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We provide a mathematical reference model for the exception handling mecha-
nism of the Common Language Runtime (CLR), the virtual machine underlying
the interpretation of .NET programs. The model filles some gap in the ECMA
standard for CLR and is used to sketch the exception handling related part of a
soundness proof for the CLR bytecode verifier.

1 INTRODUCTION

This work is part of a larger projectf] which aims at establishing some important prop-

erties of Cg and CLR by mathematical proofs. Examples are the correctness of the byte-
code verifier of CLR 11], the type safety (along the lines of the first author’s correctness

proof [14, 15] for the definite assignment rules) oft,CIhe correctness of a general com-
pilation scheme. We reuse the method developed for similar work for Java and the Java
Virtual Machine (JVM) in R5]. As part of this effort, in §, 13, 20] an abstract interpreter

has been developed forﬁanIuding a thread and memory modeH| 23]; see also §]
for a comparative view of the abstract interpreters for Java andor C

In [16] an abstract model is defined for the CLR virtual machine without the exception
handling instructions, but including all the constructs which deal with the interpretation of
the procedural, object-oriented and unsafe constructs of .NET compatible languages such

as & C++, Visual Basic, VBScript, etc. The reason why we present here a separate model
for the exception handling mechanism of CLR is to be found in the numerous non-trivial
problems we encountered in an attempt to fill in the missing parts on exception handling
in the ECMA standardl0]. Already in JVM the most difficult part for the correctness
proof of the bytecode verifier was the one dealing with exception handlingZSg#lp]).

The concrete purposes we are pursuing in this paper are twofold. First, we want to define
a rigorous ground model (in the sense 8J)[for the CLR exception mechanism, to be
used as reference model for the exception handling related part of a correctness proof for
the bytecode verifier][l]. Secondly, we want to clarify the numerous issues concerning

Cite this article as follows: Nicu G. Fruja and Egon Borger: “Modeling the .NET CLR
Exception Handling Mechanism for a Mathematical Analysis, in Journal of Object Tech-
nology, vol. , no. , April 2006, Special issue: .NET Technologies 2005 Conference, pp.
5-34, http://www.jot.fm/issues/issue_2006_05/articlel
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exception handling which are left open in the ECMA standard, but are relevant for a
correct understanding of the CLR mechanism.

The ECMA standard for CLR contains only a few yet incomplete paragraphs about
the exception handling mechanism. A more detailed description of the mechanism can
be found in one of the few existing documents on the CLR exception han@jng e
CLR mechanism has its origins in the Windows NT Structured Exception Handling (SEH)
which is described ind2]. What we are striving for, the CLR type safety, is proved for
a subset of CLR in19]. However, that paper does not consider the exception handling
classified in 19, §4] asa fairly elaborate model that permits a unified view of exceptions

in C++, Ch and other high-level languagesSo far, no mathematical model has been
developed for the CLR exception handling. The JVM exception mechanism, which differs
significantly from the one of CLR, has been investigatedir2p).

We use three different methods to check the faithfulness (with respect to CLR) of the
modeling decisions we had to take where the ECMA standard exhibits deplorable gaps.
First of all, the first author made a series of experiments with CLR, some of which are
made available in12] to allow the reader to redo and check them. We hope that these pro-
grams will be of interest to the practitioner and compiler writer, as they show border cases
which have to be considered to get a full understanding and definition of exception han-
dling in CLR. Secondly, to provide some authoritative evidence for the correctness of the
modeling ideas we were led to by our experiments, over the Fall of 2004 the first author
had an electronic discussion with Jonathan Keljo, the CLR Exception System Manager,
which essentially confirmed our ideas about the exception mechanism issues left open in
the ECMA documents. Last but not least a way is provided to test the internal correct-
ness of the model presented in this paper and its conformance to the experiments with
CLR, namely by an executable version of the CLR model, using AsthLThe AsmL
implementation of the entire CLR model is available 24][

Since the focus of this paper is the exception mechanism of CLR, we assume the
reader to have a rough understanding of CLR. We also refer without further explanations
to the modeEXECCLR defined in [L6], which describes what the machine does upon
its "normal” (exception-free) execution.

Our model for CLR together with the exception mechanism comes in the form of an
Abstract State Machine (ASM) CLR Since the intuitive understanding of the ASMs
machines as pseudo-code over abstract data structures is sufficient for the comprehension
of CLRg, we abstain here from repeating the formal definition of ASMs which can be
found in the AsmBookT]. However, for the reader’'s convenience we summarize here
the most important ASM concepts and notations that are used in this paper. A state of an
ASM is given by a set of static or dynamic functions. Nullary dynamic functions corre-
spond to ordinary state variables. Formally all functions are total. They may, however,
return the special elemeunndefif they are not defined at an argument. In each step, the
machine updates in parallel some of the functions at certain arguments. The updates are
programmed using transition rul®s Q with the following meaning:
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f(s):=t updatef atstot

if ¢ then P elseQ if ¢, then execut®, elseQ
PQ executeP andQ in parallel
letx=tin P assign to x and then execute
P seqQ execute? and themQ

PorQ executeP or Q

We stress the fact that in one step, an ASM fires simultaneously all its rules (syn-
chronous parallelism).

Notational conventionBeside the usual list operations (ejoush pop, top, length and
)%, we usesplit(L,1) to split off the last element of the lidt, i.e., split(L,1) is the pair
(L', [x]) whereL’ - [x] = L.

The paper is organized as follows. In Sectiynve list a few notations defined id |
and used in this paper. Secti8gives an overview of the CLR exception handling mecha-
nism. The elements of the formalization are introduced in Sedti@ectionb defines the
so-calledStackWallpass of the exception mechanism. The other two paksegindand
Leaveare defined in Sectio® and Sectiorv, respectively. The execution rules of CER
are introduced in Sectio® Section9 considers the refinements that shall be applied to
our model in order to also treat the handling of the spetiatadAbortException
In Section10we illustrate a verification usage of the mathematical GLRodel by pro-
viding the exception handling related details of a soundness proof of (a model of) the
CLR bytecode verifier. A preliminary version of this paper appeared8h [

2 PRELIMINARIES

We summarize briefly the notations introduced1@][that are relevant for the exception
handling mechanism. For a detailed description we refer the readsf]to [

A method frame consists of a program counper: Pc, local variables addresses
locAdr : Map(Local, Adr), arguments addressaggAdr : Map(Arg, Adr), an evaluation
stacK evalStack List(Value), and a method referenceeth: MRef. Theframedenotes
the currently executed frame. Accordingpg gives the program counter of the current
frame,locAdrthe local variables addresses of the current frame, etc.

The stack of call frames is denoted frsgmeStaclkand is defined as a list of frames.
Note that we separate the current frame from the stack of call framedramgis not
contained irframeStackThe macros BsHFRAME and FOPFRAME are used to push and
pop theframe respectively.

