
Vol. 4, No. 10, 2005

Freely Annotating C#

Walter Cazzola
DICo - Department of Informatics and Communication,
Università degli Studi di Milano, Italy.
cazzola@dico.unimi.it

Antonio Cisternino
Department of Computer Science,
Università degli Studi di Pisa, Italy.
cisterni@di.unipi.it

Diego Colombo
IMT - Istituzione Mercati Tecnologie,
Alti Studi Lucca, Italy.
colombo@imtlucca.it

Reflective programming is becoming popular due to the increasing set of dynamic
services provided by execution environments like JVM and CLR. With custom attributes
Microsoft introduced an extensible model of reflection for CLR: they can be used as
additional decorations on element declarations. The same notion has been introduced
in Java 1.5. The annotation model, both in Java and in C#, limits annotations to
classes and class members. In this paper we describe [a]C#a, an extension of the C#
programming language, that allows programmers to annotate statements and code
blocks and retrieve these annotations at run-time. We show how this extension can be
reduced to the existing model. A set of operations on annotated code blocks to retrieve
annotations and manipulate bytecode is introduced. We also discuss how to use [a]C#
to annotate programs giving hints on how to parallelize a sequential method and how
it can be implemented by means of the abstractions provided by the run-time of the
language. Finally, we show how our model for custom attributes has been realized.
Keywords: Reflection, Code Annotation,.NET,C#.

aThe name [a]C# should be pronounced as annotated C sharp.

1 INTRODUCTION.

Reflection and dynamic loading are becoming essential elements of modern pro-
grams. Their usefulness is testified, for example, by the JDBC architecture that
shows how to implement a driver-based architecture exploiting the Java dynamic
loading.

Although reflection can be used to inspect the structure of types, to access fields
and even to invoke methods dynamically, the concept of tagging has been antic-

Cite this article2 as follows: Walter Cazzola, Antonio Cisternino, and Diego Colombo: Freely
Annotating C#, in Journal of Object Technology, vol. 4, no. 10, 2005, pages 31–48,
http://www.jot.fm/issues/issues_2005_12/article2

mailto:cazzola@dico.unimi.it
mailto:cisterni@di.unipi.it
mailto:colombo@imtlucca.it
http://www.jot.fm/issues/issues_2005_12/article2


FREELY ANNOTATING C#

ipated as an interesting application. Consider for instance the Java serialization
architecture: the programmer can declare the instances of a serializable class simply
by implementing the Serializable interface, which in fact is an empty interface.
Thus, two types that differ only for the implementation of the Serializable inter-
face are indistinguishable from the execution standpoint. Besides, the serialization
of the instances of non-serializable types will not be allowed by the serialization
support. Java serialization taught us that the meta-data stored with the code can
be used for other purposes than mere execution. Other programs may rely on the
reflective abilities of inspecting the compiled types and act differently depending on
what they have found.

Although widely used by Java programs, the idea of providing explicit meta-data
support for annotation has been introduced first by Microsoft in the common lan-
guage run-time (CLR). The virtual execution environment is part of the standard
Common Language Infrastructure (CLI) [14] and a crucial element of the .NET ini-
tiative. The CLR executes code expressed in an intermediate language (IL) like the
JVM bytecode, though the code is stored and distributed in the form of an assem-
bly. A single assembly contains the definition of one or more types and may refer to
other assemblies. Together with the meta-data, required by the CLR for loading and
managing the types contained within an assembly, it is possible to store arbitrary
information in the form of custom attributes. A custom attribute is an instance of
a class that inherits from the Attribute class. A custom attribute is created by
invoking one of its constructors, though all the values used to create it must be
computable at compile time. Custom attributes are serialized into an assembly at
compile-time and ignored by the execution system. Nevertheless, the reflection API
provides a means to retrieve these attributes at run-time. For instance, let m be an
instance of MethodInfo (a reflective descriptor of a method). In C# we can retrieve
the custom attributes associated with the method as follows:

Attribute[] attr = m.GetCustomAttributes();

In the CLR model attributes can be used to decorate essentially all the objects
accessible through reflection: assemblies, types (delegates, value types, and classes),
fields, properties, and methods.

Problem Description.

The crucial idea behind the custom annotations consists of shifting up data about
the code into the executable and to render them available at run-time. Custom
annotations are interpreted by programs and are used for program transformation.

