
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 1, January – February 2006

Cite this column as follows: G. Arumugam and M. Thangaraj: “An efficient multiversion access
control in a Temporal Object Oriented Database”, in Journal of Object Technology, vol. 5, no. 1,
January-February 2006, pp. 105-116, http://www.jot.fm/issues/issue_2006_01/article4

An efficient multiversion access control
in a Temporal Object Oriented Database

G. Arumugam, Department of Computer Science, Madurai Kamaraj University,
Madurai, India
M. Thangaraj, Department of Computer Science, Madurai Kamaraj University,
Madurai, India

Abstract
Many data base applications require the storage and manipulation of different versions
of data objects. To satisfy the diverse needs of these applications, current database
systems support versioning [Hulten94] at a very low level. The proposed model
demonstrates that an application independent versioning can be supported significantly
at higher level. The model uses signature patterns [Norvag99], hash table and B+ trees.
The outcome of the analysis shows that the proposed model is performing well for all
possible operations on versions.

1 INTRODUCTION

In an object oriented database system, the object model is often useful to store
information about different aspects of an entity. Normally, this information is stored as
versions of the corresponding objects. There are two broad categories of versions such as
system level and application level. The system level versions are created and maintained
by the database system. Such versions are useful for concurrency control [Bertino94],
transaction support and redundancy in distributed databases. In contrast, application-level
versions are created by applications for specific purposes. Examples of such versions
include alternative designs for the object, previous states of the object, and so on.

In a temporal object database system[TODB] [Nervag01], it is usually assumed that
most of the accesses will be to the current version of the objects in the database. In order
to keep these accesses as efficient as possible, and benefit from object clustering, the
database is partitioned. The current version objects are stored in the current database, and
the historical versions are stored in the historical database. When an object is updated in a
TODB, the current version is first moved to the historical database, before the new
version is stored in-place in the current database. The OID needs to be updated every
time an object is updated.

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_01/article4

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

The scope of this paper is to study about application level versions. The users are
able to access any subset of versions of an object or choose a version based on specified
properties. In order to maintain different versions of an object for efficient query
operation, an effective indexing structure is needed. In this paper, we present an index-
based model that controls the access of versioned objects in the database.

The remainder of the paper is organized as follows: Section 2 is devoted to the issues
relevant to the version management. In Section 3, we describe the architecture for version
control. Section 4 shows our performance evaluation result. Finally, in Section 5 we
present conclusion.

2 RELATED WORK

The notion of versioning can be modeled using pairs of types, each pair consisting of a
generic type and version type. Each versioned entity has single associated generic object
and zero or more associated version objects. The generic object contains the information
common to all of its versions. All the versions of a generic object have the same scheme,
but they differ only in the values of their attributes.

Versioning model [Sciore93]

EXTRA V is a model, contains key words, which are versioned. Attributes appearing
after this keyword in a type declaration are versioned and those appearing before the
keyword are unversioned. A version of a conceptual object denotes a previous or current
state of the object.

Multi-version schemes [Lomet89]

In a multi version database systems, each write operation creates a new version whereas
read operation selects one of the versions. The concurrency control scheme must ensure
that the selection of the version to be read is done in a manner that ensures serializability.

Multi-version indexing [MVI] [Thangaraj03][Bober97]

It extends single-version indexing schemes to handle multi version data. It outlines four
major approaches such as chaining, data page version selection, primary index version
selection and all index version selection. These approaches will work with the on page
catching method for storing prior versions and the B+ tree is used as a data structure for
indexing.

VOL.5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 107

3 PROPOSED MODEL

The multi version indexing schemes are considered different in the way they accomplish
version selection. The selection mechanism locates the appropriate version of a tuple
from a collection of existing versions. Earlier approaches use only B+ tree [Bober97] to
manage the different versions. The proposed model, ATVIM, supports efficient handling
of multiple versions of a single object.

The ATVIM is an integrated model supporting both inheritance hierarchy and
aggregation hierarchy. The ATVIM model in Fig.1 is an improved version of the model
proposed by Thangaraj al. [Thangaraj99][Thangaraj03].

The index model consists of two indexes namely primary and auxiliary indexes.
Both indexes are using the data structures with the combination of signature patterns
[Norvag99], hash tables and B+trees.

The primary index is indexed on the values of the attribute An. It associates with a
value K of An, the set of OIDs of instances of all classes that have K as the value of the
attribute An. The second index, called auxiliary index, has OIDs as indexing keys. This
auxiliary index associates with the OID of an object O and the list of OIDs of the parents
of O. The leaf-records in the primary index contain pointers to the leaf-node records in
auxiliary index, and vice-versa.

