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We design a calculus where objects are created by instantiating classes, as well as
mixins. Mixin-instantiated objects are “incomplete objects”, that can be completed in
an object-based fashion. The combination of class-based features with object-based
ones offers some flexible programming solutions. The fact that all objects are created
from fully-typed constructs is a guarantee of controlled (therefore reasonably safe)
behavior. Furthermore, the calculus is endowed with width subtyping on complete
objects, which provides enhanced flexibility while avoiding possible conflicts between
method names.

1 Introduction

In object-orientedbject-basedanguages (see, e.g27, 1, 11]), objects are the com-
putational entities and at the same time they govern the inheritance mechanism, through
operations like method addition and method override, thus producing new objects starting
from the existing ones. Furthermore, object composition is often advocated as an alterna-
tive to class inheritance, in that it is defined at run-time and it enables dynamic object code
reuse by assembling the existing componei [In this paper we present a mixin-based
calculus that combines class-based features with object-based ones, trying to fit into one
setting the “best of both worlds”, discipline and flexibility first of all. Mixins are seen as
incompleteclasses and their instances areompleteobjects that can be completed in an
object-based fashion. Hence, in our calculus it is possilbjéo (nstantiate classes (cre-

ated via mixin-based inheritance), obtaining fully-fledged objects ready to be ui3¢al; (
instantiatemixing yielding incomplete objectthat may be completed vimethod addi-

tion and/orobject compositionIn other words, it is possible to design class hierarchies
via mixin application, but also to experiment with prototypical incomplete objects.

This paper extends the calculus of incomplete objectSpivjth width subtyping
on objects. The co-existence of object composition and width subtyping on object types
introduces run-time conflicts between methods that might have been hidden by subsump-
tion, in situations where statically there would be no conflict. Suppose we have two ob-
jectsO1 andO, that we want to compose. Objedi has a methody, that calls a method
m, which might be hidden by subsumption (i.e., its name does not appear in the type of
the objectO1). ObjectO, has a methodn, that calls a methodh, also possibly hidden
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by subsumption. (Notice that it is enough if the metmod hidden in at least one of the
objects.) When these two objects are composed, there is no explicit name clash at the type
level (checked by the type system). But methodsandny, both call a method with the
same naman, and it is necessary tor)(ensure that after object composition, methods
andmp continue calling the methoh they were calling originally, before the composi-
tion; (ii) guarantee that if one of the's is not hidden, we expose the reference to the right
one in the object’s “public interface”. Note that if batfis were hidden by subsumption,
none of them would be available to external users anymore, and if none were hidden there
would be atrue conflict, ruled out statically. This situation is an instance of the “width
subtyping versus method addition” problem (well known in the object-based setting, see
for instance 18]). This kind of name clash (nametynamic name clagrshould not be
considered an error, but we must make sure that we solve all ambiguities, in such a way
that accidental overrides do not occur.

Our form of method addition does not introduce any problems with respect to sub-
typing, as we can add one by one only those methods that are required explicitly by the
incomplete object, that is, we have total type information about the methods to be added
beforethe actual addition takes place (see Secti®and5). The conflict arises, instead,
with object composition where the complete object may have more methods than the ones
required by the incomplete object, and these methods may clash with some of the methods
defined in the incomplete object. Notice that this problem is exactly the same as the one
introduced by the general object composition example described above. Our approach to
solving this problem is based on the idea of preserving the object generator within each
object. In order to avoid undesired interactions between methods while allowing the ex-
pected rebinding, every object carries the list of its methods and the list of the methods
it is still expecting. The first version of this methodology was presente@]iwlere it
Is applied to a calculus with only (abstract) classes and no method overriding. Here we
apply it to the complete calculus of mixins and incomplete objects.