Microsoft .NET provides support for implementing web services by means of
custom attributes. A custom attribute named WebMethod is used to label methods
that should be exposed as web services. A minimal web service written in C# that
computes the sum of two integers is the following:

32 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



2 [a]C# IN A NUTSHELL.

public class HelloWorldWS {
[WebMethod]
public int add(int i, int j) {return i+j;}

}

Once compiled, the HelloWorldWS class does not provide any web services inter-
face. A different program — actually part of the Internet Information Server — is
responsible for looking up reflection information within assemblies and generating a
SOAP/WSDL interface to the method add() over HTTP.

A significant limit to the annotation model introduced by the CLI is the gran-
ularity of annotations: they can only be used on methods and not inside them to
annotate code blocks. This limitation is partially bound to the provided reflective
model that does not permit to reify blocks of statements. Several programs whose
goal consists of administering and manipulating other programs would benefit from
a finer grained model for annotations.

In this paper we present [a]C#, an extension to the C# programming language
supporting custom annotations on arbitrary code blocks or statements. The lan-
guage extends the syntax of the C# language to allow a more general form of an-
notation and provides a run-time library that extends the reflection support with
operations for retrieving the information about annotations inside methods.

It might not be evident that this finer grained model for custom annotations
of code can be of any use, thus we provide a detailed example of how custom an-
notations and [a]C# can be used to render parallel a sequential C# program. In
particular, we discuss the general operations that can be used on annotated code
blocks, which hide from the programmer the complexity of manipulating intermedi-
ate language instructions explicitly.

We also present the implementation of the compiler, which is realized as a source
to source translator. In particular, it is interesting how the compiler reduces the
extended model for custom annotations to the existing one with the help of small
modifications of the generated intermediate language.

2 [a]C# IN A NUTSHELL.

[a]C# extends the original language by allowing the use of custom attributes inside
a method body.

In the example, we have defined two attributes, MyAnnotationAttribute and
AnotherAnnotationAttribute, that we will use for annotating the method body.
They inherit from ACS.CodeAttribute rather than from the System.Attribute
class.

class MyAnnotationAttribute : ACS.CodeAttribute {}

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 33



FREELY ANNOTATING C#

class AnotherAnnotationAttribute : ACS.CodeAttribute {}

class Example {
public static void Main(string[] args) {

// Code without annotations
[MyAnnotation] {

// Code under the aegis of the MyAnnotation attribute
[AnotherAnnotation] {

// Code inside a nested annotation
}

}
[AnotherAnnotation, MyAnnotation] // Single statement

}
}

Inside the method Main() we use these two annotations and, as it is usual in
C#, we omit the Attribute suffix within square brackets. Inside a method body
custom attributes can be used before statements or code blocks delimited by braces.

The ability of putting custom annotations into methods is of little use without
any means to retrieve the information the programmer has specified using the an-
notations. How can a tool retrieve annotations from an assembly? The run-time of
the language (a library linked to the program resulting from the source to source
transformation) provides the method GetCustomAttribute() to look at the method
code for custom attributes:

public class Annotation {
// ...
public static AnnotationTree[]
GetCustomAttributes(MethodInfo m, bool rec)

// ...
}

Although we cannot extend the reflection library, this method should be considered
as belonging to the MethodInfo class: given a method reification, it returns all the
annotations associated with it (if present) by reflective inspection.

The retrieved annotations are stored into a forest. Each tree represents a group
of nested annotations rooted at the outermost one, whereas each node represents and
stores information about a single annotation. Nested annotated blocks are sub-trees
of the node representing the outer annotation sorted as they appear.

Although, to be able to retrieve annotations related to a single method body
is often enough, there are still situations where a broader view is necessary. For
example, consider a tool whose aim consists of performing the static analysis of a
program by means of pre and post conditions. In this case, the annotation tree of
a single method can be of little use because the conditions about the program’s

34 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



3 CASE STUDY: TO PARALLELIZE A METHOD.

state do not only depend on a method body but also on the methods it calls. The
rec argument of GetCustomAttributes() serves this purpose: if true the returned
annotation forest represents the closure of the annotations attached to the specified
method body and, recursively, of the annotations attached to body of the methods it
calls. In this case, the leaves at a given level represent both nested annotations and
annotations attached to the body of methods called in the scope of the annotations
in the upper level.

The [a]C# run-time provides operations to manipulate the intermediate language
instructions within the scope of annotations. These operations are:

• Extrusion: is used to extrude the annotation by generating a new method
whose body and arguments are respectively the annotated code and the free
variables of the annotation;

• Injection: is used to insert code immediately before and after an annotation;

• Replacement : is used to replace the annotated code with the specified code.

All these operations can feed an ILGenerator that generates the body of a method.
A tool can generate new methods, which are a translated version of the original
ones, using these high level operations, without the need for explicitly manipulating
IL instructions.