PUSHFRAME = pushframeStackframe)

1The “” denotes the operatiomppendfor lists.
2In order to simplify the exposition we describe here¢halStaclas a list of values thougi §] defines
it as a list of pairs fromValue x Type
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Fig. 1 The CLRg machine

CLRg = if switch= ExcMechthen
EXCCLR
elseifswitch= Noswitchthen
INITIALIZE CLASS or EXECCLRg(cod€pc))

PopFRAME = let (frameStack [(pc, locAdr, argAdr, evalStack meth)]) =
split(frameStackl) in

pc = pC
locAdr := locAdr
argAdr  := argAdr
evalStack := evalStack
meth := meth

frameStack= frameStack

3 THE GLOBAL MACHINE STRUCTURE

Every time an exception occurs, the control is transferred from “normal” execution (in
EXECCLRE) to a so-called “exception handling mechanism” which we model as a sub-
machineeEXCCLR. To switch from normal execution (read: in modNeswitch to this

new component, the mode is set to, sayitch:= ExcMechwhich interruptEXeECCLRg

and triggers the execution akxcCLR. The machineEXeCCLRy is an extension of the
exception-handling-free machimxeEcCLRy by a submachine which executes instruc-
tions related to exceptions (likehrow, Rethrow etc.); it will be defined in Fig4. Due to

the very weak conditions imposed by the ECMA standard on class initialization, the over-
all structure of CLR, has to foresee that the initialization ofbaforefieldinit 3

class may start at any moment, as analyzed in detail3p fhis explains the definition

of CLRg as a machine which, in the normal execution mode (see also the remark be-
low) non-deterministically chooses whether to start a class initialization or to execute the
current instructiorcod€pc) pointed at by the program countec (see Figl).

The exception handling mechanism proceeds in two passes. In the first pass, the
runtime system runs a “stack walk” searching, in the possibly empty exception handling
array associated bgxcHA : Map(MRef, List(Exc)) to the current method, for the first
handler that might want to handle the exception:

e acatch handler whoseypeis a supertype of the type of the exception, or

3The ECMA standard states ifi(, Partition |, §8.9.5] that, if a class is markégkforefieldinit
then the class initializer method is executgdny timebefore the first access to any static field defined for
that class.
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e afilter handler — to see whetherfiéter wants to handle an exception, one
has first to execute (in the first pass) the code in the filter region: if it refyithen
itis chosen to handle the exception; if it retufnshis handler is not good to handle -
the exception.

Visual Basic and Managed C++ have speciaich blocks which can “filter” the
exceptions based on the exception type and/or any conditional expression. These are
compiled intofilter handlers in the Common Intermediate Language (CIL) bytecode.
Thefilter handlers bring considerable complexity to the exception mechanism.

The ECMA standard does not clarify what happens if the execution dilitthe  or
of a method called by it throws an exception. The currently handled exception is known as
anouter exceptionvhile the newly occured exception is calledianer exceptionAs we
will see below, the outer exception is not discarded but its context is savedt@LR
while the inner exception becomes the outer exception.

If a match is not found in th&ulting frame i.e., the frame where the exception has
been raised, the calling method is searched, and so on. This search eventually terminates:

9%
o

Backstop entry TheexcHAof theentrypoint ~ method has as last entry a so-call
backstop entryplaced by the operating system which can handle any exception.

When a match is found, the first pass terminates and in the second pass, called “unwind-
ing of the stack”, CLR walks once more through the stack of call frames to the handler
determined in the first pass, but this time executingfithaly andfault 4 handlers

and popping their frames. It then starts the corresponding exception handler.

Class initialization vs. Exception mechanisnAlthough the ECMA standardD, §8.9.5]

says that aeforefieldinit class can be initialized at any time (before an access to
one if its static fields occurs), it is not clear whether the .NET implementation follows the
same line and allows such initialization to happen, for example, even during the purely
administrative handler sear&@xcCLR has to accomplish to provide the specified effect
of exception handling code, formally whewitch= ExcMech As one can see in Fid,

our model rules this out and considers that no initialization can happen swhigrhis
ExcMech This does not exclude initializations to be triggered during the execution of
filter or handler code (wheswitchis different fromExcMech).

However, our model can be refined to allow class initializers to be non-deterministically
triggered wherswitchis ExcMech

o A stackswitchStaclof switchvalues is added.

e Assume thatwitchis ExcMechand the run-time system decides to initialize a
beforefieldinit class. In this case, the current valuesafitch i.e.,ExcMech
is pushed ontswitchStackand the macroNITIALIZE CLASS is executed.

4Currently, no language (other than CIL) exposasdt  handlers directly. Aault  handler is simply
afinally handler that only executes in the exceptional case.
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Fig. 2 The predicatesInTry, isinHandlerandisInFilter
isInTry(pos h) < tryStarth) < pos< tryStarth) + tryLength(h)

isinHandlerpos h) < handlerStarth) < pos< handlerStarth) + handlerLengtlh)
isInFilter(pos h) < filterStarth) < pos< handlerStarth)

e The rule forReturn instructions is refined to reflect the special semantics of a
Returninstruction of a.cctor  of a beforefieldinit class: frameis dis-
carded, andwitchis set to the topmost value @witchStack

4 THE GLOBAL STRUCTURE OF EXCCLR

In this section, we provide some detail on the elements, functions and predicates needed
to turn the overall picture into a rigorous model.

The elements of an exception handling arexcHA : Map(MRef, List(Exc)) are
known ashandlersand can be of four kinds. They are elements of &set

ClauseKind= catch | filter | finally | fault
Exc = Exc( clauseKind . ClauseKind
tryStart . Pc
tryLength : N
handlerStart : Pc
handlerLength : N
type . ObjClass
filterStart . Pc)

Any 7-tuple of the above form describes a handler of kfadiseKindwhich “protects”
the region that starts atryStartand has the lengttryLength handles the exception in
an area of instructions that startsteindlerStartand has the lengthandlerLength-
we refer to this area as theandler region if the handler is of kindcatch , then the
type of exceptions it handles is provided, whereas if the handler is of kited
then the first instruction of thélter regionis atfilterStart In case of dilter
handler, the handler region startingrendlerStartis required by the ECMA standard to
immediately follow theilter region —in particular we havidterStart < handlerStart
We often refer to the sequence of instructions betwitemStartandhandlerStart- 1 as
thefilter region We assume thatféterStartis defined for a handler if and only if the
handler is of kindilter ~ , otherwisefilterStartis undefined.

To simplify the presentation, we define the predicates in Zfgr an instruction located
at program counter positigmos € Pc and a handleh € Exc Note that if the predicate
isInFilter is true, therfilterStartis defined and therefoileis of kindfilter . Based on

SWe will refer to this region aprotected regioror try  block.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3



4 THE GLOBAL STRUCTURE OF EXCCLR (% ‘P_(

the lexical nesting constraints of protected blocks specifiedOnRartition 1512.4.2.7]
which we assume in the model, one can prove the following property:

Disjointness 1 The predicates isInTry, isinHandler and isInFilter are pairwise disjoint.

We also assume all the constraints concerning the lexical nesting of handlers specified
in the standardl[0, Partition 1512.4.2.7]. The ECMA standard.(, Partition 1§12.4.2.5]
ordering assumption on handlers is:

Ordering assumption If handlers are nested, the most deeply nested handlers
shall come in the exception handling array before the handlers that enclose them.

