
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 1, January - February 2006

Cite this column as follows: Dave Thomas: “The Unnecessary Tension between Process
and Programmer”, in Journal of Object Technology, vol. 5, no. 1, January-February 2006, pp.
7-11 http://www.jot.fm/issues/issue_2006_01/column01

7

The Unnecessary Tension between
Process and Programmer

Some of My Best Friends Use an Agile Software Process

Dave Thomas, Bedarra Research Labs

1 THE PROCESS BORG

Today all organizations are required to achieve process compliance, be it ISO 9000, Six
Sigma, CMM, Sarbanes-Oxley, Balanced Score Cards etc. Each of these compliance
activities seeks to ensure that the company has the appropriate processes in place to
ensure that the company can serve the needs of their customers and shareholders. Most
mandate some form of continuous improvement measurement, dare I say metrics, so that
the organization can monitor its improvement.

Many of these efforts were originally targeted at improving manufacturing,
operations or finance, but they are having an increasing impact on the IT and SE. Also,
while these efforts were initially applied to larger companies, they have trickled down to
the smaller ones who supply these larger firms.

Having a documented process has therefore become a mandatory requirement for
software development. It isn’t sufficient to say “we are doing Waterfall, Iterative or
Agile; go away and let us get our work done”. Like it or not, everyone needs to be able to
articulate the process they use for software development. It is time for developers to take
ownership of the process side of things so that they can stop fighting it. Process is like
democracy: if you don’t participate, you get the process you deserve. However, there is
no need for process tension to obstruct productive development!

2 SOFTWARE CULTURE YES - SOFTWARE PROCESS NO

Ask any software developer and they will tell you if they feel they are working in a good
software culture, and most who answer no will say that they would like to be. However,
ask most developers how they feel about their company’s software process and they will
complain bitterly. Yet the best software cultures always have very disciplined processes
which developers follow almost to a fault. Indeed the culture is defined by a unique
combination of people and process. The open source Apache foundation is an example of

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_01/column01

THE UNNECESSARY TENSION BETWEEN PROCESS AND PROGRAMMER

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 5 NO. 1

a successful software culture that has very disciplined practices. In fact, all of the
successful software cultures I know of have disciplined and valued rites and rituals. How
can cultures be so respected while the software processes that help drive them are so
repugnant to developers?

Let Them Eat Process

When articulated by the CEO or VP of engineering, the process initiative brings tears to
your eyes: clearly we all want to improve. However, too often these speeches take the
form of political promises sounding like free universal health care and a good life for all
without seriously looking at how they are funded or implemented in the organization. My
most recent irritation is the attempt by some to move to Agile development without first
making the investment in a continuous integration and test environment.

Traditionally software processes have been dictated top down by the Process or
Quality department with little input from the analysts or developers. Searching for the
usual quick fix, many companies have adopted commercial processes in the hopes that
they could provide the solution. Unfortunately this has created a perception gap which
says that process is bad and something which gets in the way. This persistent adherence
to a top-down approach is surprising when history has shown that quality and change is
best introduced bottom up sharing experiences across teams so that the organization
learns from experience. Instead of evolving with the teams’ learning experience, the
process often remains a static pile of out-of-date manuals or a huge website which is
seldom referenced. Top-down processes emphasize artifacts, roles and linear production
where as bottom-up processes tend to focus on skills, practices and incremental
improvement.

Too often the appearance of process is more important than actually having a process
which works! Middle management people have become experts at gaming any
measurement system, and can often obtain their quality bonus without actually doing
anything to improve quality. The measurement system is gamed to give the same good
news results as before. Consider for example the hotel room quality control card that says
“if you can’t give us at least 9 or 10 call me, the manager, at my home number”. Clearly
this hotel chain doesn’t really care about quality! Nor does it care about improvement
since reporting real problems is actively discouraged.

Unfortunately many managers and executives often lack modern real world
development experience. Few, if any, have developed and deployed a new major
application or product; hence they have maintenance processes at best, which are
designed to reduce risk through incremental fixes and features. They believe in all best
intensions that if there is a documented process that development will improve. There is
little said about first-time software where expert education and mentoring are so
important to acquiring new practices. The problem is compounded by process
implementations by managers and project leaders that do not provide for learning, proper
time allocations for activities etc. In many cases the process is simply a set of check
boxes and artifacts to be produced in addition to the software asset (with no additional
time to do so).

VOL. 5 NO. 1 JOURNAL OF OBJECT TECHNOLOGY 9

Culture – The Invisible Implicit Process

What one really wants is a learning organization with a culture that is tightly aligned with
an almost invisible process. In such a software culture things just get done according to a
seemingly implicit process because that is the culture. In such organizations people
follow the process because they just do it, not because it is posted on the wall, distributed
in a large manual accompanied by draconian gate reviews, piles of project charts etc. We
need to move beyond large complex process definitions to implicit practices which are
intrinsic to a productive culture.

Agile Development (www.agilealliance.org) is an increasingly successful example of a
bottom-up people/team center process which can be assimilated quickly by small teams
to improve software predictability and quality. Agile Development quickly builds a
common culture of simple, day-to-day practices which developers live and breathe.
Unfortunately, the lack of Agile process descriptions and the disdain which Agile
developers have for process creates unjustified concerns about the lack of discipline of
developers. Agilists need to meet the need by providing the straightforward process
documentation and measurement which organizations need.

