
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 2, March-April 2006

Cite this column as follows: Dave Thomas, “On the next move in Programming”, in Journal of Object
Technology, vol. 5, no. 2, March-April 2006, pp. 7-11 http://www.jot.fm/issues/issue_2006_03/column1

On The Next Move in Programming1
Dave Thomas, Bedarra Research Labs

IN SEARCH OF THE NEW NEW PROGRAMMING THING

We are now emerging from the dark period earlier in the decade and many in the
community are bemoaning the good old days when new languages appeared with great
frequency and new paradigms abounded.

Unfortunately, we find ourselves in a world which increasingly ignores the
experiences of past successes and failures to claim inventor rights are the new new thing.
Simple techno sound bites are easy to communicate using the web and academics have
become as adept as major marketers in spin and mindshare capture. Rather than evolving
from the best of what we know to the better, each new thing in our field seems to need to
kill off those that came before it.

A recent PhD student remarked that it was very upsetting to have to read old papers
published in the mid to late 70s that contain immature versions of their new ideas which
they must now read and cite. It sometimes appears that scholarly work in our field is no
longer a badge of honor but a burden forced on graduate students who have grumpy old
supervisors.

We seem to be in denial that our industry is maturing, we are losing our elders, some
of us don’t code any more and many of our new things are really good ideas from 20 or
more years ago. Some good old ideas reappear because the technology is now available to
commercially exploit them; others become popular because they provide a better
approach to solving a particular problem. Reinvention and improvement of good old
ideas is both scholarly and sound engineering provided the prior art is cited and explained
as opposed to hyped or even patented. This means we need to look for the important
small improvements and not just the big bang!

We need to find the balance which builds from our best past work but also doesn’t
send a discouraging message that everything has been done before, or if it was that it was
necessarily done correctly! We need to benefit from the wisdom of our elders without
being constrained by them. We’ve argued for the increased promotion of computational

1 This column was inspired by JOT discussions including an article titled “The Next Move In Programm-
ing: A Conversation with Sun's Victoria Livschitz, http://java.sun.com/developer/technicalArticles/
Interviews/livschitz_qa.html ” which inspired the title.

http://www.jot.fm
http://java.sun.com/developer/technicalArticles/interviews/livschitz_qa.html
http://www.jot.fm/issues/issue_2006_03/column1
http://java.sun.com/developer/technicalArticles/interviews/livschitz_qa.html

ON THE NEXT MOVE IN PROGRAMMING

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

diversity (http://www.jot.fm/issues/issue_2003_05/column1) rather than a narrow focus
on using the right current industrial platform or language.

OBJECTS NEXT?

In the OO community there seems to be a concerted search to either find what is “Beyond
Objects?” or to argue that “Objects Are It!”. To their credit OOPSLA
(http://www.oopsla.org/2006/) and ECOOP (http://www.emn.fr/x-info/ecoop2006/) have
been openly searching for new ideas in their calls for papers and workshops. The
OOPSLA Onward! track deserves special mention in this regard as it provides a platform
for new ideas.

The popular research area of AOP is one new next contender which has rapidly
emerged from our own community and now has its own successful conference
(http://aosd.net/2005/). Recently, there have been papers/proposals for Feature,
Language, Law, DSL/Domain, and Context Oriented Programming etc. There is also
good work in integrated objects and transactions, unifying objects, info sets and tuples
[1]. Closely related to this is the interesting work on making relationships found in ER
and UML models first class types in a programming language [2]. Continued work on
Actors [3] and more recently Chords [4] seeks to unify concurrency with object
orientation. Object Ownership has always proved a challenging problem especially when
VM implementations refuse to allow objects to have an associated owner; however,
considerable progress has been made [5, 6]. There is also a resurgence in research on
dynamic languages including prototype based languages and multi-paradigm languages.
Finally, work on using objects to build next generation multi-modal UI toolkits is very
interesting [7].

All of this work seeks to provide tools or language extensions which allow the OO
model to address specific issues and/or broaden the applicability of OO. While they don’t
promise a New Oriented Programming they provide the critical and difficult research to
build better OO languages, tools and systems. It is clearly a challenge to integrate all of
these powerful concepts into a language/platform which is useable by those who are not
advanced software professionals.

PEOPLE ORIENTED PROGRAMMING

One of the more exciting changes in our field is the rapid and energetic emergence of
Agile Software development initiated by Scrum and XP. Unlike traditional process
artifact centered approaches to development, Agile emphasizes human and business
values. Large, unfortunately unpublished internal studies have concluded that defects and
timely delivery of software are most high correlated with the individuals and teams of
individuals rather than the programming environments, languages or platforms.

http://www.jot.fm/issues/issue_2003_05/column1
http://www.oopsla.org/2006
http://www.emn.fr/x-info/ecoop2006
http://aosd.net/2005

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 9

We have for too long focused on the technical dimension of our field without
considering the importance of the social aspects and especially the critical need to
effectively communicate with our customers and between ourselves. Even small progress
in this area promises huge benefits.