To handle an exception, tlexCCLR needs to record:

¢ the exception referenaxg
¢ the handlingpass

e a stackCursor i.e., the position currently reached in the stack of call frames (a
framef) and in the exception handling arrayfofan index inexcHA,

¢ the suitabldhandlerdetermined at the end of ti&tackWallpass (if any); this is the
handler that is going to handle the exception in the passind — until the end of
the StackWalkpass handleris undefined.

According to the ECMA standard.(, §12.4.2.8, Partition 1], every normal execution
of atry block or acatch /filter handler region (not to be confused witlilger
region) must end with &eavétarget) instruction. When doing thissxcCLR has to
record the currenpassand stackCursortogether with thearget up to which every in-
cludedfinally code has to be executed.

ExcRec = ExcRed exc . ObjRef
pass . {StackWalkUnwind}
stackCursor : Framex N
handler . Framex N)
LeaveRec = LeaveRe¢ pass . {Leavé
stackCursor : Framex N
target . Pc)

We list some constraints which will be needed below to understand the treatment of these
Leaveinstructions.
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Leave constraints:

1. It is not legal to exit with alLeaveinstruction afilter region or a
finally ~ /fault  handler region.

2. Itis not legal to branch with Beaveinstruction into a handler region fron
outside the region.

3. Itis legal to exit with aLeavea catch handler region and branch to any
instruction within the associateédy block, so long as that branch targ
is not protected by yet anothey block.

4. A Leaveinstruction is executednly upon the normal exit from &y
block or acatch /filter handler region.

5. The target of any branch instruction, in particulalLefvétarget), points
to an instruction within the same method as the branch instruction.

—

D
—

The nesting of passes determirssCCLR to maintain an initially empty stack of
exception records or leave records for the passes that are still to be performed.

passRecStackList(ExcRecJ LeaveReg passRecStack ||

In the initial state 0EXCCLR, there is no pass to be executed, pass= undef

Only one handler region pertry block? The ECMA standard specifies i@, Partition
1,612.4.2] that a singléry  block shall have exactly one handler region associated with
it. But the IL assembleitasm does accept alsoy blocks with more than oneatch
handler block. This discrepancy is solved if we assume that eéweryblock with more
than onecatch block, which is accepted by the&asm , is translated in a semantics-
preserving way as follows:

try try {

block ry o

- block
catch block
}catch block, } catch  block

} catch  block,

We can now summarize the overall behavioeagicCLR, which is defined in Fig3
and analyzed in detail in the following sections, by saying that if there is a handler in
the frame defined bgtackCursoy thenEXCCLR will try to find (when StackWallkng)
or to execute (wheknwindng) or to leave (wheheaveng) the corresponding handler;
otherwise it will continue its work in the invoker frame or endlissavepass at théarget
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5 THE STACKWALK PASS

During a StackWalkpass,ExXCCLR starts in the currerframeto search for a suitable
handler of the current exception in this frame. Such a handler may exist if the search
positionn in the current frame has not yet reached the last element of theexcaAof
handlers of the corresponding method

existsHanWithinFramg_, _, _, _, m), n) < n < lengthlexcHAm))

If there are no (more) handlers in the frafmepointed to bystackCursoy then the
search has to be continued at the invoker fréirherhis means to reset tlstackCursoto
point to the invoker frame, which precedesn the frame stack combined witrame

SEARCHINVFRAME(fr) = let _ - [fr’, fr] - _ = frameStack [framg in
ResET(stackCursorfr’)

There are three groups of possible handhees cCLR is looking for in a given frame
during itsStackWalk

e acatch handler whoseéry block protects the program countec of the frame
pointed at bystackCursorand whosaypeis a supertype of the exception type;

matchCatckpost, h) < isinTry(pos h) A clauseKindh) = catch At < typegh)

e afilter handler whosery block protects thegc of the frame pointed at by
stackCursor

matchFilterpos h) < isInTry(pos h) A clauseKindh) = filter

e afilter handler whoséilter region contains thec of the frame pointed at
by stackCursor This corresponds to an outer exception described below.

The order of thef clauses in théet statement from the rul8tackWalkin Fig. 3 is not
important. This is justified by the following property:

Disjointness 2 For every type t, the predicates matchCétdrmatchFilter and isInFilter
are pairwise disjoirft.

5By matchCatchwe understand the predicate defined by the{ §eos h) | matchCatch(pos,t,h)
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The above property can be easily proved using the definitions of the three predicates and
the propertyDisjointnessl.
The handler pointed to by tretackCursoynamelyhanWithinFramé(_, _, _, _, m), n),

is defined to bexcHAm)(n). If this handler is not of one of the three types above, then
the stackCursolis incremented to point to the next handler candidate ireku#A

GOTONXTHAN = stackCursor.= (fr,n+ 1)
where stackCursor= (fr, n)

TheOrdering assumptiostated in Sectiod and the lexical nesting constraints stated
in [10, Partition 1§12.4.2.7] ensure that if thetackCursomoints to a handler of one of
the three types above, then this handler is the first such handler in the exception handling
array (starting at the position indicated in tackCursoy.

Handler Case 1If the handler pointed to by thstackCursoris a matching catch |,
then this handler becomes thandlerto handle the exception in the padawind. The
stackCursolis reset to be reused for thinwind pass: it shall point to the faulting frame,
i.e., the currenframe Note that duringStackWalk frame always points to the faulting
frame except in casefater region is executed. However, the frame built to execute a
filter is never searched for a handler corresponding to the current exception.

FOUNDHANDLER =
pass := Unwind
handler:= stackCursor

RESET(S, fr) = s:= (fr,0)

Handler Case 2If the handler is dilter  , then by means of ¥ECFILTER its filter

region is executed. The execution is performed in a separate frame constructed espe-
cially for this purpose. However this detail is omitted by the ECMA standa@il [The
currently-to-be-executed frame becomes the frame for executiridgf¢he  region. The
faulting exception frame is pushed on thhameStack The current frame points now to

the method, local variables and arguments of the frame in wdtadkCursois, it has the
exception reference on the evaluation stagklStackand the program count@ic set to

the beginnindilterStart of thefilter region. Theswitchis set toNoswitchin order to

pass the control to the normal machieeCCLR.