3 AGILE PROCESS DEVELOPMENT – MAKE IT BETTER EACH
SPRINT

Process descriptions don’t need to be lengthy, they just need to describe the vocabulary
essence of what people do, what is produced, the sequence in which things are done and
how the process can be observed by management or customers who are not actually
inside the development team. Since there are lots of publications available, there is no
need write a massive document; instead, the documentation needs only to provide
sufficient information and appropriate references, ideally to online documents, to allow a
newcomer to understand how it is that things are done in your software culture.

Process doesn’t have to be built in a single day. It is really just a case of Agile
writing where pairing, incremental releases, and collaborative reviews to find bugs can
easily produce a simple website. Many Agile teams do this already in one way or another
in their team wikis, blogs or websites. If you are concerned about the quality lingo of Six
Sigma, or the software metric police, take the time to ask them what information they
need and why they need it. Just asking them, indicating you may even care if they can be
successful at their job, can often lead to a ground swell of cooperation that may have
process experts writing and editing your process for you as you speak.

Leverage Open Space Communities of Practice

Virtually everyone accepts that Agile works inside a small team, but large organizations
need to have common language across the organization so that people can communicate
using the same vocabulary and so that people can be moved to from team to team and
new employees can be brought up to speed quickly. Building process consensus across
teams is best facilitated by communities of interest who meet informally in open space to

http://www.agilealliance.org

THE UNNECESSARY TENSION BETWEEN PROCESS AND PROGRAMMER

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 5 NO. 1

discuss how they can improve their practices, be they in developing stories, acceptance
tests, unit tests, interfaces, acting as scrum master, measuring progress etc. Grow your
process and culture bottom-up, sharing what works and doesn’t for your team and your
organization.

Measurements – Let Code Report Itself

Agile advocates’ providing constant visibility to both customers and developers through
collaborating as well as visible progress through burn down and velocity charts. The
Agile manifesto values working code over voluminous documentation. Similarly, small
releases and continuous integration are essential practices. Since the code is so important,
make sure the code base is instrumented and stories’ implementations, unit, and
acceptance tests documented so that rather than using cumbersome project reporting tools
one can just produce accurate information from the code base. “Luke, trust the code”.
Why fake it with tedious reporting tools if you can collect the information at every build
directly from the code base (feeding whatever inane PM tools are still in use auto
magically). Project information can best be obtained from simple qualitative web based
questionnaires filled out each iteration by the scrum master, with quantitative
measurements for the code base.

Towards Open Process Development

To be fair, the process community is very concerned about the gap between process and
programmer and they are working to find ways to improve the situation. Many process
champions have tried everything they can to publish processes on the web, wikis and
other friendlier formats which may appeal to developers. Recently, organizations have
even been situating process people with development teams to try to document the
processes actually used by the development teams. However, their efforts are seldom
supported by development organizations, which see all process as evil overhead.

Recently Randy Miller (http://blogs.msdn.com/randymiller/archive/2005/05/10/
416021.aspx) and others at Microsoft (http://msdn.microsoft.com/
vstudio/teamsystem/msf/msfagile/default.aspx) have made efforts to incorporate
processes integrated with development tools.

In October Eclipse has announced the Beacon Eclipse Process Framework
(http://www.eclipse.org/proposals/beacon/proposal). Per Kroll, principle author of the
proposal, () promises EPF will provide open source process definitions and tooling to
define such processes. In doing so, the process community is seeking to provide a
common place repository for process descriptions as well as tools for defining and
publishing process descriptions. The existence of open process documentation should
reduce the effort and expense needed to create process description and ideally offer the
opportunity for communities of interest to describe practices, including typical pitfalls.

http://blogs.msdn.com/randymiller/archive/2005/05/10/416021.aspx
http://blogs.msdn.com/randymiller/archive/2005/05/10/416021.aspx
http://msdn.microsoft.com/vstudio/teamsystem/msf/msfagile/default.aspx
http://msdn.microsoft.com/vstudio/teamsystem/msf/msfagile/default.aspx
http://www.eclipse.org/proposals/beacon/proposal

VOL. 5 NO. 1 JOURNAL OF OBJECT TECHNOLOGY 11

4 SUMMARY

It is time for developers to embrace and extend software processes into a healthy
description of your organization’s software culture. All that is needed is the vocabulary,
practices, measurements, lessons learned and references to places to learn more. Agile
software has better ways of measuring and predicting software development than classic
PMI. Now we need to make the efforts to articulate these new ways to others. We also
need to automate our code bases so that the artifacts themselves can provide the
information that organizations need to manage and plan their software.

About the author
Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding director
of the Agile Alliance (www.agilealliance.com). He is an adjunct
research professor at Carleton University, Canada and the University of
Queensland, Australia. Dave is the founder and past CEO of Object

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him
at dave@bedarra.com or www.davethomas.net.

http://www.agilealliance.org
http://www.bedarra.com
http://www.Online-Learning.com
http://www.openaugment.org
http://www.oti.com
mailto:dave@bedarra.com
http://www.davethomas.net