Code injection simply requires an IL stream that corresponds to a method m with
a signature void m(). This operation is useful for tools like aspect weavers. The
same can be done for replacement. A variant of injection and replacement allows
the generated code to access the same variables used by the code block target of the
operation.

3 CASE STUDY: TO PARALLELIZE A METHOD.

To render parallel a program provides a good example of application of our model
for custom annotations of code blocks. Suppose we are interested in giving hints
about how to parallelize the execution of a method. Of course, these hints can be
ignored and the method is executed sequentially. On the other hand, specific tools
could recognize these annotations and transform the method consequently.

We have chosen this case study because it offers a relevant application domain
where the [a]C# annotations schema proves to be useful. In our case study we focus
on the code manipulation aspects rather than on the techniques to render it parallel.

The Used Annotations.

With the standard model of custom attributes it is possible to specify information
about a method, but there is no easy way to indicate which portions of its body can

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 35



FREELY ANNOTATING C#

be run in parallel: in this case the information about the scope of the annotation is
required. We introduce the following annotations:

public class Parallel : ACS.CodeAttribute {
public string Description;
public Parallel() { Description = string.Empty; }
public Parallel(string d) { Description = d; }

}
public class Process : ACS.CodeAttribute {
public string Description;
public Process() { Description = string.Empty; }
public Process(string d) { Description = d; }

}

These definitions must be known by the programmer who uses them to annotate the
code, and by tools that understand them and behave depending on the annotations.
Note that we provide a constructor that allows the user to specify some descriptive
text to be included with the annotation. Note that we use the names Parallel and
Process for the annotations, but this does not imply by any means that parallelism
is achieved through system processes. In general it is the tool that defines the
semantics of annotations by manipulating the annotated code.

Annotated Code.

A method annotated with these annotations may look like the following:

public void m() {
Console.WriteLine("Parallelable code sample");
[Parallel("Begin of a parallel block")] {
Console.WriteLine("Code exec by the main thread");
[Process("First process")] { /∗ Computation here ∗/ }
[Process] { /∗ Computation here ∗/ }

}
Console.WriteLine("Here is sequential");

}

Listing 1: Hints for Parallelizing a Method

We notice that a sequential computation can be annotated by declaring portions
of code that can be executed either sequentially or in parallel. If we execute the
method m, as specified by the CLI virtual execution system, annotations are ig-
nored and the code is executed sequentially. A tool capable of understanding the
annotations Parallel and Process is required, as in the case of web services im-
plementation based on the WebMethod attribute. This tool will be responsible for
giving a semantics to the annotated methods.

36 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



3 CASE STUDY: TO PARALLELIZE A METHOD.

Giving Semantics to Annotations.

In the domain of parallel execution we can even think of a JIT compiler aware
of these annotations leading to better performing code. Nevertheless, an off-line
approach can be also followed: a tool can read the method m in its binary form
from the assembly where it lies; and it can generate a new assembly with a method
m whose body has been translated so that its execution will be rendered parallel
according to the annotations. Our tool will give semantics to the annotations as
follows:

• Parallel: a block annotated with this attribute denotes a scope within the
code, where the blocks annotated with Process are executed in parallel. When
the execution control reaches the end of the block, all the processes spawned
within should have finished their activity.

• Process: the code within a Process block is executed by a separate execution
thread. In our implementation the code is responsible for ensuring that the
access to shared variables does not cause race conditions.

The transformation schema we have adopted for transforming an annotated method
m in its parallel form relies on the asynchronous methods support provided by CLI
through delegate objects. Given a delegate object (wrapping a method) it is possible
to invoke the corresponding method by calling the method BeginInvoke(). A
thread is taken from the ThreadPool to execute the method referred by the delegate
and the result of the invocation is an object representing the running method. The
main thread calls the method BeginInvoke() for each Process block. At the end
of the Parallel block a WaitAll() method call is performed to wait for all the
asynchronous methods to complete, then the execution continues with the single
thread.

Our tool relies on the operations provided by the [a]C# run-time for implement-
ing this code transformation, as follows:

• for each Parallel block (obtained from the GetCustomAttributes() method):

– it extrudes a method for each Process block within its scope;

– it generates a delegate type for the extruded methods;

– an asynchronous call to a delegate wrapping the extruded method replaces
the corresponding Process block;

• finally, it injects a call to the method WaitAll() with the references to the
handlers of each extruded method.