One of the possible approaches to solving the problem seemed to be exploitingy the
tionariesof Riecke and Stonep]. Unfortunately, their mapping “internal label-external
label” does not solve completely the ambiguities introduced by object composition in the
presence of subtyping described above. In particular, there is still an ambiguity when only
one of them's is hidden by subsumption. It has to be said, however, that the original dic-
tionaries setting is stateless, therefore object composition can be simulated by successive
method additions, and dictionaries would be sufficient to model object composition. In
our setting, instead, all objects (complete and incomplete) have a state (i.e., an initialized
field), and object composition cannot be linearized via any form of repeated method ad-
ditions. On a side note which will be useful later, we would like to recall that the calculus
of [25] is “late-binding”, i.e., the host object is substituted to self (in order to solve the
self autoreferences) at method-invocation time, whereas our calculus is “early-binding”,
l.e., the host object is bound to self at object-creation time. To the best of our knowl-
edge, it is not possible to remove all the ambiguities without either carrying along the
additional information on the methods hidden by subsumption, or restricting the width
subtyping. We discarded immediately the solution of re-labelling method names at object
composition time, as this is untidy from a semantical point of view and impractical from
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an implementation one. (By re-labelling we mean the actual physical renaming of method
names, and therefore all method invocations within method bodies.) In this version of the
calculus, we decided to allow width subtyping only @mmplete objectsOur solution is

an “early-binding” version of the dictionaries approach, where the notion of “privacy-via-
subsumption” of 25] is completely implemented (see Secti®and Sectiorb).

2 Syntax of the calculus

Mixins [10, 20] are (sub)class definitions parameterized over a superclass and were in-
troduced as an alternative to some forms of multiple inheritance. A mixin could be seen
as a function that, given one class as an argument, produces another class, by adding
and/or overriding certain sets of methods. In this paper the teximn refers tomixin
classeq2, 15, 7]), as opposed tonixin modulegmodules supporting deferred compo-
nents B, 22]). In our calculus a mixin can:i) be applied to a class to create a fully-
fledged subclass; ori) be instantiated to obtain an incomplete object. An incomplete
object can be “incomplete” in two respects} if may need some expected methodi; (

it may contain redefining methods that need the methods with the functionality of their
next (i.e., the method with the same name in the superclass). Completion can happen in
two ways: () via method additionthat can add one of the expected methods or one of the
missingnexts; (i) via object compositionthat takes an incomplete object and composes

it with a complete one containing all the required methods. Furthermore, method addition
can only act on incomplete objects, and the object composition completes an incomplete
object with a complete one. This way we totally exploit the type information at the mixin
level, obtaining a “tamed” and safe object-based calculus at the object level.

The starting point for our calculus is The Core Calculus of Classes and Mixins of
Bono et al. P] which, in turn, is based oReference Mlof Wright and Felleisend8]. To
this imperative calculus of records, functions, classes and mixins we add the machinery to
work with incomplete objects. Our calculus is imperative and does not suppdigpe
[17] inheritance (and as such does not supparary methodg12)). In this version of
the calculus we assume that the methods we add to an incomplete object via addition
or composition do not introduce incompleteness themselves, i.e., the set of “non-ready”
methods never increases. Moreover, we do not conbidbler-ordermixins (mixins that
can also be applied to other mixins yielding other mixins) and related mixin composition,
being an orthogonal issue. To ensure that mixin inheritance can be statically type checked,
the calculus employs subtype-constrained parameterization. From each mixin definition,
the type system infers a constraint specifying to which classes the mixin may be applied
so that the resulting subclass is type-safe. The mixin constraint includes information on
which methods the class must contain, whereas negative constraint, i.e., which methods
the class must not contain, is checked by the type system at mixin application time.

Expressions and values of the calculus are given in Figuvéherex € Var (an enu-
merable set of variablesjponste Const(an enumerable set of constants\', R, E, M
C N, andvy, Vi, Vi , Vm; , Vm, @re values, more precisely, lambda abstractions. The lambda-
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e::= const|x|Axe| e e |fix vi:= const| x| Ax.e| fix|ref |!
| ref|!]:=]{x =g} |ex | i=|:=v]| {x =v}¢
| Hh.e|classval(vg, M)| new e | classval(vg, M)
| mixin | mixinval(vg, A, R, E)
method Mj = V,; €20 | obj({m = Vi HEM v, M)
redefine my = Vi ; (K€% | obj({my = vy }'€ Vg, LN, R, E)
expect my; (€%)
constructor V;
end
| mixinval(vg, A\, R, E)
| eogle—+ m=ele—+ &
| obj({m :Vm}fEM7V97M>
‘ Obj({m = Vm}lel sV, T N R, £>
Figure 1: Syntax of the calculus: expressions and values.
calculus related forms are standaref, !, : = are operatorsfor defining a reference to

a value, for de-referencing a reference, and for assigning a new value to a reference, re-
spectively. {x = g}'€' is a record which represents an object in our calculuseanib

the record selection operation (this corresponds to method selection in our calculus). The
constructh is a set of pairgx, v), wherex is a variabley is a value, and first components

of the pairs are all distinct. The set of palrss thestore or heap found in the expres-

sion formH h.e, where it is used for evaluating imperative side effects. In the expression