"We use theactualTypeOffunction defined in16] to determine the runtime type of the exception.
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Fig. 3 The exception handling machimxcCLR

EXCCLR = match pass
StackWalk— if existsHanWithinFramstackCursoy then
let h = hanWithinFraméstackCursoy in
if matchCatclipos actualTypeOfexg, h) then
FOUNDHANDLER
ResET(stackCursorframe)
elseifmatchFilter(pos h) then ExecFILTER(h)
elseifisInFilter(pos h) then EXITINNEREXC
elseGOTONXTHAN
else SEARCHINVFRAME(fr)
where stackCursor= (fr,_) and fr = (pos _, _, _, )

Unwind — if existsHanWithinFramestackCurso) then
let h = hanWithinFraméstackCursoy in
if matchTargetHathandler, stackCursoy then
ExecHAN(h)
elseifmatchFinFaultpc, h) then
ExecHAN(h)
GOTONXTHAN
elseifisinHandler(pc, h) then
ABORTPREVPASSREC
GOTONXTHAN
elseifisInFilter(pc, h) then
CONTINUEOUTEREXC
elseGOTONXTHAN
else
POPFRAME
SEARCHINVFRAME(frame)

Leave— if existsHanWithinFrametackCursoy then
let h = hanWithinFraméstackCursoy in
if isFinFromTdh, pc, target) then
ExecHAN(h)
if isRealHanFromT¢h, pc, target) then
ABORTPREVPASSREC
GOTONXTHAN
else
pc := target
evalStack= []
PoPREC
switch:= Noswitch

EXECFILTER(h) = pc := filterStart(h)
evalStack= [exd
locAdr := locAdr
argAdr := argAdr
meth := metH
PUSHFRAME
switch:= Noswitch

where stackCursor= ((_,locAdr, argAdr, _, meth), )

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY
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Handler Case 3The stackCursorpoints to afilter handler whoséilter region
contains thec of the frame pointed at bgtackCursor

Exceptions infilter region? It is not documented in the ECMA standard what hap-
pens if an (inner) exception is thrown while executing fier region during the
StackWallpass of an outer exception. The following cases are to be considered:

e if the inner exception is taken care of in thiger region, i.e., it is successfully
handled by ecatch /filter handler or it is aborted because it occured in yet
anotherfilter region of a nested handler (see tis&Filter clause), then the
givenfilter region continues executing normally (after the exception has been
taken care of);

e if the inner exception is not taken care of in thieer region, then it will be
discarded (via the GNTINUEOUTEREXC macro defined in Sectiof) after its
finally  andfault handlers have been executed (§ests 6, 8, and 9in12)).
Therefore, in this casexCCLR exits via the macro & TINNEREXC the StackWalk
and starts anwind pass, during which all thenally ~ /fault  handlers for the
inner exception are executed until thiger region where the inner exception
occured is reached.

EXITINNEREXC =
pass:= Unwind
RESET(stackCursorframe)

6 THE UNWIND PASS

As soon as the pasStackWalkterminates, theeXCCLR starts theUnwind pass with

the stackCursorpointing to the faulting exception frame. Starting there, one has to
walk down to thehandler determined in theStackWalk executing on the way every
finally ~ ffault  handler region. This happens also in casadleris undef When
Unwindng, theEXCCLR searches for one of the following four handlers:

¢ the matching target handler, i.e., thendlerdetermined at the end of ti&ackWalk
pass (if any) -handlercan beundefif the search in th&tackWalkhas been exited
because an exception was thrown irileer region. For the matching target
handler case, the twmandlerandstackCursoframes in question have to coincide.
We say that two frames are the same if the address arrays of their local variables
and arguments as well as their method names coincide.

matchTargetHa((fr’,n’), (fr", n")) & sameFram@r’, fr’) An' = n”

sameFramfr’, fr") < pr,(fr') = pr;(fr"),Vi € {2,3,5}
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e amatchindinally /fault handler whose associateg block protects th@c;

matchFinFaul{pos h) < isInTry(pos h) A clauseKindh) € {finally ~ ,fault }

¢ a handler whose handler region contgmas

e afilter handler whosélter region containgc;

The order of the last threié clauses in théet statement of the rul&nwindin Fig. 3 is
not important. It only matters that the first clause is guardechbichTargetHan

Disjointness 3 The predicates matchFinFault, isinHandler and isInFilter are pairwise
disjoint.

The property follows from the definitions and the propddigjointnessl.

TheOrdering assumptiom Sectiord and the lexical nesting constraints given1@[
Partition 1§12.4.2.7] ensure that if tr@ackCursopoints to a handler of one of the above
types, then this handler is the first handler in the exception handling array (starting at the
position indicated in thetackCursoy of any of the above types.

If the handler pointed to by th&tackCursoiis not of any of the above four types, the
stackCursoiis incremented to point to the next handler in éxeHA

Handler Case 1The handler pointed to by tretackCursoris thehandlerfound in the
StackWalk Then the handler region diandleris executed throughXECcHAN: thepcis

set to the beginning of the handler region, the exception reference is loaded on the evalu-
ation stack (when EECHAN is applied for executingnally ~ /fault handler regions,
nothing is pushed ontevalStack and the control switches eXECCLR.

ExecHAN(h) =
pc := handlerStarth)
evalStack= if clauseKindh) € {catch ,filter  } then [exd

else(]
switch:= Noswitch

Handler Case 2The handler pointed to by thetackCursoris a matchinginally or
fault  handler. Then its handler region is executed with initially empty evaluation stack.
At the same time, thetackCursotis incremented through GTONXTHAN.

Handler Case 3The handler region of the handler pointed todbgckCursorcontaingoc.

Exceptions in handler region? The ECMA standard does not specify what should hap-
pen if an exception is raised in a handler region. The experimentatidi?jreld to the
following rules of thumb for exceptions thrown in a handler region, in a way similar to
the case of nested exceptiondiiter code:
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e if the exception is taken care of in the handler region, i.e., it is successfully handled
by acatch /filter handler or it is discarded (because it occured fritar
region of a nested handler), then the handler region continues executing normally
(after the exception is taken care of);

e if the exception is not taken care of in the handler region, i.e, escapes the handler
region, then the following two actions are taken:

—the previous pass &XCCLR is aborted through BORTPREVPASSREC;

ABORTPREVPASSREC = pop(passRecStagk

—the exception is propagated further vi@GONXTHAN in theUnwindpass which
sets thestackCursotto the next handler iexcHA

This implies that an exception can go “unhandled” without taking down the process,
namely if an outer exception goes unhandled, but an inner exception is successfully han-
dled. In fact, the execution of a handler region can only occur wherCLR runs in
theUnwind or Leavepass: inUnwind, handler regions of any kind are executed whereas

in Leaveonly finally handler regions are executed. If the raised exception occured
while EXCCLR was running atunwindpass for handling an outer exception, thewind

pass of the outer exception is stopped and the corresponding pass record is popped from
passRecStaciseeTests 1, 3 and 4 in 12]). If the exception has been thrown while
EXCCLR runs aLeavepass for executingnally handlers on the way from laeave
instruction to its target, then this pass is stopped and its associated pass record is popped
off passRecStadlseeTest 2in[12)).

Handler Case 4The handler pointed to by ttetackCursoris afilter handler whose
filter region containgc. Then the execution of thigter region must have trig-
gered an inner exception whoS&tackWalkled to a call of EXITINNEREXC. In this
case, the current (inner) exception is aborted, anditize considered as not pro-
viding a handler for the outer exception. FormallypiCriNUEOUTEREXC pops the
frame built for executing thelter region, pops from thpassRecStadke pass record
corresponding to the inner exception and reestablishes the pass context of the outer ex-
ception, but with thestackCursorpointing to the handler following the just inspected
filter handler. The updates of tleackCursorin POPREC and GOTONXTHAN are
donesequentially such that the update indBONXTHAN overwrites the update in the
macro PPREC. Note that by these stipulations, there is no way to eXitt@r re-
gion with an exception. This ensures that the frame built kg &ILTER for executing a
filter region is used only for this purpose.