The algorithm shows how the operations defined in [a]C# run-time are useful for
transforming the code.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 37



FREELY ANNOTATING C#

Unbound Process Spawning.

At first sight it may be thought that the annotations we have introduced allow only
expressing a fixed number of processes to be spawned by the translated code. This
is not true: in our transformation schema, if we annotate the body of a for loop
the main thread will spawn an asynchronous method for each execution of the body.
We consider the classic example of paralleling the rendering of Mandelbrot fractals
(see [9]). Our goal is to draw the fractal by using four threads, one for each fourth
of the drawing area.

Of course we could repeat four times the code needed to draw a single portion
and annotate the four blocks as Process. Although this approach works it requires
us to replicate a portion of code. Thus, to avoid code replication, we introduce
a loop that repeats four times the code that draws a region of the fractal. The
resulting code is the following:

public void Mandelbrot(Complex z1, Complex z2, int xsteps, int ysteps) {
// rects contains the upper left corner of each region.

Complex[] rects = new Complex[] { z1,
new Complex((z2.Re + z1.Re)/2, z1.Im),
new Complex(z1.Re, (z2.Im + z1.Im)/2),
new Complex((z2.Re + z1.Re)/2, (z2.Im + z1.Im)/2)

};
double dx = (z2.Re - z1.Re) / xsteps;
double dy = (z2.Im - z1.Im) / ysteps;

[Parallel] {
for (int count = 0; count < 4; count++)

[Process] {
for (int i = 0; i < (xsteps / 2); i++)

for (int j = 0; j < (ysteps / 2); j++) {
Complex c = new Complex(

rects[count].Re + dx * i,
rects[count].Im + dy * j), z = c;

int it = 100;
while (it-- > 0 && z.SqrModule < 4) z = z * z + c;
DrawPixel(i, j, xsteps, ysteps, count, it);

}
}

}
}

The Mandelbrot method computes the fractal given a region in the complex plane
(bound by the two complexes z1 and z2). The algorithm implemented subdivides
the complex plane in four regions (whose upper left corners are contained in the
rects array), and performs the classic Mandelbrot algorithm on each of these. We
used the Process annotation on the block of the first statement. Accordingly to

38 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



4 COMPILER IMPLEMENTATION

our transformation schema, the block will be replaced by the invocation of an asyn-
chronous method. Note that the code can also be executed as it is; in this case the
four regions will be drawn in sequence rather than in parallel.

The spawning of asynchronous methods in the example is known (though not
reading the annotation); a variant of the algorithm may determine at run-time the
number of regions that should be drawn in parallel.

Final Considerations.

The annotations we used to render parallel sequential methods introduce a form of
parallelism with shared memory. The variables, defined outside the scope of the
Process attribute, are shared among processes (which in fact are threads) though
the tool does not provide any form of automatic synchronization. The variables
defined inside the scope of the Process attribute are local to the process itself.

Without our extensions the standard model for annotations would not have been
enough for expressing scopes inside method bodies. However, some may wonder if
the employment of different techniques would have led us to the same result.

An alternative approach to compute the Mandelbrot set in parallel could consist
of employing a tool performing source to source transformations. The disadvantage
of this approach is that, unless the tool implements a full parser for the C# language,
a shallow parsing approach would have been more error prone than ours that simply
has to detect and retrieve the annotations. Moreover, annotations in the binary code
allow different languages to benefit from the tools written to use them. Finally, the
decision of transforming the program or of executing it sequentially can be postponed
and the transformation can be adapted to the particular machine where the program
will run.

4 COMPILER IMPLEMENTATION

The [a]C# compiler has been implemented as a source to source compiler, reducing
our enriched model to the standard model for code annotation. We believe that
our approach in the realization of the compiler is another contribution of this paper
in two ways: first of all we show how the more expressive code annotation schema
proposed by [a]C# can be reduced to the existing annotation model combined with a
particular coding convention schema; the transformation engine constitutes a second
contribution because of its general structure based on a full parser rather than on a
shallow system.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 39



FREELY ANNOTATING C#

Representing Code Annotations

As already discussed, the existing model for custom annotations cannot keep track
of the attributes’ scope within the body of a method. Nevertheless, the execution
environment already provides all the machinery to support annotations.

We have considered extending the virtual machine by modifying Rotor [15]. Al-
though feasible, the problem of this approach is that the code generated by our
compiler would have been compatible only with the modified version of the run-
time. Thus, we have decided to encode information about ranges of code annota-
tions by inserting placeholders into the bytecode. As shown in [3, 4], we used a call
to a dummy method to indicate the beginning and the end of an annotated block.
Annotations are lifted onto methods and indices are used to preserve the binding
between dummy method calls and the relative annotations.