H (X1,V1) ... (Xn,Vn).€ H binds variablegy, ... X, in vi,...,v, and ine. We describe below

the other forms.

e classval(vg, M) is aclass valugthe result of mixin application. The functiosg is
the generator used to generate its instance objects, and ti¢ sentains the indices of
all methods defined in the class.

e Themixindefinition contains three sorts of method declaratioresvmethods ify;),
which are the newly introduced methods by the mixin seen as a subreldsBningmeth-
ods fry), which wait for a superclass containing a method with the same name to be
redefined and provide the overriding body, angbectednethod namesn), which are
names of methods not implemented by the mixin (these methods must be provided by the
superclass since they can be used by new and redefining methods). We assume that the
programmer must declare the expected method names in the mixins, but that their types
are inferred from new and redefining method bodies. Each method\aggys a func-
tion of the privatefield and of self, which will be bound to the newly created object at
instantiation time. In method redefinitions,, is also a function ofext, which will be
bound to the old, redefined method from the superclass. Notice that the field does not
appear explicitly in the mixin definition, as we model it as a lambda-abstracted variable
within method bodies: it is non-accessible, not only non-visible, outside the methods. For

Untroducingref, !, := as operators rather than standard forms suchef@s le, :=eje», simplifies
the definition of evaluation contexts and proofs of properties. As note@8j this is just a syntactic
convenience, as is the curried version ef :
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the sake of simplicity, we consider only one (private) field for each class, but this is not a
restriction, as the field could be a tuple (encodable in the lambda calculus). Also, the field

can be made a proper mutable instance variable by declaring it to be okfy(ee refer o~
the reader to48]). The . value in theconstructor clause is a function of one argument

that returns a record of two components: fl&linit value used to initialize the private

field, and thesuperinit value passed as an argument to the superclass constructor. When
evaluating a mixiny, is used to build the generator as described in Se@&ion

e mixinval(vg, A, R, E) is amixin valug the result of mixin evaluation. The generator
vg for the mixin is a “partial generator” of incomplete objects, used also ir thgeration
evaluation, where it is appropriately composed with the class generator.

e new e creates a function that returns a new object (incomplete, in the mixin case).

e e1¢ & is the application of mixin value; to class value, that produces a new class
value that is a subclass ef.

e e —+ m = & is the method addition operation: it adds the definition of method
m; with body e, to the (incomplete) object to whiah evaluates. A method to be added
to an incomplete object is a function &fif only, i.e., no private field is used in an added
method, since such field is typical of an object (it represents its state).

e &1 —+ e is the object composition operation: it composes the (incomplete) object
to whiche; evaluates with the complete object to whieghevaluates.

o obj({m = vin €M v, M) is a fully-fledged object that might have been created
by directly instantiating a class, or by completing an incomplete object. Its first partis a
record of methods, the second part is a generator function, kept also for complete objects,
since they can be used to complete the incomplete ofttxontains the indices of the
methods of the object.

e obj{({m = vy }'€' vy, 1, A, R, E) is an incomplete objec{m = v, }'<' is a record
of methodsyy is a generator functiom,is a record containing redefining methods which
will be used whemext for them becomes available during method addition or object
composition (as explained in Secti@) and three setd(, R, and E contain the indices
of new, redefining, and expected methods defined in the mixin. When the sets of method
namesR and‘E become empty (and so does the record of redefining methods) the incom-
plete object becomes a complete object.

Mixins are first class citizens in our calculus, allowing all the usual operations on
them. However, class values, mixin values, and object forms are not intended to be writ-
ten directly; instead, these expression forms are used only to define the semantics of
programs. Class values can be created by mixin application, mixin values result from
evaluation of mixins, and object forms can be created by class and mixin instantiation.