Therefore, the primary index is inverted with respect to the values of attribute An and
it is used for retrieval operations. The auxiliary index is inverted with respect to OIDs of
instances of all classes (except for the class, root of the path, and for its subclasses) in the
scope of a given path. Basically, the auxiliary index is used to determine all primary
records where the OIDs of a given instance are stored in order to efficiently perform
delete and insert operations.

The primary index consists of a hash table, signature patterns and B+ trees. Each
bucket in the hash table has a signature pattern [Norvag99] and a pointer to a B+ tree.
The signature is a bit pattern that has a pointer array of n bits which holds 1 or 0, while
mapping, the bit corresponding to the object key is set as 1. During searching, the object
availability can be determined with one comparison. Any effective hashing function can
be used to hash the given key into the hash table and hence into the corresponding B+
tree.

The format of the non-leaf node has a structure similar to the traditional index
structure on B+ tree. The leaf node in the primary B+ tree has different structure that
contains the information about classid, record length, key value, class directory, and
offset. The class directory consists of a set of classes that are having instances with the
key value in the indexed attribute. The offset shows the position of the OID in the record.
The remaining part of the node structure consists of the number of OIDs in each class and
their versions, and the OID along with the pointer to the corresponding object in the
auxiliary index.

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

Primary index

Hash table B+ tree
Ptr to B+ tree

 …

 …
 …

 …

…. …. ……. ……..
B+ tree leaf record

OID

Record
length

Key
value

Class
Directory

No. of
OIDs in
the list

List of
OIDs,VIDs
and
auxiliary
pointer

……

……

Auxiliary index

Hash table B+ tree
Ptr to B+ tree

…
…
…

…

B+ tree leaf record …. …….. …… ….. ….. ……

OID

Pointer to primary
record

Number of
parents

List of OIDs of parents

Fig. 1: ATVIM architecture

The auxiliary index also consists of a hash table, signature pattern and B+ trees. Every
entry in the hash table has signature pattern that indicates the availability of the object
and a pointer to a B+ tree. Any effective hashing technique can be used to hash the OID

sign1
sign2
sign3
sign4
……
…….
……
…….
…….

sign1
sign2
sign3
sign4
……
…….
……
…….
…….

VOL.5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

of the object into the hash table and hence into the corresponding B+ tree. The format of
a leaf node in the auxilliary B+ tree is as shown in Fig 1. It consists of the OID of the
object, record length (number of OIDs referring to the particular object called as parents
of the object), pointer to the primary record and list of parents.

Operations

In this subsection, we present an algorithm for retrieval, insert and delete operations for
ATVIM model.

a) Algorithm : Retrieval
 Data structure : See Fig. 1
 Input : search value K
 Output : List of OIDs

Steps :
 Hash the key K, find the relevant bucket in primary hash table
 If the K is in Bit matrix
 {
 func find (nodepointer, search value K)
 {
 if *nodepointer is a leaf,
 {
 find class directory and list of OIDs

retrieve all versions using VID
}.

 else
 if K < K1 then return find(P0, K)

 else

 if K >= Km then return find (Pm, K)
 //m = number of entries
 else
 find I such that Ki <= K <= K i+1

 return find (Pi, K)
 end
 find the class directory in the primary record node
 retrieve all the OIDs and its corresponding VIDS

b) Algorithm : Insertion
 Data structure : See Fig. 1
 Input : Key K
 Output : Insert into proper position

Steps :
 Hash the key K, find the relevant bucket in auxilliary hash table
 If the K is not in Bit matrix
 {
 set the corresponding bit in the matrix
 func insert (value V, pointer P)
 {
 find the leafnode L that contains value V
 insert-entry(L,V,P)
 parentcount ++
 find the primary record using the pointer
 using class directory add new OID and increment OID,VID count

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

 }
 func insert-entry(node L, value V, Pointer P)
 {
 If (L has space for (V,P) then insert V,P in L
 else //split
 {
 create node L’
 If (L is a leaf) then
 {
 Let V' be the value such that [n/2] of

the values
 L.K1,…,L.Kn-1, V < V'
 Let m be the lowest value such L.Km >= V'
 Move L.Pm,L.Km,…,L.Pn-1,L.Kn-1 to L'
 If(V < V') then insert P,V in L
 else insert P,V in L'
 }

else
 {
 Let V' be the value such that [n/2] of

the values
 L.K1,…,L.Kn-1, V >= V'
 Let m be the lowest value such L.Km >= V'
 add Nil, L.Km,.., L.Pn-1, L.Kn-1,L.Pn to L'
 delete L.Km,..., L.Pm…,L.Kn-1,L.Pn from L
 If(V < V') then insert V,P in L
 else insert V,P in L'
 delete Nil, V'from L'
 }
 if (L is not the root of the tree) then
 insert-entry(parent(L), V', L')
 else {
 create new node R with child nodes L and L'
 and the single value V'
 make R as the root of the tree
 }
 if (L is the leaf node) then
 set L'.Pn = L.Pn
 set L.Pn = L'
 }
 }
 }

c) Algorithm : Deletion

Data structure : See Fig. 1
 Input : Key K
 Output : Deletion of OID and its instance