Consider, for instance, the [a]C# code in Listing 1. The [a]C# compiler trans-
forms it into the C# equivalent method:

[Parallel("Parallelable code sample", ACSIndex=1)]
[Process("First process", ACSIndex=2)]
[Process(ACSIndex=3)]
public void m() {

Console.WriteLine("Parallelable code sample");
Annotation.Begin(1); { // [Parallel]

Console.WriteLine("Code exec by the main thread");
Annotation.Begin(2); /∗ [Process("First process")] ∗/ { · · · }
Annotation.End(2);
Annotation.Begin(3); /∗ [Process] ∗/ { · · · }
Annotation.End(3);

} Annotation.End(1);
}

We rely on a language feature provided by custom attributes in C#: the constructor
of a custom attribute allows specifying named arguments after the standard argu-
ments. Each named argument corresponds to the assignment to a class property.
In the previous example the second Process attribute is instantiated calling the
parameterless constructor, and then the ACSIndex property of the instance is set to
the value 3.

Classes defining code annotations must inherit from ACS.CodeAttributes class.
Through this class we are able to inject the ACSIndex property into all the code
annotations, allowing the transformation system to preserve the association between
the attribute lifted to the method and its scope. The definition of the base class for
code annotations is:

[AttributeUsage(AttributeTargets.Method,
AllowMultiple=true, Inherited=true)]

40 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



4 COMPILER IMPLEMENTATION

public class CodeAttribute : Attribute {
private int idx;
internal ILCursor.State beg;
internal long end;

public int ACSIndex {
get { return idx; }
set { idx = value; }

}
public ILCursor ILInstructions {
get { return ILCursor.RestoreCursor(beg); }

}
public long EndPosition { get { return end; } }

}

The class CodeAttribute inherits from Attribute. This allows to use its instances
as custom attributes in C#. The data about the scope of the annotation are stored
within the compiled IL.

The language run-time support is responsible for retrieving the information
stored within the executable file in the form of custom attributes plus the Begin/End
method invocation pairs.

A finite state automaton reads the method body looking for method calls to the
static methods Begin() and End() of the Annotation class. When the appropriate
call instruction is found the automata looks for the instruction used to load the
integer arguments on the arguments stack and used to relate the method call to the
scope defined by an attribute.

The invocation of the GetCustomAttributes() method causes the language run-
time to analyze the method body and fill the reflection objects used to describe the
annotation tree. The AnnotationTree class is used to retain not only the attribute
object, but also the information needed to locate the begin and the end of the
intermediate language instructions within the annotation’s scope.

The indices used as arguments to Begin() and End() methods are used to asso-
ciate the scope with the corresponding custom attribute. It is worth noting that the
annotations generated by the [a]C# compiler can be consumed by all the languages
targeting the CLI execution environment.

Annotations and Run-time Execution

Our translation schema introduces method calls into annotated programs. It is
natural to ask whether these calls may introduce performance hits with respect
to their non-annotated versions. One of the most important assumptions of code

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 41



FREELY ANNOTATING C#

annotations is that the execution of an annotated program should run as fast as
the same program without the annotations. Besides, we rely on fake method calls
to preserve the scope of annotations. Therefore, it is natural to wonder if these IL
instructions may introduce inefficiencies when the container method is executed.

It is worth noting that the called methods are static and empty. A JIT compiler
can easily avoid generating the call instruction by simple inlining strategies. Nev-
ertheless, they might generate a call instruction in the code generated by the JIT
compiler. As a matter of fact all the non trivial JIT compilers perform inlining and
are capable of removing the method call at JIT time. This is the behavior of the
Microsoft .NET JIT, and of the Mono JIT. The Rotor JIT is very trivial and emits
the call instruction.

Another issue we may think of is: does the compiler eliminate the method call
to optimize the generated code? The answer is negative: the compiler links the
method that is already compiled in a different assembly. Thus, it does not know the
actual definition of the method demanding this optimization at later stages in the
execution pipeline. Moreover, it cannot change the position of the method call inside
the method body because it cannot establish whether the static method will perform
side effects that may lead to a different semantics. Besides, the JIT compiler will
have full knowledge of the code to be executed and will perform these optimizations
if possible.

We conclude that it is reliable to insert method calls and look for them in the
binary output to find the boundaries of custom annotations. Moreover, in any
reasonable implementation of the CLI standard the annotations would not affect
the performance of annotated programs at all. Other compilers may support the
same mechanism by simply adopting the same conventions when generating code
and linking the [a]C# run-time library.