We define the root of the class hierarchy, clélgect, as a predefined class value
Objecté classval(A_.A_.{}, [ ] ) necessary for uniform treatment of all the other classes.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 9
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constv — d(constv) (d) refv. — H(X,Vv).x (ref)

if &(constv) is defined H{x,h.R[!x] — H{XVWVh.R}V] (der)

(Axe)v — |v/xe (Bv) HXVhR:=xV] — H(xV)h.RV] (ass

fix (Ax.e) — [fix(Ax.e)/x|e (fix) RHhe — HhRjg, R#[] (lift)
{....x=V,...} x — Vv (sel) HhHKH.e — HhH.e (mer)

Figure 2: Reduction rules for standard expressions and heap expressions

Rii= []|Re|VR[{m=vi,....m_ 1=Vi 1,;m=RmM 1 =61, .. Mh=e}'<<" | Rx
| newR|Roe|ve R|[R«—+ m=e|R«—+ e|ve—+ m=R|v—+ R

Figure 3: Reduction contexts

3 Operational semantics

Our intent is to give the calculus a semantics as close as possible to an implementation.
To do so, the formal operational semantics is a set of rewriting rules including standard
rules for a lambda calculus with stores, and rules that evaluate the object-oriented related
forms to records and functions, according to the object-as-record approach and Cook’s
class-as-generator-of-object principlE3[. This operational semantics can be seen as
something close to a denotational description for objects, classes, and mixins, and this
“identification” of implementation and semantical denotation is, in our opinion, a good
by-product of our approach.

The operational semantics extends the semantics of the core calculus of classes and
mixins [9], hence it exploits th&keference MLlof Wright and FelleisenZ§] treatment
of side-effects. To abstract from a precise set of constants, we assume the existence of
a partial functiond: Const x ClosedVal—~ ClosedValthat interprets the application of
functional constants to closed values and yields closed values. The reduction rules are
given in Figure, 4, andb. In Figure2, R's arereduction contextgl4, 16, 24], necessary
to provide a minimal relative linear order among the creation, dereferencing and updating
of heap locations, since side effects need to be evaluated in a deterministic order. Their
definition is given in Figure8. We assume the reader is familiar with the treatment of
imperative side-effects via reduction contexts, we refe®{@§] for a description of the
related rules. The meaning of the object-oriented related rules in Hgaras follows.

The (mixin) rule turns a mixinexpressiornnto a mixinvalue(notice that all the other
mixin operations, i.e., mixin application and mixin instantiation, are performed on mixin
values). Given the parametefor the constructow, of the mixin expression (we recall
that theconstructor subexpressiox is a function of one argument which returns a record
of two components: one is the initialization expression for the fieldinit, the other is
the superclass generator’s argumeipierinit, see SectioR), the mixin generator returns
a record containing the following:

e a (partial) object generatgen, which binds the private field of the methouis (newly
defined by the mixin) tdieldinit (returned by the constructor). Recall that method bodies
take parameterSeld, self, and, if it is a redefinition, alsaext. The output ofgen has
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mixin
method Mj = Vpy ; (j€20)
redefine my = v, ; (k€R) .. . S
expect m: (ief')“‘ — mixinval(Genn, A, R, E) (mixin)
constructor Vg,
end
where
A
Geny, = AX.
lett =ve(X) in
gen = Aself.
m;j = AY.Viy, t.fieldinit self'y (ien)
me = Ay. self.mey (KR ,
m =Ay. self.yy (€%
superinit = t.superinit,
redef = {my = Ay.vm, t.fieldinity (%)}
new classval(vg, M) —  Aw.obj(fix(vg W), (vg W), M) (new clas$
new mixinval(Gem, A, R, E) — (new mixin

AW let vy = (Genpw) in
obj(fix(vg.gen), Vg.gen, Vg.redef, A[, R , E)

obj({....m =Vi,...},vg, M) m — (obj se)
mixinval(Genn, A, R, E) o classval(vg, M) — classval(Gen ALU M) (mix app
where
GenZ= AxAself.