Steps :

 Hash the key K, find the relevant bucket in auxilliary hash table
 If the K is in Bit matrix {
 make the corresponding bit in the matrix as zero
 func delete (value V, pointer P)
 {
 find the auxiliary leafnodeL that contains value V
 delete-entry(L,V,P)
 parentcount --
 find the primary record using the pointer

VOL.5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

 temporary list is formed to store the OIDs & VIDs
remove all ids in the temporary list
remove the pointer to the primary record

 }
 func delete-entry(node L, value V, Pointer P)
 {
 delete V,P from L
 If (L is the root and L has only one remaining child) then
 make the child of L as the new root of the tree and delete L
 else if(L has too few values/pointers) then
 {
 Let L’ be the previous or next child of parent L
 let V' be the value between pointers L and L' in parent L
 If (entries in L and L’ can fit in a single node) then
 {
 if (L is the predecessor of L’) then

 swap_variables(L,L’)
 if (L is not leaf) then
 append V’ and all pointers and values in L to L’
 else append all (Ki, Pi) pairs in L to L’
 set L’.Pn = L.Pn
 delete-entry(parent(L), V’,L); delete node L
 }
 else // redistribution : borrow an entry from L’
 {
 If (L’ is a predecessor of L) then {
 Let m be such that L’.Pm is the last pointer in L’
 Remove L’.Km-1,L’.Pm from L’
 Insert L’.Pm,V’ in L as a first value
 by shifting appropriate pointers to the right
 replace V’ in parent(L) by L.Km-1 }

 else {
 Let m be such that (L’.Pm, L’.Km) is the last
 pointer/value pair in L’
 remove L’.Pm, L’.Km from L’
 insert L’.Pm, L’.Km in L as a first value
 by shifting other pointers and values to the right
 replace V’ in parent(L) by L’.Km
 delete Nil, V’ from L’
 }
 }
 }
 }
 }

The earlier model, MVI uses the data structure B+ tree for the indexed access. The
performance of the MVI model is fully depends on the height of the tree. As the height of
the B+ tree is increasing with respect to the volume of objects, which increases the
retrieval time of an object. But in our proposed model, each bucket in the hash table
points to a B+ tree which reduces the height of the tree. As the keys are uniformly
distributed among the trees, the height of the trees is reduced when compared to the MVI
model. The searching for availability of the particular versions in the database can be
easily identified with a single comparison using the signatures in each bucket.

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

4 PERFORMANCE ANALYSIS

In this section, we demonstrate the efficiency of ATVIM model with extensive
experimental evaluation. This new model and earlier indexing model such as MVI are
implemented using C++. The set of experiment explores the effects of data and query
parameters on performance. We use synthetic datasets (100K-1M) that contain objects
whose search key (ie. OID) are uniformly distributed in the data set. All experiments
reported in this section were conducted on Pentium 4 2.x Ghz with 256MB RAM and 80
GB of secondary storage, running Windows 2000. In order to test the model and to find
the performance, about 100000 objects were created and various queries were
implemented on a particular index.

Storage Cost

In all experiments performed, we have obtained that the traditional index has the lowest
storage cost. In particular, the MVI organization has less cost when compared to the
ATVIM organization. However, the storage costs may not be crucial, since large capacity
storage devices are today widely available for lower cost. Therefore, it may be preferable
to design models that provide good performance, even if they have large storage
requirements.

Retrieval cost

Let h is the height of the index, np is the number of pages that are to be accessed, ap is
the probability of accessing another page if it is not available and b is hashing overhead
and l is the version lookup cost. The cost of evaluating the query in ATVIM model is

 h+1+b+l if as < ps
C(retrieve) = { h+np+ap+b+l if as >ps

Where as is the average size of a primary record and ps is a page size. The number of
pages that are accessed (np) is a product of average number of pages required per
record(pp) and number of classes (target of the query). The ap can be computed using (pp
–np)/pp

VOL.5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

Fig.2: Availability checking

Fig. 2 shows the amount of comparison needed for checking the availability of the
particular object. The ATVIM model needs just one comparison to know that availability
of the particular object. But, the MVI model has to scan through the entire index structure

that consumes more time.
Fig. 3: Measuring the height

Fig. 3 illustrates the changes in the height of the tree across our given data set. The MVI
model uses single B+ tree in which entire dataset has to be spread over. As the OIDs are
uniformly distributed, the new model spreads the entire OIDs in various B+ trees in the
structure that drastically reduces the height of the tree.