CoCo/R and the C# Transformation System

The [a]C# compiler transforms an annotated program into a standard C# program
using the transformation schema previously illustrated. A few transformations are
necessary but they require information about the program structure: attributes
must be extended with the ACSIndex value, though the existing arguments should
be preserved. Moreover, attributes should be lifted on the method they are used. A
shallow approach to program transformation is, in this case, risky and error prone.
We decided to rely on a full parser of the C# 2.0 [1] syntax. Fortunately, the CoCo/R
project [18] produced a parser generator for C# and a full annotated grammar for
the language.
The C# annotated grammar has been modified in order to obtain a parser that
parses an C# program and rewrites it. The buffer where the output is stored provides
operations to insert marks within the code, and then to insert text in a marked site.
Thus, we obtained a transformation system for C# that performs full syntax parsing
to implement code transformation patterns.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



4 COMPILER IMPLEMENTATION

The [a]C# compiler has been developed by changing this transformation system
(that implements the identity transformation). As an example, we include two
productions of the annotated grammar (semantic actions are delimited by “(.” and
“.)”):

PRODUCTIONS
(*-------------------------------------------------------------------------*)
ClassBody = "{" (. ob.IndentMore(); ob.WriteLine(" {"); .)
{ { AttributeSection } (. Modifiers m = new Modifiers();

annotation = 0; ob.Mark("ACS");
ob.WriteLine(); .)

{ MemberModifier<m> (. ob.Write(" "); .)
} ClassMemberDecl<m>

}
"}" (. ob.IndentLess(); ob.WriteLine();

ob.Write("}"); .)
.
(*-------------------------------------------------------------------------*)
EmbeddedStatement (. bool isPointer; MarkedBuffer obbak; .)
= Block (. ob.WriteLine(); .)
| ";" (. ob.WriteLine(";"); .) /∗ empty statement: ∗/

...
| "while" "(" (. ob.Write("while ("); .)
Expr (. ob.Write(")"); .)
")" EmbeddedStatement

...
| (. obbak = ob; ob = new MarkedBuffer();

inACS = true; .)
AttributeSection (. inACS = false;

obbak.WriteLine("ACS", ob.ToString());
ob = obbak;
int myann = annotation++;
ob.WriteLine("ACS.Annotation.Begin("+myann+");"); .)

EmbeddedStatement (. ob.WriteLine();
ob.WriteLine("ACS.Annotation.End("+myann +");"); .)

.
(*-------------------------------------------------------------------------*)

The first production defines the body of a class; we mark the output buffer ob with
a label called ACS each time we encounter a member of the class. This mark is used
to insert the attributes found while parsing the method body.

The second production defines a statement of the language; it has been extended
with a case for statements with attribute. In the associated action we see that we
inject the attribute definition where the ACS mark lies in the output buffer.

We derived the transformation system by customizing a generic C#-to-C# rewrit-
ing system based on the CoCo/R parser. The transformations needed by the [a]C#
compilation strategy cannot be achieved without full understanding of the source
code: the compiler needs to have information about types in order to ensure that
code annotations are of types derived from CodeAttribute and that the attribute
lifting process preserves the semantics of the original program. The whole annotated

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 43



FREELY ANNOTATING C#

grammar and the whole source code of the [a]C# compiler is available as part of the
CodeBricks project1.

Programming Tools

A well-known problem with source to source tools is that the programmer manipu-
lates a source file different from the one the compiler deals with. Fortunately, C#
re-introduced (similar to the C/C++ preprocessor directive) the #line directive.
Thus, we annotate the lines of the generated C# file with the reference to the line in
the original source. This is important because in the process of parsing and rewriting
the source code we loose the original formatting of the code.

As a consequence, the whole programming infrastructure, ranging from the com-
piler to the debugging tools, is capable of supporting the real source code rather
than the one generated by the translator.

The command line version of the [a]C# compiler is just a front-end to the stan-
dard C# compiler: it preprocesses all the files with .acs extension and then passes
all the file names of the generated files to the C# compiler. The front-end allows
mixing .acs and .cs files.

We have also integrated the [a]C# compiler in Visual Studio.NET 2003. The
Visual Studio programming environment includes the notion of a custom tool. A
custom tool is a preprocessor that the programming environment runs before start-
ing the compilation process. A custom tool is a COM component implementing a
set of interfaces that the editor uses to manage the code generator. We developed
the custom tool as a .NET library exposed as a COM component using the inter-
operability facilities of the execution environment. We have also added wizards to
the programming environment so that the creation of attributes and [a]C# files is
supported by the programming environment.