let mixinrec = Genp(X) in
let mixingen = mixinrec.gen in
let mixinred = mixinrec.redef in
let supergen = Vg(mixinrec.superinit) in
m; = Ay.(mixingen self).m;y (€N
{ Mg = Ay.(mixinred.my self) (supergen self).myy (K€X) }
m = Ay.(supergen self).myy (€M-%)

Figure 4. Reduction rules for object-oriented forms

“dummy” method bodies in place of redefined and expected methods to enable correct in-
stantiation of incomplete objects. Intuitivekglf must refer to all the methods: not only

the new ones, but also the ones that are still to be added. Notice that the method bodies
are wrapped insidRy. - - -y to delay evaluation in our call-by-value calculus;

e the argumentuperinit for the (future) superclass constructor, as returned by the mixin
constructon, applied to its argument;

e the redef component, which contains a record of redefining methods that have their
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private field already bound tieldinit (returned by the constructeg applied to its argu-
ment), and are ready to have theéxt parameter bound to a method added to the object

at run time (notice that thekelf is still unbound). This record will be used during method
addition and object composition to recover the actual body of the redefined methods, com-
plete it, and insert it in the working part of the object.

The above generator is called “partial” since it returns an object that contains redefined
and expected methods that cannot be invoked (present as “dummy” methods). The actual
implementation of those methods can be providedrbgth add ), (meth add 2, and/or

(obj comp).

The (hew clas}rule enables creation of new objects from class definitions. It builds
a function that produces @mplete objectbj(fix(vg w), (vg W), M), once passed an ar-
gumentw. The expressiofivg W) is the object generator, obtained by applying the class
generatorg to an argumen (this argument is used by the constructor component within
the class generator). This creates a function fseffito a record of methods. The ex-
pressiorfix(vg w) is the record of methods that can be invoked on that object, obtained by
applying the fixed-point operatdix to (vg w) to bindself in method bodies and create a
recursive record (following the approach itg]).

The (ew mixin rule createsncomplete objecterom mixin values. First, it applies
the mixin generatofeny, to an argumentv (analogously to thenew clasy case), thus
triggering the binding of the private field of new and redefined methods and providing ac-
cess tdseny's gen andredef components. The mixin object generatgigen is a function
from self to a record of mixin methods, whilg.redef is the record of the redefined mixin
methods that have thefieldinit bound elf andnext are still to be bound). They.redef
record is used for “remembering” the partial redefined method bodies for future use. The
application of the fixpoint operator tg.gen creates a recursive record of methdds.

The (©Dbj se) rule enables method invocation on a complete object.

The (mix app rule evaluates the application of a mixin value to a class value and mod-
els inheritance in our calculus. rixin value is applied to a superclass vatimsval (g, M ),
where M is the set of all method names defined in the superclass. The resulting class
value isclassval(Gen AL U M) whereGenis the generator function anf U M lists all
the method names of the subclass. Using a class generator delays full inheritance resolu-
tion until object instantiation time wheself becomes available. The class generator takes
a single argument, which is used by (the constructor within) the mixin generator, and
returns a function fromself to a record of methods. When the fixed-point operator is ap-
plied to the function returned by the generator, it produces a recursive record of methods
representing a new object (see tinewW clasyrule). Genfirst callsGeny(x) to compute
mixinrec, Which is used firstly to compute the mixin object generaiitingen, a function
from self to a record of mixin methods. Secondly, it is used to compuitenred, which
provides the record of redefining methods from the mixin. Ti&amcalls the superclass
generatog, passing argumemhixinrec.superinit, to obtain a functiosupergen from self

2Those methods that do not invoke any expected method and/or have their referencertattadieady
resolved might be called on this recursive record component of the newly produced incomplete object, but
we do not introduce this possibility here.
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0bj<{~--},VgaraN,K»f> —* (m ZVm) -
let incgen= Aself.
m;j = Ay. (vg self).mjy (€N
me = Ay. self.mey (K€R) (meth add )
m =Ay. self.myy (€E-{1})
m = AY. Vi self y
in obj(fix(incgen,incgenr, ALU{l},R,E—{l}) wherel € E