The execution of BPFRAME is safe since thérameStackcannot be empty at the
time when @NTINUEOUTEREXC is fired. [L0, Partition 1l,512.4.2.8.1] states that the
control can be transferred toféter region only througlrexcCLR. Sincepcis in
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a filter region, an KECFILTER should have been already executed. But in this
case, a new frame is pushed on freemeStack Hence,frameStacks not empty when _
CONTINUEOUTEREXC is executed. -

CONTINUEOUTEREXC =
PoPFRAME
PoPREC seqGOTONXTHAN

PoPREC = if passRecStack [] then
SETRECUNDEF
switch:= Noswitch
else let(passRecStatKr]) = split(passRecStack) in
if r € ExcRedhen
let (exc, pass, stackCursof, handlef) = r in

exc ;= exc

pass := pass$
stackCursor.= stackCursor
handler := handlef

if r € LeaveRethen
let (pass, stackCursof, target) = r in

pass := pass$
stackCursor.= stackCursor
target := target

passRecStack= passRecStatk

SETRECUNDEF = exc := undef
pass := undef
stackCursor.= undef
target := undef
handler := undef

If the Unwind pass exhausted all the handlers in the frame indicatstackCursor
the current frame is popped fromameStackand theUnwind pass continues in the in-
voker frame of the current frame. Note that the execution ireteeclause of the macros
PoPFRAME and SEARCHINVFRAME is safe agrame has a caller frame, i.eframecan-
not be the frame of thentrypoint . This is becaus8ackstop entnguarantees that
the elseclause is not reachable fifameis the frame of thesntrypoint . The same
argument can be invoked also in case ah8CHINVFRAME in the StackWalkpass.

Exceptions in class initializers? If an exception occurs in a class initializexctor
then the class shall be marked as being in a specific erroneous state and the specific excep-
tion TypelnitializationException is thrown. This means that an exception can
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and will escape the body of actor  only by aTypelnitializationException

Any further attempt to access the corresponding class in the current application domaln
will throw the sameTypelnitializationException object. This detail is not
specified by the ECMA standard but it seems to correspond to the actual CLR imple-

mentation and it complies with the related specification f@orirCthe ECMA standard
(seeTest 7 in[12]). Therefore, we assume that the code sequence of ewelyr

is embedded into aatch handler. Thiscatch handler catches exceptions of type
Object , i.e., any exception, occured inctor , discards it, creates an object of type
TypelnitializationException 8 and throws the new exception.

7 THE LEAVE PASS

The EXCCLR machine gets into theeavepass whereXeCCLRg executes deavein-
struction, which by theé.eaveconstraints can happen only upon a normal termination of
atry block or of acatch [filter handler region. One has to execute the handler
regions of allfinally handlers on the way from thesaveinstruction to the instruction
whose program counter is given by theave targetparameter. TheatackCursorused

in the Leavepass is initialized by the frame of theeaveinstruction (see Figd). In the
Leavepass, theexcCLR machine searches for

e finally handlers that are “on the way” from tipe to thetarget,

e real handlers, i.egatch /filter handlers that are “on the way” from tipe to
thetarget— more details are given below.

Handler Case 1The handler pointed to bgtackCursoris afinally handler on the
way from pc to thetarget position of the currenLeavepass record. Then the handler
region of this handler is executed (see firstverule in Fig.3).

Handler Case 2The stackCursorpoints to acatch /filter handler on the way from
pc to target Then the previous pass record passRecStacis discarded (see second
Leaverule in Fig.3). In fact, the discarded record refers to thewind pass for handling
an exception by executing tleatch /filter handler pointed at bgtackCursoy thus
terminating the handling of the corresponding exception.

isFinFromTdh, pos, pos') < clauseKindh) = finally ~ AisInTry(pos, h) A
—isInTry(pos’, h) A —isinHandlerpog’, h)

isRealHanFromTth, pos, pos’) < clauseKindh) € {catch ,filter  } A
isinHandler(pos, h) A —isinHandler(pos’, h)

8n the real CLR implementation, the exception throwndator  is embedded as an inner exception
in the TypelnitializationException . We do not model this aspect here.
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Although the twaif clauses in théet statement from th&eavepass are executed in
parallel, it is never the case that the embedded @HAN and ABORTPREVPASSREC
are simultaneously executed. The reason is given by the following property which can be
easily proved using the definitions of the predicates:

"

Disjointness 4 The predicates isFinFromTo and isRealHanFromTo are disjoint.

For each handleexcCLR inspects also the next handleexcHA When the handlers
in the current method are exhausted, by ltkaveconstraints this round afXxcCLR is
terminated, and the execution proceedsaaget pcis set totarget, the context of the
previous pass record gassRecStadk reestablished, and the control is passed to normal
EXECCLRg execution (see Fi@).

8 THE RULES OF EXECCLRg

The rules ofeEXECCLRpg in Fig. 4 specify the effect of the CIL instructions related to
exceptions. Each of these rules transfers the contextCLR. Throwpops the topmost
evaluation stack element (s&emark below), which is supposed to be an exception
reference. It loads the pass record associated to the given exceptiatatk€ursors
initialized for a StackWalkby the currenframeand0. If the exception mechanism is
already working in a pass, i.gpass # undef, then the current pass record is pushed
ontopassRecStack

LOADREC(r) =
if r € ExcPasghen
let (exc, pass, stackCursof, handlef) = r in

exc = exc
pass := pass$
stackCursor.= stackCursor
handler  := handlef
else let(pass, stackCursof, target) = r in
pass := pass$
stackCursor.= stackCursor
target := target

if pass# undefthen PUSHREC

PUSHREC =
if pass= Leavethen pushpassRecStackpass stackCursortarget))
elsepushpassRecStackexc pass stackCursorhandler)

If the exception reference found on top of #haalStaclby theThrowinstruction isnull
a NullReferenceException is thrown. For a given class the macro RISE(C) is
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Fig. 4 The rules ofEXECCLRg
EXECCLRg(instr) =
EXECCLRy (instr)
match instr
Throw — letr = top(evalStackin
if r £ null  then
LoADREC((r, StackWalk(frame 0), undef))

switch:= ExcMech
elseRAISE(NullReferenceException )

Rethrow — LOADREC((exc StackWalk(frame 0), undef))
switch:= ExcMech

EndFilter  — let val = top(evalStackin
if val =1 then
FOUNDHANDLER
ResEeT(stackCursortop(frameStack)
elseGOTONXTHAN
POPFRAME
switch:= ExcMech

EndFinally — switch:= ExcMech

Leavdtarget) — LOADREC((Leave (frame0), target))
switch:= ExcMech

defined by the following code templ&te

RAISE(c) = NewODbjc :: .ctor )
Throw

This macro can be viewed as a static method defined in €lagsct . Calling the macro
is then like invoking the corresponding method.

