routine must guarantee to the client on completion of the supplier's task. That is the 
postcondition of the contract, specifically, the postcondition of that particular routine. 
The postcondition is also an obligation for the supplier. Besides pre- and postconditions 
the third fundamental elements of contracts are invariants. A class invariant is a condition 
that applies to an entire class. It describes a consistency property that every instance of 
the class must satisfy. 

The Object Constraint Language [OMG OCL] is a formal language for analysis and 
design of software systems. It is a subset of the industry standard Unified Modeling 
Language [OMG UML] that allows software developers to write constraints and queries 
over object models. A constraint is a restriction on one or more values of an object-
oriented model or system. There are four types of constraints: (i) An invariant is a 
constraint that states a condition that must always be met by all instances of the class, 
type, or interface. (ii) A precondition to an operation is a restriction that must be true at 
the moment that the operation is going to be executed. The obligations are specified by 
postconditions. (iii) A postcondition to an operation is a restriction that must be true at 
the moment that the operation has just ended its execution. (iv) A guard is a constraint 
that must be true before a state transition fires. Besides these applications, OCL can be 
used as a navigation language as well. 

Graph rewriting [Rozenberg97] [Ehrig97] [Blostein95] is a powerful tool for graph 
transformation with strong mathematical background. The atoms of graph transformation 
are rewriting rules, each rewriting rule consists of a left-hand side graph (LHS) and right-
hand side graph (RHS). Applying a graph rewriting rule means finding an isomorphic 
occurrence (match) of LHS in the graph to which the rule is being applied (host graph), 
and replacing this subgraph with RHS. Replacing means removing elements which are in 
LHS but not in RHS, and gluing elements which are in RHS but not in LHS. Replacing 
process consists of two steps: removing and gluing, this approach is the so-called double 
pushout (DPO) [Rozenberg97]. 

The metamodel-based constraint checking method presented later benefits from the 
results of the mathematical background of formal languages, graph rewriting and research 
related to the metamodel-based software model transformation. It also incorporates 
several ideas from other existing environments [Akehurst03], [Hamie98] [Loecher03], 
which implement the OCL, and enable constraints to be checked over models. 

The GReAT framework [Karsai03] is a transformation system for domain specific 
languages (DSL), it is built on metamodeling and graph rewriting concepts; it uses a 
proprietary notation and interpretation instead of instantiation between the rules 
expressed with meta elements and the match. 

PROGRES [PROGRES] is a visual programming language in the sense that it has a 
graph-oriented data model and a graphical syntax for its most important language 
constructs. PROGRES supports pre- and postconditions. The precondition of a 
transaction is a query, which should never fail, being applied to the input graph of the 
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surrounding transaction. Similarly the postcondition of a transaction is a query, which 
should never fail, being applied to the output graph of the surrounding transaction.  

3 CONSTRAINT VALIDATION 

The Visual Modeling and Transformation System 

The block diagram of the Visual Modeling and Transformation System (VMTS) 
[Levendovszky04a] [VMTS] is depicted in Fig. 2. VMTS is an n-layer multipurpose 
modeling and metamodel-based transformation system. The user interface (Adaptive 
Modeler) are functionally separated from the model storage unit (AGSI Core - Attributed 
Graph Architecture Supporting Inheritance), which uses an RDBMS to store the model 
information. The model transformation can be accomplished by Traversing Model 
Processors [Levendovszky04b], Rewriting Engine and other applications. The AGSI Core 
exposes its interface to any other applications, which may use a proprietary technique to 
process AGSI data. 

 

Fig. 2: Block diagram of VMTS 
 

Using this environment it is easy to edit metamodels, design models according to 
their metamodels, transform models using graph rewriting [Levendovszky04a] 
[Levendovszky04c]. The Validation Module, which is a part of the AGSI Core facilitates 
to check constraints contained by metamodels during the metamodel instantiation, and to 
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validate the constraints in the rewriting rules during the graph transformation process 
[Lengyel05a]. 