Obj<{“'}7vgvra7\£>']{.7£> —t (m ZVm) -
let incgen= Aself.
mj = Ay. (vg self).mjy (€N
me=Ay. self.mey (KeR—{1}) (meth add
m =Ay. self.mpy (€%
m = Ay. (r.my self) (Vm self)y
in obj(fix(incgen,incgenr —r.m, ALU{l}, R —{I},E) wherel € §

obj({...},Vg, [, AL R, E) «—+ obj({m = vin H<M vy, ) —
let incgen=
let gen = AS1.AS.
{ m =Ay. (Vysp).my (€M-(RUE) }
m = )\y' S1.My Y (reMN(RUE))
in (obj comp
Aself.
m; = Ay. (vg self).mjy (€N
{ M = Ay. (r.my self) (v, fix(gen self)).mey  (K<%) }
m = Ay. (v fix(gen self)).myy (€%
in obj(fix(incgen,incgen AU R U ‘E)

obj({my = Vi }'<M Vg, {}, M,0,0) — obj({m = Vi, }'<M vy, M) (completedl

Figure 5: Reduction rules for object completions

to a record of superclass methods. FinaBgnbuilds a function fromself that returns a
record containingll methods — from both the mixin and the superclass. All methods of
the superclass that are not redefined by the mixirnwherei € M — R, areinheritedby

the subclass: they are taken intact from the superclass’ “objeqgtéigen self). These
methodsm include all the methods that are expected by the mixin (as checked by the
type system). Methods); defined by the mixin are taken intact from the mixin’s “object”
(mixingen self). As for redefinedmethodsmy, next is bound to(supergen self).my by

Gen which is then passed ftanixinred.my) self. Notice that at this stage, all methods
have already received a binding for the private field.

The four rules in Figur® are the basic rules for manipulating the incomplete objects,

l.e., they enable completing them with the method definitions that they need either as
expected or redefined.

The (meth add ) rule adds to an incomplete object a metimgdhat some other meth-
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ods expect. The function incgen magqgf to a record of methods, where new method
definitions are taken from the object generaigrthe redefining and expected (excluding

m) methods remain “dummy” and the methow is added. Therefore, applying thi&
operator to incgen produces a recursive record of methods with b@ilihend implic-

itly enables their invocation. Thacgenfunction is part of the reduct because it must be
carried along in the evaluation process, in order to enable future method additions and/or
object compositions. Notice that a method which is added to an incomplete object is a
function of self only, because priori it does not belong to any object and therefore it
does not have any knowledge of fields, being the (private) field a component of an object
(representing its state). As a side effect, a newly added method cannot access directly the
private field of the object, even though it can do so via sibling methods already present in
the original incomplete object.

The (meth add 2 rule is similar to the previous one, the difference being that now a
method is added in order to complete a redefining methgdcting as itsiext. There-
fore, the definition of the redefined method is not “dummy” anymore, but gets a new body
m = Ay. (r.my self) (v self) y. The body ofm is taken fromr (it is already bound to
fieldinit) and (v self) is passed to it asext. Naturally, this method becomes fully func-
tional, therefore its definition is removed framand the index is removed from®_ and
added tan/.

The only requirement fomy, both in rules fneth add Y and (meth add 2, is that the
bodyv; must be a function ofelf.

The (0bj comp rule combines two objects in such a way that the new added object
02 (which must be already complete) completes the incomplete objeahd makes it
fully functional. After completion, it is possible to invoke all the methods that were in
the interface of the incomplete object, i.e., those\iu ® U E. The record of methods
in incgen is built by taking the new methods from the incomplete olpedcthese are
the only methods that are fully functional in this object), binding thet parameter in
redefining methods froro;, and taking the expected methods from the complete object
02. During this operation we have to make sure that:
e methods of the complete objemt requested by the incomplete objeoisget theirself
rebound to the new resulting composed object (this is the reason why we need to keep the
generator also for complete object values). This rebinding automatically enables dynamic
binding of methods that are redefined even when called from within the methogs of
e methods ofo, that are not requested oy (we call these methodsdditional) are not
subject to “accidental” override.
The second point is crucial in our context, where additional methods in the complete
object, “hidden” because of subsumption, may clash with methods already present in
the incomplete object (i.e., those ). The above two goals are achieved altogether
using the additional generator geinside incgen. This generator builds a record where
the additional methods (i.e., the ones belongingfo- (R U ‘£)) are correctly bound,
once and for all, to their implementation in the complete object (thraadhat will be
propagated with the auto-binding of self, via the fixpoint operator application). The other
methods (those requested by the incomplete object, i.e., belongihgtdR U £)) are