The ECMA standard states ia(, Partition 111,54.23] that theRethrowinstruction is
only permitted within the body of aatch handler. However, in reality it is allowed also
within a handler region of &lter (seeTest 5in [12]) throwing the same exception
reference that was caught by this handler, i.e., the current exceptoof EXCCLR.
Formally, this means that the pass record associatexidis loaded orexCcCLR.

In afilter region, exactly ond&ndFilter is allowed, namely its last instruction,
which is supposed to be the only one used to normally exifilize region (see the

9The NewObjinstruction called with an instance constructor.ctor — creates a new object of class
and then calls the constructator
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remark above on exceptions in a filter regiomndFilter takes an integeval from the

stack that is supposed to be eitlieor 1. In the ECMA standard) and1 are assimi- _
lated with “continue search” and “execute handler”, respectively. There is a discrepancy -
between 10, Partition 1§12.4.2.5] which stateExecution cannot be resumed at the loca-

tion of the exception, except with a user-filtered handlérerefore a “resume exception”

value in addition td and1 is foreseen allowing CLR to resume the execution at the point

where the handled exception has been raised— apdHartition 111,53.34] which states

that the only possible return values from the filter are “exceptomtinue search”()

and “exceptionexecute handler”(l).

If val is 1, then thefilter handler to whichEndFilter corresponds becomes the
handlerto handle the current exception in the palssvind Remember that thidter
handler is the handler pointed to by tsiackCursor The stackCursois reset to be used
for the pasdJnwind it will point into the topmost frame oframeStackvhich is actually
the faulting frame. lIfval is 0, the stackCursoris incremented to point to the handler
following our filter handler. Independently ofal, the current frame is discarded to
reestablish the context of the faulting frame. Note that we do not explicitlyvpbfsom
the evalStacksince the global dynamic functi@valStacks updated anyway in the next
step through BPFRAME to theevalStackof the faulting frame.

The EndFinallyinstruction terminates (normally) the execution of the handler region
of afinally or of afault  handler. It transfers the control &xcCLR. A Leave
instruction loads a pass record correspondinglieaepass.

Remark The reader might ask why the instructionsrow, Rethrow and EndFilter do
not set theevalStack The reason is that this set up, i.e., the emptyingewdlStack
is supposed to be eithersade-effect(the case of th&hrow and Rethrowinstructions)
or ensured for aorrect CIL (the case of thé&ndFilter instruction). Thus, th&hrow
and Rethrowinstructions pass the control 8XxcCLR which, in a next step, will exe-
cutéd® acatch ffinally  /fault  handler region or élter code or will propagate
the exception in another frame. All these “events” will “clear” ¢nealStack In case of
EndFilter, the evalStackmust contain exactly one item (am32 which is popped off
by EndFilter). Note that this has to be checked by the bytecode verifier (se®)Fand
is not ensured by the exception handling mechanism.

9 THE THREADABORTEXCEPTION

There is one exception, i.e[hreadAbortException [2], whose handling needs an
extension of our exception model. When a call is madé&hcead ::Abort to termi-

nate a thread, the system throws lareadAbortException in the target thread
ThreadAbortException is a special exception (known also as an “unstoppable”
exception) that can be caught by application code, but is rethrown at the end of the
catch [filter handler region unless the methdtiread ::ResetAbort is called.
When theThreadAbortException is raised, the exception mechanism executes any

1%0ne can formally prove that there is such a “step” in the further run of ¥&eCLR.
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finally ~ ffault handler regions for the target thread.

As the ECMA standardl[0] does not specify the special handling of this exception,
we did not include it in our basic model. However, the model is flexible enough to be
refined in a few places (in the sense of A3#inementslefined in {f]) to also cover the
handling of this “unstoppable” exception:

e The univers€excRef exception records is refined to include an object reference

denoteddiscardedTAE
ExcRec = ExcReq exc . ObjRef
pass : {StackWalkUnwind}
stackCursor : Framex N
handler : Framex N

discardedTAE : ObjRef)

Assume that & hreadAbortException is handled by the exception handling
mechanismeXCCLR. If another exception, sagxg is raised, and the handling
of exc attempts to discard th€hreadAbortException , then the discarded
ThreadAbortException reference is stored idiscardedTAE

Let us assume that the current thread is going to be aborted. We assume that
an exception record associated td lareadAbortException is loaded into
EXCCLR. ThediscardedTAEEomponent of the record is set to the exception refer-
ence. Thus, the componemscanddiscardedTAEare the same.

e The macro MORTPREVPASSREC used in thasinHandler clause of thdJnwind
rule is refined to also “transfer” the abort request (if any), i.e., the current exception
will take over theThreadAbortException reference (if any) carried by the
discarded exception record:

ABORTPREVPASSREC =
pop(passRecStagk
let r = top(passRecStaghn
if r € ExcRedhen
let (_,_,_,_,discardedTAB =r in
if discardedTAE=# undefinedhen
discardedTAE= discardedTAE

Similarly, POPREC used in thesinFilter clause of thdJnwind rule is refined to
“transfer” theThreadAbortException that has to be raised later again. Note
that in this way arhreadAbortException can escape fter region.

Also, the macro 8STRECUNDEF s refined to also reseiscardedTAEo undefined
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e TheisRealHanFromTalause of thed_eaverule in Fig.3 is modified to rethrow the
discardedrhreadAbortException

let r = top(passRecStagkn
let (_,_,_,_,discardedTAE =r in
if discardedTAE# undefinedhen
POPREC seq

exc := discardedTAE
pass := StackWalk
stackCursor := (frame0)
handler := undefined
discardedTAE= discardedTAE

elsepop(passRecStagk

Note that the incrementation of tlséackCursoithrough G TONXTHAN shall not
be anymore done in thisRealHanFromTcclause but only for thesFinFromTo
clause.

e The special semantics of invoking thé@read ::ResetAbort method has to be
added to the definition of the machine CEk Fig. 4. Beside executing the method

body, the invocation alsabortsthe ThreadAbortException . Note that the
abort does not stop the handling of tAéreadAbortException but only its
“unstoppable” attribute. In other words, after thereadAbortException is

handled byexcCLR, the execution continues normally and the exception is not
raised automatically again.

Theabort is realized by setting tandefinedhe discardedTAEcomponent of the
exception records opassRecStaék

10 THE BYTECODE VERIFICATION

The bytecode verifier statically checks the type-safety of the bytecode and therefore its
soundness is critical for the security model. We show in this section how one can use
the mathematical model introduced in the previous sections in the soundness proof of
the .NET CLR bytecode verifier specified i@, Partition Ill]. We provide arguments

to establish the soundness of the bytecode verification in case exception handling related
steps could be performed by the code, assuming the soundness for the verification of
code related only to exception freeXeCCLRy) execution. More precisely, we sketch

a proof that, for methods accepted by the verifier, the execution of instructions related
to exceptions does not violate any of the following propertiggie safetyi.e., every
instruction will always execute with arguments of expected typesinded evaluation

10ne can formally prove that, at a given time, there exists at most one exception record that has the
discardedTAEEomponent defined.
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Fig. 5 Verifying the instructions related to exceptions

checKmeth pos evalStack] < match codgpos
Throw — top(evalStack] C object
Rethrow — True
EndFilter — evalStackT= [int32 |
EndFinally — True
Leavé_) — True

stack i.e., the evaluation stack will never exceed a bound computed by the compiler,
program counter safety.e., the program counter will always point to a valid code index.