A precondition (postcondition) assigned to a rewriting rule is a boolean expression 
that must be true at the moment when the rewriting rule is fired (after the completion of a 
rewriting rule). If a precondition of a rewriting rule is not true then the rewriting rule fails 
without being fired. If a postcondition of a rewriting rule is not true after the execution of 
the rewriting rule, the rewriting rule fails. A direct corollary of this is that an OCL 
expression in LHS is a precondition to the rewriting rule, and an OCL expression in RHS 
is a postcondition to the rewriting rule. A rewriting rule can be fired if and only if all the 
conditions enlisted in LHS are true. Also, if a rewriting rule finished successfully, then all 
the conditions enlisted in RHS must be true. There are three properties: validation, 
preservation, and guarantee, which are checked during the rewriting process 
[Lengyel05a]. 

The Rule Constraint Validator (RCV) Algorithm 

Fig. 3 presents a block diagram to illustrate how the RCV algorithm [Lengyel05a] of the 
VMTS checks the constraints contained by the rewriting rule during the rewriting 
process. Recall that LHS and RHS of the rewriting rules are built from the metamodel 
elements. It is possible in VMTS that LHS and RHS use different metamodels, but for the 
sake of simplicity in the block diagram they have common metamodel. The rewriting rule 
contains OCL constraints. VMTS does not interpret the constraints during the rewriting, 
but a binary is used, which is generated by an OCL Compiler [Lengyel05b]. The 
rewriting process uses matches found by the matching process and the compiled binary to 
validate the constraints on the matched parts of the host graph. If and only if a match 
satisfies the constraints (preconditions), then the rewriting process generates the rewriting 
result, and if and only if the rewriting result satisfies the postconditions, then the step was 
successful. In Fig. 3 the rewriting result is also an instance model of the metamodel, 
because LHS and RHS use the same metamodel. 

 

Fig. 3: The block diagram of the constraints checking during the rewriting process (RCV algorithm) 
 

Proposition 1. The computational complexity of the RCV algorithm for constraint 
checking is the following. 
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a) O(s) + O(lg vm) – once for a rewriting rule, and 
b) O(lg v) – for each rule firing. 

Where s is the number of the symbols in the OCL constraints, vm is the number of the 
metamodel vertices and v is the number of the host graph (model) vertices.  

The following pseudo codes illustrate the transformation execution 
(EXECUTE_TRANSFORMATION) and the constraint validation (CHECK_CONSTRAINTS). The 
EXECUTE_TRANSFORMATION method executes the rewriting rules contained by the given 
transformation on the passed match. If the rewriting rule has no generated validation 
binary, then it generates the validation code and binary based on the constraints contained 
by the rewriting rule. It means that for each rewriting rule this step has to be performed 
only for the first time. If a step has a precondition, the CHECK_CONSTRAINTS method is 
called, and if it returns false then the execution of the step and the whole finite sequence 
of steps fails, thus the algorithm returns false. Otherwise the EXECUTE_TRANSFORMATION 
method calls the FIRE_RULE function, and after that if the rule has a postcondition then 
the procedure is similar to that of the preconditions. The pseudo codes of the algorithm 
are as follows: 

EXECUTE_TRANSFORMATION (VMTSTransformation transformation, 
VMTSMatch match): bool 
  foreach VMTSRule rule of    
    transformation.getRulesInOrderedSequence() 
     if not rule.HasGeneratedValidationCode and not  
        GENERATE_VALIDATION_CODE(rule.Constraints)   
        then return false 
     if rule.hasPrecondition and not  
        (CHECK_CONSTRAINTS(rule.PreConditions, match))  
        then return false   
     FIRE_RULE(rule, match)  
     if rule.hasPostcondition and not    
       (CHECK_CONSTRAINTS(rule.PostConditions, match))  
        then return false   
  end foreach     
  return true  
 
CHECK_CONSTRAINTS (VMTSConstraint[] constraints, Hashtable 
match): bool 
  foreach VMTSConstraint constraint of constraints 
     destNode = NAVIGATE_TO_DESTNODE(constraint, match) 
     if not CHECK(constraint, destNode) then return false 
  end foreach  
  return true 
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The Invariant Analysis (IA) Algorithm 