14 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



3 OPERATIONAL SEMANTICS OVL_(

instead “open” to redefinitions since they rely on the rebauti€) which, in turns, uses;

as a “handle” to hook onto the complete object method implementations. This generator
gen, is therefore exploited to supply tg (the generator afy), the “self” record, obtained

by passing the newelf to gen and then applying fixpoint. This realizes the main idea that
the method bodies of the complete object will use as implementations efittigonal
methods the ones from the complete object and not possibly accidental homonyms from
the incomplete object. We observe that in the resulting object interface only the methods
declared in the incomplete object are includéd( ® U ‘£). Of course the additional
methods ¢/ — (R U £)) are still available to the methods of the complete object (but
hidden instead from all other methods). B} {ve present an alternative solution where

we include the methods belonging t&(U M) in the resulting object interface.

The completedlrule transforms an incomplete object, for which all the missing meth-
ods were provided, into a corresponding complete one.

Method invocation might be also allowed on incomplete objects, but only on those
methods that are already “complete”, i.e., the ones that do not need and do not use
either expected or other incomplete methods. It would be necessary to implement a sort
of “transitive closure”, based on a global analysis technique, to list, for each method, the
dependencies from other methods, but since this feature is essentially an implementation
detail, we leave it out from this version of the calculus.

It might be tempting to argue that object composition is just syntactic sugar, i.e., it
can be derived via an appropriate sequence of method additions, but this is not true. In
fact, when adding a method, the method does not have a state, while a complete object
used in an object composition has its own internal state (i.e., it has a private field, properly
initialized when the object was created via “new” from the class). Being able to choose
to complete an object via composition or via a sequence of method additions (of the same
methods appearing in the complete object used in the composition) gives our calculus an
extra bit of flexibility.

Let us show how the object completion works through an example of reduction. Sup-
pose we have the following objects (for simplicity let us forget the parameter of methods,
Ay. ...y, and dummy methods):

01 = obj({m = Aself. seIf.mz},Vé, {mg = Anext Aself. ...}, N ={1},R = {3}, E={2})
02 = obj({my = Aself. self.mg,mp = Aself. self.nmy,mg = Aself. ...},v3,{1,2,3})
0=01«+ O

wheremy in 0 is “hidden” (i.e., the type fopy will not contain the type of the method
my because of subsumption, see Sec&dor types). The objead; expectsrp and it uses
mp insidem,. Moreover, it redefines. Now, following the rule ¢bj comp, o will have
the shapebj(fix(incgen,incgen{1,2,3}), where incgen is as follows:

let incgen=
let gen = Asy.As. {my = (VS S).My, Mp = S1.Mp, Mg =S1.Mg} in
m = (Vl SC]f).ml
Aself. { mg = (r.mg self) (V3 fix(geny self)).mg }
mp = (V5 fix(gen self)).mp
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In the following we use the notatiam::m; to refer to the (fully qualified) implementation
of m; in object (or incomplete object. If we invokem, ono we would like that;::m
is executed, theny::mp, thenoy::m (i.e., no accidental override took place), and finally
01::my (i.e., the complete object uses the redefined version). Let us make explicit the
reduction steps performed upon the invocation of the methpdn objecto (we denote
genfix(incgen by gg):
o.m — fix(incgen.m — (vé fix(incgen).my — (Aself. self.mp)fix(incgen OK: 01::my
— fix(incgen.mp — (V3 fix(geny fix(incgen)).my — (v fix(gg)).m, —
(Aself. self.my)fix(gQ) OK: 02::mp
— fix(gg).my — (V5 fix(9g)).my — (Aself. self.mg)fix(gg) OK: 0p::my
— fix(gg).ms — fix(incgen.mg — (r.mz fix(incgen) (vé fix(gg)).ms —
(Anext Aself. ...)(fix(incgen) (v fix(gg)).ms OK: 01::mg

4 Programming examples

In this section, we provide some examples to show how incomplete objects and object
completion via method addition and object composition can be used to design complex
systems, since they supply programming tools that make software development easier.
We refer to p] for another example of using object composition to implement a stream
library.