Fig. 4 compares the query performance of the two approaches. We applied a query
that fetches the object versions from the same page. The time overheads were measured
for retrieving the versions.

B+ tree height

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10

Volume of index(x 10,000)

H
ei

gh
t ATVIM

MVI

Checking for availability

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10

Volume of index(x 10,000)

N
o.

of
 c

om
pa

ris
on

s

ATVIM
MVI

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

Fig. 4: Searching performance

We have presented the results of three experiments comparing the query performance of
the alternative indexing schemes. One goal of these experiments was to determine the
conditions under which placing version selection information in the table and the leaf
node that reduces the query cost. On the positive side, such information can be used by a
query to directly access an object version from its leaf index entry without having to go
through one or more intermediate pages.

5 CONCLUSION

The model ATVIM proposed in this paper incorporates the aspects of signature patterns,
B+ tree and hashing techniques to make efficient data retrieval. This model provides a
flexible method to store and retrieve multiple versions. We conducted a simulation study
of the two models and analyzed the results of this study. The result of this study indicates
the importance of maintaining a hash table with signature patterns on index structures, as
this turned out to be a key factor in determining the relative performance of the
multiversion indexing schemes.

Retrieval performance

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10

Volume of index (x 10,000)

Ti
m

e
(in

 m
.s

ec
)

ATVIM
MVI

VOL.5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

REFERENCES

[Bertino94] E Bertino:” A survey of indexing techniques for OODB”, query processing
for advanced data base systems,Morgan Kaufman publishers, inc, 1994.

[Bober97] Paul M.Bober, Michel J.Carey:“Indexing for multiversion locking: alternatives
and Performance evaluation”, IEEE trans on KDE, vol.9 no.1, Jan’97.

[Hulten94] Anders Bjornerstedt, Christer Hulten: “Version control in an Object Oriented
architecture” Addison Wesley publishing Co., First ed.1994.

[Lomet89] David Lomet et.al.:“Access methods for multiversion data” ACM, pg 315-
324,1989.

[Norvag01] Kjetil Nervag, “The Vagabond Temporal OID index: an index structure for
OID indexing in TOODB”,The VLDB Conference,2001.

[Norvag99] Kjetil Norvag: “Efficient use of Signatures in OODB” Proc. Of
ADBIS’99,1999.

[Norvag98] Kjetil Norvag, K baratbergsengen: “Optimizing OID indexing cost in
TOODB”, Proc. Of FODO’98,1998.

[Sciore93] Edward Sciore : “ Versioning and Configuration management in an Object
Oriented data model “, The VLDB journal, June’93.

[Thangaraj99]M Thangaraj et.al.:” A new integrated indexing model for OODB”, Proc.
Of ROVIPIA, Malaysia, 1999.

[Thangaraj03]M Thangaraj, V R Kavitha: “An efficient multiversion control in Object
Oriented data base systems”, Proc. Of NACAC, Oct 2003.

AN EFFICIENT MULTIVERSION ACCESS CONTROL IN A TEMPORAL OBJECT ORIENTED

DATABASE

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

About the authors

G Arumugam received his post-graduate degree in Applied
mathematics from PSG College of Technology, Coimbatore and Ph.D
degree from University of Piere and Marie curie, Paris, France in 1987.
He is now the Professor and Head of Computer Science department at
Madurai Kamaraj University, Madurai, TamilNadu, South India. He is
an active researcher in databases, data mining, Bioinformatics and

mobile computing and has published more than 50 papers in journals and conference
proceedings. gurusamyarumgam@yahoo.co.in

M Thangaraj received his Post-graduate degree in Computer Science
form Alagappa University, Karaikudi and M.Tech degree from
Pondicherry, South India in 1998. He is now the research scholar cum
senior faculty member in the computer science department at Madurai
Kamaraj University, Madurai, Tamil Nadu, South India. His research
area is databases and data mining and has published more than 20

papers in journals and conference proceedings. thangarajmku@yahoo.com

mailto:gurusamyarumgam@yahoo.co.in
mailto:thangarajmku@yahoo.com