We assume the case that all model conforms to its metamodel, every host graph satisfies 
its constraints defined in the metamodel. We can make that assumption without 
restricting the generality, because using metamodel-based tools the created models have 
to conform to their metamodels. Since a rewriting rule in VMTS is built from metamodel 
elements, we can apply a rewriting rule for a host graph if and only if the host graph and 
LHS of the rewriting rule have the same metamodel, or the metamodel of the host graph 
contains the metamodel of LHS graph. In other cases it is not possible to find match in 
host graph because LHS graph of the rewriting rule and the metamodel of the host graph 
contain different types. 

 
Fig. 4: Metamodel of the statechart diagram 

 

Invariant Analysis means the comparison of the constraints contained by the metamodel 
and the rewriting rule. The goal of the Invariant Analysis is to find out immediately after 
the rewriting rule creation if a constraint in the rewriting rule contradicts to a constraint in 
the metamodel. This is an earlier phase where we can explore whether there is any 
contradiction between the constraints. Invariant Analysis can modify the 
IsAlreadyChecked property of a constraint in the rewriting rule to true if it is follows from 
a constraint contained by the metamodel that the examined rewriting rule constraint holds 
in every case. The following constraints provide an example. Constraint from metamodel 
(in Fig. 4 is depicted the metamodel of the statechart diagram): 

context EndState inv InTransitions_metamodel: 
self.NumberOfInTransitions = 2 
 

Constraint from rewriting rule: 
context EndState inv InTransitions_rewriting_rule: 
 self.NumberOfInTransitions >= 1 and  

self.NumberOfInTransitions <= 3 
 

Invariant Analysis is an offline validation; it is not possible to validate pre- and 
postconditions offline, but we can check those constraints which use only type and not 
instance-specific properties. 
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After the creation of a rewriting rule the rule is modified only few times, but it is 
fired optional times. IA is independent from the rule firing; it runs only few times for a 
rewriting rule, immediately after the rule creation and modification, therefore the 
complexity of the IA does not increase the complexity of the transformation process. 

To summarize the Invariant Analysis compares the constraints contained by the 
metamodel and the rewriting rules, and decides which constraints in the rewriting rule 
will be certainly proper and which not. The pseudo code of the algorithm is as follows: 

INVARIANT_ANALYSIS (int ruleID, out 
VMTSConstraintContradictionList contradictionList): bool 

VMTSRuleNode[] ruleNodes = getRuleNodesByRuleID(ruleID) 
foreach VMTSRuleNode ruleNode in ruleNodes 
   VMTSNode typeNode = getMetaNodeByID(ruleNode.TypeID) 
   VMTSConstraintContradictionList currentContradictionList  
     = COMPARE_CONSTRAINTS(ruleNode.Constraints,  
     typeNode.Constraints) 
   if currentContradictionList != null then  
     contradictionList.Add(currentContradictionList) 
end foreach 
if contradictionList.Count > 0 then return false 
else return true 
 

The INVARIANT_ANALYSIS method queries the rule nodes contained by the rewriting rule 
based on the given ruleID. This method affects the rule nodes contained by both the LHS 
and the RHS graph. In the foreach loop the algorithm queries the metamodel node 
(typeNode) by the typeID of the actual rule node and calls the COMPARE_CONSTRAINTS 
method with the rule node and the constraints contained by the typeNode. The 
COMPARE_CONSTRAINTS method compares the passed constraints, and returns the 
contradictions if any. If there are returned contradictions between the constraints 
contained by the metamodel and the rewriting rule, then the algorithm places them into 
the contradictionList, which is an output parameter. The return value of the 
INVARIANT_ANALYSIS is false if there was at least one contradiction, true otherwise. 