OPEN SOURCE SOFTWARE

Open Source has provided the impetus for small global teams of open source project
developers, some of whom have never met in person, to collaborate to build software
together. Other developers and users have full view of the source code they create and in
many cases the interactions of team members. Simple Open Source tools such as Wiki,
JUnit and Fit have a major impact on allowing teams to build better software. Eclipse has
enabled many to contribute to the open source tooling. Recently MS and Eclipse have
initiated efforts to enable open process definitions which may lead to integration of
processes and tools. The availability of open tooling has allowed customers to innovate in
their tools and processes, often accelerating the transition to things like Agile
development.

The large open source code base provides a rich set of research data for social
researchers as well as software engineers who can now finally look at large programs as
they evolve over time. The combination of sophisticated program analysis, text
understanding and simple heuristics promises new tools for helping us understand how
we work.

SOFTWARE WITH POLISH

It is well accepted that it takes time to polish a good essay, research paper or a program
into something that we believe is correct and readable [8]. Modern languages lack
publication syntax and IDEs lack a nice way to publish/present the code using multiple
fonts and indentations2 so that it is readable [9] by others. We need to make the technical
and business case that clean, well-written software is a better investment and that “send it
back, refactor it and make it better” is a necessity not a luxury.

SAYING MORE WITH LESS – THE NEED FOR A VHSL

Despite the great progress in tools and languages there is still far too much stuff that gets
in the way. The latent and accidental complexity of current languages and platforms
makes a 4GL of the past look like a dream. Java and C# are just barely above the machine
code of the VM. VMs have lifted the level of the platform but we are still programming
just above them. There is too much code to be developed and maintained to keep using

2 JavaDoc and Doxygen provide basic capabilities for publishing.

ON THE NEXT MOVE IN PROGRAMMING

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

low-level languages even if they are supported with fancy visual tools and generators.
Even in old functional programming languages such as Lisp and APL all developers
knew map reduce as a programming idiom and didn’t need a separate course in design
patterns.

Perhaps we should take a tip from our colleagues in hardware design and think about
languages which are simple, expressive and allow us to describe major applications in a
small number of pages of code. If electrical engineers can move to HDL and VHDL we
should be prepared to move to at least a similar level of abstraction with a VHSL.

We need to move beyond the complexity, limitations and weaknesses of Smalltalk
and Lisp but seek a language with at least as simple a syntax and more expressiveness.
We have the benefit of considerable research on advanced type systems which can used
to work with the developer as opposed to against him. Our hardware colleagues can help
by using some of those transistors to support robust and efficient dispatch, true
sandboxing and type and ownership information for every instance. Small investments in
hardware software co-design can have a huge impact on the robustness and adaptability
of software.

REFERENCES

[1] Gavin Bierman, Erik Meijer, and Wolfram Schulte, The essence of data access in Cω,
ECOOP 2005, http://research.microsoft.com/Users/gmb/Papers/ecoop-
corrected.pdf

[2] Gavin Bierman, Alisdair Wren, First-Class relationships in an objected-oriented
language, ECOOP 2005, http://www.cl.cam.ac.uk/~aw345/talks/ecoop05.pdf

[3] Denis Caromel, Ludovic Henrio, Bernard Serpette, Asynchronous and Deterministic
Objects, POPL'04.

[4] Nick Benton, Luca Cardelli, Cedric Fournet, Modern Concurrency Abstractions for
C#, http://research.microsoft.com/Users/luca/Papers/Polyphony%20
(TOPLAS).pdf)

[5] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Martin Rinard, PLDI
2003.

[6] David G. Clarke, James Noble, John M. Potter, Simple Ownership Types for Object
Containment, ECOOP 2001.

[7] Eric Lecolinet, http://www.infres.enst.fr/~elc/ and Stéphane Huot, Cédric Dumas,
http://dastuf.free.fr/projects.html

[8] Richard Gabriel, The Poetry of Programming, http://java.sun.com/features/2002/11/
gabriel_qa.html

[9] Ronald M. Baecker, Human Factors and Typography for More Readable Programs,
Addison-Wesley, January 1, 1990

http://research.microsoft.com/Users/gmb/Papers/ecoop-corrected.pdf
http://research.microsoft.com/Users/gmb/Papers/ecoop-corrected.pdf
http://research.microsoft.com/Users/gmb/Papers/ecoop-corrected.pdf
http://www.cl.cam.ac.uk/~aw345/talks/ecoop05.pdf
http://research.microsoft.com/Users/luca/Papers/Polyphony%20(toplas).pdf
http://www.infres.enst.fr/~elc
http://dastuf.free.fr/projects.html
http://java.sun.com/features/2002/11/gabriel_qa.html
http://research.microsoft.com/Users/luca/Papers/Polyphony%20(toplas).pdf
http://java.sun.com/features/2002/11/gabriel_qa.html

VOL. 5. NO. 2 JOURNAL OF OBJECT TECHNOLOGY 11

About the author
Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding director
of the Agile Alliance (www.agilealliance.com). He is an adjunct
research professor at Carleton University, Canada and the University of
Queensland, Australia. Dave is the founder and past CEO of Object

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him
at dave@bedarra.com or www.davethomas.net.

http://www.bedarra.com
http://www.Online-Learning.com
http://www.openaugment.org
http://www.agilealliance.com
http://www.oti.com
mailto:dave@bedarra.com
http://www.davethomas.net