5 RELATED WORK.

Code annotation, in several different forms, is not a new idea and is largely used
in several contexts. Some of the most interesting applications are related to code
instrumentation, analysis and documentation. Mainly, they have been used to en-
hance the flexibility and the efficiency of the compiling step and to support new
language features, see [10,11,12].

Code generation is another of the most diffuse application for code annotations.
The XDoclet2 tool [17] for Java has been successfully used for performing code gen-
eration tasks. The tool relies on comments similar to those used by Javadoc to

1See at http://www.robotics4.net/Software/ACS.aspx.
2See at http://xdoclet.sourceforge.net/xdoclet/index.html.

44 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

http://www.robotics4.net/Software/ACS.aspx
http://xdoclet.sourceforge.net/xdoclet/index.html


6 CONCLUSIONS AND FUTURE WORK

annotate programs, and then the ant3 building tool is used for controlling the code
generation. This approach to code annotation is based on source code manipula-
tion: XDoclet comments are used by Java modules to generate Java source code.
On the other hand, [a]C# provides operations to retrieve annotations at run-time
on executable files without any need for a whole compilation infrastructure to be
available at run-time.

Program manipulation with bytecode transformation is a technique that has
been employed in several applications [13, 16]. There are also attempts to raise the
abstraction level of this bytecode manipulation. The Javassist [6] library attempts
to provide the programmer with operations that do not require knowledge on the
underlying bytecode. However, the Javassist approach still focuses on the manipula-
tion of single instructions like method calls, field accesses and so on. We are trying
to build meta-programming abstractions that have coarser grain though focus more
on the behavioral aspect of the code. Operations such as extrusion, injection and
replacement can be type checked and provide the programmer with operations that
recall the Lego bricks: “take this block of code and put it here”. As a matter of fact
the CodeBricks library [2,4] performs similar tasks using entire methods as the unit
for code manipulation.

Code annotation is becoming more and more relevant also in the novel aspect-
oriented technology. Alice [7, 8] is an aspect-oriented based approach that exploits
annotations to provide additional meta-information about components they are as-
sociated with. The annotations identify components’ constraints and requirements
that the weaver has to consider. In [5], the annotations are used to mark the join
points inside the bytecode with the high-level specification to simplify the join point
selection. Both examples could benefit from an annotation model that supports
block-level annotations (as the one provided by [a]C#).

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented [a]C#, an extension of the C# language that allows
custom annotations inside method bodies. The run-time library of the language
extends the .NET reflective information by providing operators to retrieve custom
annotations and to manipulate the annotated code blocks in their binary form.

We have presented a case study in the domain of code parallelism. The aim
of the exercise was to show how a well-known problem can be faced by writing an
external tool that manipulates a program rather than extending a programming
language. We have also shown how the operations provided by the language are
used to transform a method into its parallel version.

The compiler has been implemented as a source to source transformation. Never-
theless, we avoided the shallow approach by adopting a full C# parser that rewrites

3See at http://ant.apache.org.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 45

http://ant.apache.org


FREELY ANNOTATING C#

the program after parsing. We have been able to transform the program during pars-
ing and reduce the extended model for code annotations to the one already present
in .NET. We have encoded the annotations’ scope by inserting dummy method calls
at the beginning and at the end of each block.

The compiler is still in its early stage, and the run-time of the language should
still evolve. The operations for manipulating bytecode still expose some of the
complexity of the underlying execution environment. Moreover, we are considering
the possibility of integrating the CodeBricks library [4] into the language run-time.
In this way we could expose annotated code blocks as code bricks that can then be
mixed to work as basics for the operations provided by the library.

We believe that code annotations can be useful to develop software that meets
the always increasing demand for flexibility and dynamic adaptation. We are ex-
ploring the possibility of using code annotations to describe the behavioral aspect
of components. In particular, in the embedded device domain, devices may give the
code to access them (as it is in Jini) annotated with a description of the operations
performed by methods.

References

[1] Tom Archer and Andrew Whitechapel. Inside C#. Microsoft Press, second
edition, 2002.

[2] Giuseppe Attardi and Antonio Cisternino. Multistage Programming Support
in CLI. IEE Proceedings Software, 150(5):275–281, October 2003.

[3] Giuseppe Attardi, Antonio Cisternino, and Diego Colombo. CIL + Metadata >
Executable Program. Journal of Object Technology. Special issue: .NET: The
Programmer’s Perspective: ECOOP Workshop 2003, 3(2):19–26, 2004.