In AGSI Core the data is stored in datasets, which are an in-memory cache of the 
data retrieved from the database. There is a dataset for the actually used metamodel, one 
for the actually used model, and one for the actually used transformation. These datasets 
contain only two data tables: one for nodes and one for edges. We denote the number of 
the actual transformation (metamodel, model) nodes with vr (vm, v) and the edges with er 
(em, e). It means that the data tables containing the actual transformation (rewriting rules) 
nodes and edges have vr and er data rows. The complexity of finding a row in a data table 
is O(lg n), where n is the number of the rows. In AGSI Core there are a Facade and a 
Manager layers which means O(4) steps to move the objects through these layers. 
Therefore the complexity to query a VMTSRuleNode or a VMTSRuleEdge from the 
dataset of the actual transformation is O(4) + O(lg vr) = O(lg vr) and O(lg er) steps. 
Similarly to obtain a metamodel (model) node or edge means O(lg vm) and O(lg em) (O(lg 
v) and O(lg e)) steps. 
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The complexity of the getRuleNodesByRuleID method is O(lg vr) and the complexity 
of the getMetaNodeByID method is O(lg vm). The foreach loop runs for each rewriting 
rule node. The complexity of the COMPARE_CONSTRAINTS method depends on the 
number of the constraints contained by the passed rule node and the metamodel node. Let 
cri be the number of the constraints contained by the ith passed rule node and cmi the 
number of the constraints contained by the metamodel node of the same type. The 
algorithm needs )*( miri ccΟ time to compare the constraints contained by the ith rule node 
with the corresponding constraints in the metamodel node. The complexity of the 

complete foreach method is ∑
=

+Ο
rv

i
mirim ccv

1

)*(lg . 

If we use the Invariant Analysis during the rewriting rule creation, and the algorithm 
detects that at least one of the constraints in the rewriting rule contradicts to a constraint 
in the metamodel, then the algorithm marks the rewriting rule which interferes the 
execution of the rule, because it would be unsuccessful and therefore the saved 
computational time is IA

k
IA CnSC −≥ . SCIA denotes the saved computational time using 

IA, nk is the complexity of the matching process (where n is the number of the host graph 
nodes, and k is the number of nodes in the matched subgraph) and CIA is the 
computational complexity of the IA. 

Proposition 2. 
a) The computational complexity of the Invariant Analysis algorithm 

is ∑
=

+Ο+Ο
rv

i
mirimr ccvv

1
)*(lg)(lg . 

b) The computational time which we can save using the Invariant Analysis algorithm 
is IA

k
IA CnSC −≥ . 

The saved computational time presented here stands only for the first time of rule firing, 
because we can assume that after the warning the rule creator will correct the wrong 
constraint. If the constraint is not fixed then the execution of the rule is interfered and the 
saved computational time is nk at every try to fire the rule. 

The Persistent Analysis (PA) Algorithm 

The PA algorithm checks the constraints continuously during the matching process. As it 
has already been mentioned before, every constraint in the rewriting rule has a property 
IsAlreadyChecked, this property is false at the beginning of the matching (except if the IA 
algorithm changed it to true). If PA algorithm has all information to validate a constraint 
(precondition) then checks it, and if holds then sets the IsAlreadyChecked property of the 
constraint to true, otherwise if the constraint does not hold, the step fails. After the 
matching process starts the rewriting, the first step of this process is the validation of all 
the preconditions in the match, but in fact the algorithm has to check only the constraints 
with false IsAlreadyChecked value. This method accelerates the whole algorithm, 
because if it is revealed in the matching phase that one of the preconditions does not hold, 
then we can leave the current branch, backtrack and continue the matching from another 
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position. This saves the computational time of finishing the matching at the given 
position and the time having elapsed between the start of the rewriting and finding the 
contradiction. 