What the verifier checks

For the soundness proof, we do not rely upon any particular bytecode verifier but list only
the assumptions we need on the execution of the bytecode verification as descritied in |
Partition 1ll]. The bytecode verification is performed on a per-method basis. The verifier
simulates all possible control flow paths through the code, attempting to associate a valid
type stack staté with every reachable instruction. The type stack stat StackTspec-

ifies for each slot okvalStacka required type in that slot and thereby also the number
of values on theevalStackat that point in the code. Before simulating the execution of
an instruction, the verifier checks whether certain conditions are satisfied. We specify in
Fig. 5 by means of the predicatdheckthe conditions checked by the verifier for the in-
structions related to exceptions. The checks for a single instruction operaxtal@tackT

The relationC denotes theompatibility relationbetween types; for a formal definition
see [L1].

In JVM, the Throw instruction expects an object of tygénrowable on the stack.
The CLR bytecode verifier is not so strict: it requires that the top stack element is of
type object . TheEndFilter instruction which terminates the execution ofileer
region expects an integer on the stack and that the stack contains only this integer. For the
instructionsRethrow EndFinally, andLeavenothing has to be checked.

Since the bytecode verifier works on a stack of types and not of values, at branching
points in the control-flow it has to consider every successor that may be possible at run-
time. Therefore, the type stack state for an instructiopaatyields constraints on how
to match the type stack states of all instructions that are runtime possible control-flow
successors gjos In Fig. 6, we define the functiosuccwhich, given an instruction and a
type stack state, computes the successor code indices together with their type stack states.

Each instruction can throw exceptions. This assumption is realistic since the spe-
cial ExecutionEngineException may be thrown at any time during the execution
of a program. Therefore, for an instruction s all the handlerd that protectpos

12The ECMA standard uses the nastack state However, we prefetype stack statsince we have a
more complex notion of state and also more than one stack.
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Fig. 6 The type stack state successors of the instructions related to exceptions

sucgmeth pos evalStack] = excHandlersmeth pos) U
match codd pos)
Throw — 0
Rethrow  — 0
— 0

EndFilter
EndFinally — {(target[]) | targete LeaveThroughFifmethpos}
Leavétarget) — if {h € excHAmeth | isFinFromTdh, pos target)} = () then

{(target [])}
else()

are included into the set of possible successor type stack states by means of a func-

tion excHandlers Upon entering acatch handler, the type stack state contains only
the typetypgh) of exceptions thah is “handling” whereas, upon enteringfiéter

region or afilter handler region, the type stack state @bject ]. In case of a
finally  /fault handler, the type stack statdis Except for the case offdter re-
gion, the successor code index is givenhaydlerStarth). In case of dilter region,
the successor iditerStart h).

excHandlergsmeth pog = { (handlerStarth), [typeh)]) | h € excHAmeth
andisInTry(pos h) andclauseKindh) = catch } U
{ (filterStart(h), [object ]), (handlerStarth), [object |)
| h € excHAmeth andisInTry(pos h) andclauseKindh) = filter ~ } U
{ (handlerStarth), []) | h € excHAmeth andisInTry(pos h)
andclauseKindh) € {finally  ,fault }}

Beside the successors defined dycHandlers in case of the instruction$hrow,
Rethrow andEndFilterthere are no other successors (seejign case of afendFinally
instructionsuccyields also the targets dfeaveinstructions that could trigger the exe-
cution of thefinally handler to which thé&endFinally instruction corresponds. The
associated type stack state is the empty list. Thé.saveThroughFirof these possible
targets is defined as follows.

LeaveThroughFifmeth pog = { targete Pc| 3pos € Pcsuch that
coddpos) = Leavetarget) and for theh such that
[W € excHAmeth | isFinFromTdh’, pos, target)] = |.. ., h]
holds[h € excHAmeth | isinHandlerpos i)] = |h,...] }

Thus,targetis an element okeaveThroughFifmeth pog for an EndFinally instruction
at posif this EndFinally corresponds to the laghally handler “on the way” from a
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Leavetarget) instruction to the instruction sarget By definition, the setteaveThroughFin
is empty for anEndFinally instruction which corresponds tofault  handler (because
the predicatesFinFromToevaluates to false fdiault  handlers). This means that the
EndFinallyinstruction which terminates the execution dhalt handler region has no
successors (beside those definedxoHandlers

We now explain the definition aduccin the case of d eaveinstruction. If there is
no finally handler “on the way” from th&eaveinstruction to its target, the target in-
struction with an empty type stack state is an additional successor. If thefiedsa
handler “on the way”, saf, the successor given by the instructiorhandlerStarth) is
already considered iaxcHandlersso that in this cassuccprovides no additional suc-
cessor.

The context of the verifier soundness proof

Instead of a particular bytecode verifier, we use a characterization of the type properties of
bytecode that is accepted by the verifier. This leads us to Defiritmfwell-typedness

of a method, which we consider as a requirement for every method to be accepted by
the verifier. The auxiliary relation e, of pointwise compatibility of type stack states is
defined for lists of type&’, L” of lengthsm, n as follows:

L' Cen L” < m=nandLl'(i) C L"(i) for everyi < m,

Definition 1 (Well-typed method) A method mref is callewvell-typedif there exists a
family of type stack statgevalStack]);cp over a domainD which satisfies the condi-
tions:

(wtl) The elements @ are valid code indices of mref.
(wt2) 0 € D.

(wt3) evalStacky = [].

(wtd) Ifi € D, then checlmref i, evalStack]) is true.

(wtb5) Ifi € D and(j, evalStackT) € sucgmref i, evalStackd), then je D and
evalStackT Cje, evalStackT.

The domairD collects the code indices which are reachable from the code indet1)

states thaD consists of valid code indices only, andt) says thab is in the domain.

(wt3) requires the type stack state to be empty upon the method entd). €nsures that

the type stack states satisfy all type-consistency cheeks) ays that a successor type

stack state has to be more specific than the type stack state associated to the successor
index. In particular, this means that the type stack state asserted in any successor shall be
more specific but of the same length as the predecessor type stack state. The condition is
related to the rules described g Partition 111,§1.8.1.3] for “merging” type stack states.

When simulating the control flow paths, the verifier merges the simulated type stack state
with the existing type stack state at any successor instruction in the flow. If the numbers
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of slots in the two type stack states differ, the merge fails. Otherwise, the merge of the
type stack states is computed slot-by-slot. A precise abstract definition of the structurally _
similar JVM bytecode verifier formalizing such merge rules is provide@%{17]. -

The proof for CLRg

In this section, we show how to extend the soundness proof EBETCLRy to CLRg.
The soundness theorem proved for the exception-free maehkieeCLR guarantees
that the following type-safety invariants hold at runtime for well-typed methods.