[4] Giuseppe Attardi, Antonio Cisternino, and Andrew Kennedy. Code Bricks:
Code Fragments as Building Blocks. In Proceedings of 2003 SIGPLAN
Workshop on Partial Evaluation and Semantic-Based Program Manipulation
(PEPM’03), pages 66–74, San Diego, CA, USA, 2003.

[5] Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for Software Evolu-
tion: A Design Oriented Approach. In Proceedings of the 10th Annual ACM
Symposium on Applied Computing (SAC’05), pages 1356–1360, Santa Fe, New
Mexico, USA, on 13th-17th of March 2005. ACM Press.

[6] Shigeru Chiba and Muga Nishizawa. An Easy-to-Use Toolkit for Efficient Java
Bytecode Translators. In Frank Pfenning and Yannis Smaragdakis, editors, Pro-
ceedings of Generative Programming and Component Engineering (GPCE’03),
LNCS 2830, pages 364–376, Erfurt, Germany, September 2003. Springer.

46 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



6 CONCLUSIONS AND FUTURE WORK

[7] Michael Eichberg. Component-Based Software Development with Aspect-
Oriented Programming. Journal of Object Technology, 4(3):21–26, April 2005.

[8] Michael Eichberg and Mira Mezini. Alice: Modularization of Middleware Using
Aspect-Oriented Programming. In Thomas Gschwind and Cecilia Mascolo,
editors, Proceedings of the 4th International Workshop on Software Engineering
and Middleware (SEM04), LNCS 3437, pages 47–63, Linz, Austria, September
2004. Springer.

[9] Benoit Gennart and Roger D. Hersch. Computer-Aided Synthesis of Parallel
Image Processing Applications. In Proceedings of the Conference on Parallel
and Distributed Methods for Image Processing, pages 48–61, Denver, USA, 1999.

[10] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J.
Eggers. Annotation-Directed Run-Time Specialization in C. In Proceedings of
the 1997 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation (PEPM’97), pages 163–178, Amsterdam, The
Netherlands, June 1997. ACM Press.

[11] Andreas Hartmann, Wolfram Amme, Jeffery von Ronne, and Michael Franz.
Code Annotation for Safe and Efficient Dynamic Object Resolution. Electronic
Notes in Theoretical Computer Sciences, 82(2), 2003.

[12] Raimund Kirner and Peter Puschner. Classification of Code Annotations and
Discussion of Compiler-Support for Worst-Case Execution Time Analysis. In
Proceedings of the 5th Euromicro International Workshop on Worst-Case Exe-
cution Time Analysis (WCET’05), Palma, Spain, July 2005.

[13] Hidehiko Masuhara and Akinori Yonezawa. Run-time Bytecode Specialization:
A Portable Approach to Generating Optimized Specialized Code. In Proceedings
of Programs as Data Objects, Second Symposium, PADO’01, 2001.

[14] James Miller. Common Language Infrastructure Annotated Standard. Addison-
Wesley, November 2003.

[15] David Stutz, Ted Neward, and Geoff Shilling. Shared Source CLI Essentials.
O’Reilly, March 2003.

[16] Éric Tanter, Marc Ségura-Devillechaise, Jacques Noyé, and José Piquer. Al-
tering Java Semantics via Bytecode Manipulation. In Don S. Batory, Charles
Consel, and Walid Taha, editors, Proceedings of Generative Programming and
Component Engineering (GPCE’02), LNCS 2487, pages 283–298, Pittsburgh,
PA, USA, October 2002. Springer.

[17] Craig Walls and Norman Richards. XDoclet in Action. Manning Publications,
December 2003.

[18] Albrecht Wöß, Markus Löberbauer, and Hanspeter Mössenböck. Compiler Gen-
eration Tools for C#. IEE Proceedings Software, 150(5):323–327, October 2003.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 47



FREELY ANNOTATING C#

ABOUT THE AUTHORS

Walter Cazzola (Ph.D.) is currently an assistant professor at the
Department of Informatics and Communication (DICo) of the Uni-
versità degli Studi di Milano, Italy. His research interests include re-
flection, aspect-oriented programming, programming methodologies
and languages. He has written and has served as reviewer of several
technical papers about reflection and aspect-oriented programming.

Antonio Cisternino is research fellow at the Dipartimento di In-
formatica of Università di Pisa. His current research is on run-time
code generation and multi-stage programming on execution environ-
ments like JVM and CLI.

Diego Colombo is PhD student at IMT Lucca. He is interested in
robotics, computer vision, 3D graphics and Game Design.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10