The computational complexity of the constraint validation during the matching 

process is at most ∑
=

+Ο
k

i
iri cc

1

, where k is the number of nodes in the matched subgraph, 

cri is the number of the constraints contained by the rule node, which is matched to the ith 
host graph node, and ci is the number of constraints contained by the type node of the ith 
matched host graph node. The expression ‘at most’ in the previous sentence refers to the 
worst case: the algorithm does not find a contradiction, and has to validate all constraints, 
otherwise if it finds an unsatisfied constraint then it does not have to continue the 
constraint validation, and the computational complexity is less. In this algorithm we can 
also assume the case that the host graph instantiates its metamodel, and in this case the 

computational complexity is ∑
=

Ο
k

i
ric

1

. While each rule node contains constant number of 

constraint, the computational complexity in fact is O(k). The saved computational time 
depends on the time, when the algorithm finds the first not satisfied constraint. If all 
preconditions are satisfied, the algorithm does not find a contradiction, and the saved 
computational time comes only from the fact that the constraint evaluation is faster 
during the matching because the host nodes are directly available. If there is at least one 
unsatisfied constraint then the saved computational complexity is the complexity of the 
unexecuted part of the matching algorithm. If we find a contradiction at the beginning, 
the saved computational complexity is near nk. 

Proposition 3. 
a) The computational complexity of the constraint validation during the matching 

process (PA algorithm) is at most O(k), where k is the number of nodes in the 
matched subgraph. 

b) The PA algorithm does not increase the total time of the rule firing, and using the 
PA algorithm the saved computational time is rkn − – if the algorithm finds an 
unsatisfied constraint, while validates the constraints on the rth matched host 
graph node. 

The Optimized Rule Constraint Validator (ORCV) Algorithm 

The RCV algorithm validates constraints after the matches are found, the optimization 
take advantage that it is possible to validate certain constraints during the matching 
process. The ORCV algorithm completes RCV algorithm with PA algorithm which 
results a more powerful constraint validation algorithm.  

Proposition 4. The computational complexity of ORCV algorithm never exceeds the 
computational complexity of RCV algorithm (The computational complexity of ORCV 
algorithm only in the worst case reaches the computational complexity of RCV 
algorithm):  
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a) RCVORCV CC =  (The computational complexity of ORCV algorithm equals with the 
computational complexity of RCV algorithm), if PA algorithm can not validate 
any constraint during the matching process. 

b) The computational complexity of ORCV algorithm is less at least vp lg*  than the 
computational complexity of RCV algorithm, if the PA algorithm can validate p 
constraints during the matching process and all of the constraints are satisfied. In 
this case the saved computational time is vpSCORCV lg*≥ . 
The saved computational time comes from the fact that the nodes on which the 
algorithm has to validate the constraints are available during the matching 
process. (The formula contains the ≥ operator because if the constraints contain 
navigation steps and the host graph nodes, which are part of the navigation path, 
are already matched then they are directly available.) 

c) The computational complexity of ORCV algorithm is less at least rkn −  than the 
computational complexity of RCV algorithm, if PA algorithm finds an unsatisfied 
constraint, while validates the constraints on the rth matched host graph node. 
(The formula contains the ≥ operator, because if the algorithm finds a 
contradiction, the saved computational time also contains the complexity of the 
unexecuted part of the rewriting algorithm.) 

Where CORCV is the computational complexity of ORCV algorithm and CRCV is the 
computational complexity of RCV algorithm. p denotes the number of the validated 
constraints by PA in the case when all the checked constraints are satisfied, v is the 
number of the nodes in the host graph (lg v is the complexity of querying a host graph 
node). SCORCV is the saved computational time using ORCV algorithm and rkn −  is the 
saved computational time if PA algorithm finds an unsatisfied constraint while validates 
the constraints on the rth matched host graph node. 

4 A CASE STUDY 

Using a case study we introduce how VMTS generates the user interface handler code 
based on the statechart model for a form designed with a Form Editor; and the 
programmer needs to write the application specific parts only. The goal of this method is 
that if the statechart is specified in detail, then the generated code will handle the user 
interface of the system described by the statechart model. 

In Fig. 5 a screenshot of VMTS Constraint Editor for Pattern Rule Node form is 
presented, its operation is modeled with a statechart diagram (Fig. 6). The user interface 
edition of the Constraint Editor for Pattern Rule Node form is accomplished with form 
designer of the Visual Studio.NET, but the handler code is automatically generated from 
the statechart model. 