(pc) pce D, i.e., the program count@cis always a valid code index;
(stackl) the currenevalStackhas the same length asalStack;

(stack?2) the values on the curreavalStaclare compatible with the corresponding types
assigned irevalStack’;

(loc) all the local variables have values compatible with the declared local variable types;
(arg) all the arguments have values compatible with the declared argument types;

(init) an “uninitialized” object can only occur in an object class constructor of an
appropriate class (see the object initialization rulesl Partition 111, §1.8.1.4]);

(field) all fields of an object class instance are compatible with the declared field types;

(box) the value type instance embedded into a boxed value (object) is of the expected
value type;

As one can easily see in the proof of Theoferthe invariants Ioc)-(box) are not
affected by computation steps BKCCLR. It suffices therefore to consider here only
the invariants (§c), (stackl), and étack?. The formalization of the invarianstack?)
involves a typing judgmerntt val : t defined in [L1] and interpreted as follows: the type
of the valueval is a subtype of the type

Theorem 1 (Soundness of Bytecode VerificationT he following invariants are satisfied
by every frame in every runtime state@f Rz for every well-typed method meth:

(pc) pce D
(stackl) lengthlevalStack = length(evalStackj)
(stack2) + evalStaclkj) : evalStack].(j), for every j< lengthlevalStack
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Proof. The proof assumes the proof faxeCCLRy and proceeds by induction on the
run of CLRg. In the initial state of CLR, the invariants for the single existing frame
(of the .entrypoint method) are satisfied. In fact, this frame satisfies= 0 and
evalStack= []. Thus, pc) holds by (vt2) and stackl), and 6tack?) follows from (wt3).

In the induction step, we proceed by case distinctiortaae pc), whetherEXECCLRg
has the controlgwitch= Noswitcl) or EXCCLR (switch= ExcMecl). In the second case,
we make an additional case distinctionmass Due to space limitations we present here
only some characteristic subcases that can occur in each case.

Case 1switch= Noswitch The subcasesodepc) € {Throw, Rethrow EndFinally} are
trivial because they do not affect neithgrnor evalStack

Subcase 1.koddpc) = EndFilter. Then CLR; executes BPFRAME, and setswitch

to Noswitch POPFRAME reestablishes the context of the invoker framdrame The
induction hypothesis guarantees that the invariants hold for the new current frame, namely
the caller frame oframe

Subcase 1.Zodgpc) = Leavdtarget). When executind-eavétarget), EXECCLRg
loads the leave recof.eave (frame 0), target) onto thepassRecStacknd gives the con-
trol to EXCCLR, i.e., setswitchto ExcMech As the invariants are not affected, the claim
follows from the induction hypothesis.

Case 2switch= ExcMech We present two subcases out of three.

Subcase 2.pass= Leave Letsandtargetbe the current value of theackCursorand
the target associated to thisavepass, respectively.

Subcase 2.1.&xistsHanWithinFrame) is true. Leth be the handler pointed to sy

If isRealHanFromTth, pc, target) is true,EXCCLR executes BAORTPREVPASSREC and
GoToNxTHAN which do not influence the invariants. Therefore, the claim follows from
the induction hypothesis.

If isFinFromTdh, pc, target) is true, EXCCLR executes the macrosxEcHAN (h) and
GoToNXTHAN. EXECHAN(h) setspc to handlerStarth), evalStacko [] (since by the
definition ofisFinFromTq h is afinally handler) andwitchto Noswitch By the defi-
nition of excHandlerswe get thathandlerStarth), []) is in the setexcHandlerémeth pc)
and therefore irsucgmeth pc, evalStack(]c). This together with§c) and (t5) imply
handlerStarth) € D and[] Cien evalStackfanderstartn)- This means that the invari-
ants pc), (stackl), and gtack?) are preserved for the current frame (the last two invari-
ants hold sincevalStack fangierstarth) is necessarily).

Subcase 2.1.2xistsHanWithinFram@) is false. In this cas&xCCLR setspcto target,
evalStackto [], switchto Noswitchand executes ®RecC. From the definition of the
Leaverules in EXECCLRg and EXCCLR, it follows thatcod€pc) = EndFinally or
coddpc) = Leavetarget).

If codepc) is the EndFinally instruction, the definition of the functiosuccimplies
(target []) € sucdmeth pc, evalStack(.).

If codgpc) is an instructiorLeavétarget), then by the definition of Subcase 2.1.2, the
set{h € excHAmeth | isFinFromTah, pc, target) } is empty. Then the definition siucc
implies (target [|) € sucgmeth pc, evalStackyc).
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Thus, in every case holdsarget []) € sucgmeth pc, evalStack(). This together with

(pc) and (wt5) impliestarget € D and[] Cien evalStackfger. Consequently, the in-

variants pc), (stackl), and étack?) hold for the current frame (the last two hold since -
evalStackge: shall be[]).

Subcase 2.2ass= StackWalkLet s be the current value of tretackCursor

Subcase 2.2.ExistsHanWithinFram) is true. Leth be the handler pointed to l3and
posthe program counter of the frame pointed tosdy

If h satisfiesmatchFilterpos h), thenEXCCLR executes EECFILTER(h) which loads
on theframeStacla frame withpc set tofilterStart’h) andevalStacko [exd. From the
definition of matchFilter, we haveisinTry(pos h) and clauseKindgh) = filter . By
this and the definitions auccand excHandlers we get(filterStart'h), [object |) €
sucgmref, pos evalStack].s) wheremref is the method of the frame pointed to by
The definition of EXECFILTER implies thatmref is also the method of the new current
frame. Thus,(filterStart(h), [object |) € sucgmethpos evalStack]es). This, (c),
and (t5) imply filterStart(h) € D and[object | Cien evalStackFierstarthy- In particular,
this means thatp) holds in the new state and thewalStackiersagn) = [Object .
From wt4) applied to thél hrowinstruction that threvexg we know that the type a#xcis
a subtype obbject . SinceevalStack= [exd, it follows that the invariantsstackl) and
(stack?) hold in the new state.

In all the other caseg§XCCLR executes submachines that do not upgater evalStack
so that the claim follows from the induction hypothesis.

Subcase 2.2.2xistsHanWithinFram) is false. Then S8ARCHINVFRAME is executed,
without affecting any of the invariants. O

Remark From the proof point of view, the case when a method raises an exception is
treated as if the corresponding call instruction in the invoker frame would have thrown the
exception. Similarly, the case when a class initialization (that might happen at any time
if the class ieforefieldinit ) throws aTypelnitializationException is
considered as if the instruction executed just before the initialization would have thrown
the TypelnitializationException . Both cases could also be treated (modulo
the corresponding exception object on thalStack as if the current instruction would

be Throw.

11 CONCLUSION

We have defined an abstract model for the CLR exception handling mechanism. It lays
the ground for a mathematical correctness proof of the CLR bytecode verifier. Through
a mathematical analysis we discovered a few gaps in the ECMA standard for CLR. Our
model fills these gaps.
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