In VMTS it is possible to assign constraints to a selected rule node or to a 
transformation which consists of several transformation steps. In the prior case we use the 
Constraint Editor for Pattern Rule Node form for constraint specification. When the form 



 
 
 
 
 
 

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 119 

appears with an empty list box Constraints (lbConstraints), buttons New (btnNew) and 
Cancel (btnCancel) are enabled and the rest of the controls are disabled. User can create 
new constraint with button New or exit with button Cancel. Clicking on button New the 
name of the newly created constraint appears in list box Constraints, the controls which 
contains the properties of the constraints become enabled, the constraint name appears in 
the text box Constraint name (txtConstraintName), and buttons Remove (btnRemove) and 
OK (btnOK) become enabled. In this state the user can specify the constraint properties: 
the transformation step (cmbRule), LHS and RHS rule nodes (cmbLHSNode and 
cmbRHSNode), the type of the constraint (rdbValidate, rdbPreserve, rdbGuarantee), the 
stereotype (cmbStereotype) and the text of the constraint (txtActual). If the user makes 
some modification, then buttons Apply (btnApply) and Undo (btnUndo) become enabled. 
Using Apply the user can accept, or using Undo reject the changes. If the user makes 
some modifications, does not apply them and tries to create new constraint or select 
another one from the list box Constraints, then the form shows a message box with the 
following question: “Do you want to save your changes?”, on the message box there are 
buttons Yes, No and Cancel, and user can decide how to continue the constraint 
specification. 

 

Fig. 5: Constraint Editor for Pattern Rule Node form of the VMTS 
 

The incomplete statechart diagram of form Constraint Editor for Pattern Rule Node is 
presented in Fig. 6, where only three events are modeled: 
txtConstraintName_TextChanged, btnApply_Click and 
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lbConstraints_SelectedIndexChanged. The complete statechart diagram is too large to 
present here but it can be accessed in [VMTS]. 

In Fig. 6 one can see that every event has at least one handler state. E.g. if the 
On_btnApply_Click event is fired then the btnApply_Click state handles it. The 
On_lbConstraints_SelectedIndexChanged event is managed by four states: 
lbConstraints_SelectedIndexChanged, lbConstraintsCount1, lbConstraintsCount2, and 
After_lbConstraintsCount. This event handler is decomposed because the handling code 
depends on the value of the lbConstraints.SelectedItems.Count property. 

 

Fig. 6: Statechart model of the Constraint Editor for Pattern Rule Node form 
 

The case study uses the statechart model (Fig. 6) as input model and applies a rewriting 
rule (Fig. 7) for it. In the rewriting rule (Fig. 7) the metamodel of LHS is the Statechart 
metamodel [OMG UML] [VMTS] and the metamodel of RHS is the CodeDOM 
metamodel [.NET] [VMTS]. On LHS of the rewriting rule there are two states whose 
meta type is statechart state, and there is a transition between them with a 0..* 
multiplicity on the side of the target state. It means that exhaustively applying this 
rewriting rule for a statechart model, it will match all states with their target adjacent 
states. The rule has to match the accessible adjacent states, because we need them to 
generate the state-transitions into the source code. Of course it is possible that a state has 
no outgoing transition, and the reason why we enable the 0 in the multiplicity is that we 
want to match states having only incoming transitions to generate CodeDOM tree for 
them. On RHS of the rewriting rule the CTypeDeclaration represents a type declaration 
for a class, structure, interface or enumeration. CMemberField can be used to denote the 
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declaration for a field of a type, and CMemberMethod to phrase the declaration for a 
method. CParameter represents a parameter declaration for a method, property, or 
constructor, and CSnippetStatement means a statement using a literal code fragment. The 
code generation is a syntax tree generation (CodeDOM tree) from which the framework 
generates the C# source code. 

 

Fig. 7: Rewriting rule of the case study 

In a rewriting rule we can connect LHS elements to RHS elements, this relation between 
LHS and RHS elements is called internal causality [Karsai03], which facilitates to assign 
an operation to this connection. Causalities can express modification or removal of an 
LHS element, and creation of an RHS element. In Fig. 7 the causalities are denoted as 
dashed lines. The create operation and attribute transformation, which is one of the most 
important part of the rewriting process, are accomplished by XSLT scripts. The XSLT 
scripts can access the attributes of the object matched to LHS elements, and produce a set 
of attributes for RHS element which the causality point to. VMTS stores models as 
labeled graphs, every node and edge has a property XML, which contains the attributes of 
the model element. In the case of current case study the VMTS rewriting engine 
concatenates the property XML of the matched states and transitions and uses the result 
as the input of the XSLT script. 

Constraint Validation 

To fully specify models and rewriting rules we assign constraints to model elements and 
to the steps accomplished by generators. With the help of these constraints we get precise 
and consistent models and transformation steps. In VMTS the principle of the constraint 
validation is the relation between the pre- and postconditions and the OCL constraints 
assigned to the rewriting rules. 

In .NET when we initialize the controls e.g. change the Text value of a text box then 
it is passed a TextChanged event, or set the SelectedIndex property of a combo box then it 
gets a SelectedIndexChanged event. This behavior of the controls affects the operation of 
the form in an inappropriate way. An example for it in the case study is when the user 
selects an item in list box Constraints, the form has to show the properties of the selected 
constraint, hence it has to change the Text value of text box Constraint name, the 



 
CONSTRAINT VALIDATION IN MODEL COMPILERS 

 
 
 
 

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4 

SelectedIndex value of the Stereotype combo box and so on. The result of these 
operations is that buttons Apply and Undo become enabled, but during the initialization 
we do not want it, because it is not a real property modification. We can eliminate this 
undesirable functioning with a constraint: 

context CMemberMethod inv handle_changes: 
if self.Type = ‘EventHandler’ then self.Statements.Count > 0 
and self.Statements[0].Value = ‘if (!m_bHandleChanges) 
return;‘ 
 

This invariant constraint describes that if the type of an CMemberMethod object is 
EventHandler, it should have more than zero Statement, and the value of the first 
statement should be ‘if (!m_bHandleChanges) return;’. A snippet statement is a code 
fragment, and this statement guarantees that event handler functions do not handle the 
events in that case if the value of m_bHandleChanges variable is false. 

The C# source code of the lbConstraints_SelectedIndexChanged event handler 
method which is generated based on the statechart diagram (Fig. 6) is as follows: 

private void lbConstraints_SelectedIndexChanged(object sender, 
System.EventArgs e) 
{ 
  if (!bHandleChanges) return; 
  bHandleChanges = false; 
  if (bModified) displayMessageBox(); 
  btnApply.Enabled = false; 
  btnUndo.Enabled = false; 
  if (lbConstraints.SelectedItems.Count > 0) 
  { 
    btnRemove.Enabled = true; 
    grpActualConstraint.Enabled = true; 
    showSelectedConstraint(lbConstraints.SelectedItem); 
  } 
  if (lbConstraints.SelectedItems.Count == 0) 
  { 
    btnRemove.Enabled = false; 
    txtConstraintName.Text = ""; 
    txtActual.Lines = new string[0]; 
    grpActualConstraint.Enabled = false; 
  } 
  bHandleChanges = true; 
} 

In VMTS it is required that all constraint has a name, therefore if one would like to apply 
the changes, we have to validate that the length of the constraint name is more than 0. 
Therefore, if the value of the txtConstraintName.Text.Length property is 0, we have to 
prevent the save of the modifications until the user does not fill in the Constraint name 
text box. The constraint which describes this condition is the following: 

context CMemberMethod inv name_length: 
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if self.Name = ‘btnApply_Click’ then self.Statements.Count > 1 
and self.Statements[1].Value = ‘if 
(txtConstraintName.Text.Length == 0) return;‘ 
 

The generated C# source code of the btnApply_Click method is as follows: 
private void btnApply_Click(object sender, System.EventArgs e) 
{ 
  if (!bHandleChanges) return; 
  if (txtConstraintName.Text.Length == 0) return;  
  applyChanges((string)lbConstraints.SelectedItem, false); 
  btnOK.Enabled = true; 
} 
 

When we generate source code from a statechart model, in the generated source code 
usually there is a function for every state, which implements the behavior of the state 
(transitions and internal transitions as well). In the form-based, event-driven development 
the event handler methods of the controls provides the operation of the forms. Therefore 
the goal of the case study is to generate the skeleton of the user interface handler code; 
VMTS generates that part of the event handler methods for which it has enough 
information in the statechart diagram. E.g. based on the incoming and outgoing 
transitions and their conditions the generator can produce a complete event handler 
function from several model states. An example for it in the case study is the 
lbConstraints_SelectedIndexChanged event handler method which is generated from four 
states and it’s if branches are generated from the transition conditions. Furthermore the 
transformation generates the code fragments recommended by the constraints; a part of 
this code can be assertion code. An assertion checks a condition and displays a message if 
the condition is false, assertions support the testing procedure and contribute to the 
correct operation. 

Based on the presented principles, the whole process of the case study is the 
following: OCL Compiler generates the constraints validation binary, the matching 
process searches topological matches in the statechart model (host graph), the Validation 
Module uses the validation binary, and it checks LHS graph containing constraints 
(preconditions) continuously at matching time. If and only if a match satisfies the 
preconditions, the rewriting process with the help of a user defined XSLT script generates 
the rewriting result. The Validation Module checks RHS graph containing constraints 
(postconditions) on the rewriting result. If and only if the rewriting result satisfies the 
postconditions, the rewriting rule finished successfully. 

5 CONCLUSIONS AND FUTURE WORK 

Our metamodel-based specification of the rules allows assigning OCL constraints to the 
rules, and they are able to express local constraints. However, it does not mean, that 
validating them does not involve checking other model elements in the input model. OCL 
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constraints which are enlisted in the rewriting rules affect the instances of these rewriting 
rules, to the matched and the replaced subgraphs.  

We have shown how we can use the OCL constraints enlisted in the rewriting rules 
to check validation, preservation and guarantee properties, or simply how to check 
models with the help of metamodel-based graph rewriting during the rewriting process. 

The main limitation of the constraint validation method is the local nature of the 
rules. If one wants to specify a constraint for an element, it must be included in a 
rewriting rule, or it must be referenced by the OCL traversal expressions assigned to the 
rule elements.  

One of the most important parts of the constraint checking method is that our 
approach does not interpret the constraints; we generate source code and compile it to a 
binary which validates the constraints contained by the metamodel and the rewriting rule. 
This method facilitated to calculate precisely the complexity of the presented constraint 
validation methods. Comparing the algorithmic results to other approaches, PROGRES 
has language tools to support pre- and postconditions, but unfortunately its computational 
complexity has not been published. 

In this paper algorithms are provided to validate the graph-rewriting-based model 
transformation with the help of the constraints contained by the rewriting rules. Invariant 
Analysis algorithm is applicable for both LHS and RHS graph containing constraints, 
while Persistent Analysis algorithm affects only the constraints in LHS graph 
(preconditions of the transformation step). This work has discussed the computational 
complexities of the presented algorithms and the computational time that we can save 
during the model transformation using these algorithms.  

Future work includes the design and implementation of branch conditions in rule 
sequencing. With the help of branch conditions VMTS will support the branch during the 
transformation using the constraints contained by RHS graph. The result of an RHS graph 
containing constraint checking decides which transformation step is the following.  
Furthermore the aspect-oriented constraint specifications in rewriting rules are currently 
researched. This method will facilitate to create the rewriting rules and the constraints 
separately, and using pointcuts to assign constraints to the rule nodes in the rewriting 
rules.  As a result the rewriting rules will not contain numerous constraints which make 
them more tangled, constraints will be reusable several times and their modification will 
be simpler. 
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