For readability, we will use here a slightly simplified syntax with respect to the cal-
culus presented in Sectidh (i) the methods’ parameters are listed in between “{)J; (
e1;€ is interpreted aset X = €1 in e, X ¢ FV(e2), coherently with a call-by-value se-
mantics; {ii) references are not made explicit, tHetsx = e in x.m() should be intended
aslet x = refein (1x).m(); (iv) method bodies are only sketched. Finakly,—+ e should
be intended, informally, as =(x <+ e).

In the first example, we present a scenario where it is useful to add some functionalities
to existing objects without writing new mixins and creating related classes only for this
purpose. Let us consider the development of an application that uses widgets such as
graphical buttons, menus, and keyboard shortcuts. These widgets are usually associated
to an event listener (e.g., a callback function), invoked when the user sends an event to
that specific widget (e.g., one clicks the button with the mouse or chooses a menu item).

The design patternommand21] is useful for implementing these scenarios, since
it allows parameterization of widgets over the event handlers, and the same event han-
dler can be reused for similar widgets (e.g., the handler for the event “save file” can be
associated with a button, a menu item, or a keyboard shortcut). However, in such a con-
text, it is convenient to simply add a function without creating a new mixin just for this
aim. Indeed, the above mentioned pattern seems to provide a solution in pure class-based
languages that normally do not supply the object method addition operation.

Within our approach, this problem can be solved with language constructs: mixin in-
stantiation (to obtain an incomplete object which can be seen as a prototype) and method
addition/completion (in order to provide further functionalities needed by the prototype).
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let Button = let Menultem = let ShortCut =
mixin mixin mixin
method display = ... method show = ... method setEnabled = . .. "
method setEnabled = ... method setEnabled = ... expect onClick;
expect onClick; expect onClick;
e e end in
end in end in

let ClickHandler =
(A doc. A self. ... doc.save() . self.setEnabled{alse)) mydoc
n
let button =new Button("Save") in
let item =new Menultem('Save") in
let short =new ShortCut(Ctr1+S") in
button<— (OnClick = ClickHandler);
button.display();
button.setEnabledtue);
mydialog.addButton(button);
item <« (OnClick = ClickHandler);
item.setEnabledfue);
mymenu.addltem(item);
short<— (OnClick = ClickHandler);
short.setEnabledtue);
system.addShortCut(short);

Figure 6: Widgets and handler.

For instance, we could implement the solution as in Figuréhe mixinButton expects

(i.e., uses but does not implement) a methadlick that is internally called when the

user clicks on the button (e.g., by the window where it is inserted, in our example the
dialogmydialog). When instantiated, it creates an incomplete object that is then com-
pleted with the event listen€fl ickHandler (by using method addition). This listener is

a function that has the parameterc already bound to the application main document.

At this point the object is completed and we can call methods on it. Notice that the added
method can rely on methods of the host object (@€tEnabled). The same listener can

be installed (by using method addition again) to other incomplete objects, e.g., the menu
item "Save" and the keyboard shortcut for saving functionalities. Moreover, since we are
able to act directly on instances here, our proposal also enables customization of objects
at run-time.

The code in Figure (that works together with the previous one) shows another ex-
ample of object completion vienethod additionwhere the method to be completed ex-
pects the implementation from the superclass (it refers to ihata): In fact, the mixin
FunnyButton does not simply expect the methodClick, it expects to redefine this
method: the redefined method relies on the implementation provideexioynethod (ei-
ther provided by a superclass, or in this example directly added via method addition to
an object instance dfunnyButton) and adds a “sound” to the previous implementation.
Notice that once again the previous event handler can be reused in this context, too.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 17



G#_/ SAFE AND FLEXIBLE OBJECTS WITH SUBTYPING

let FunnyButton =

mixin
method display = ...
method setEnabled = . ..
method playSound =. ..
redefine onClick =Aself. Anext. ...next() ...

self.playSound(tada.wav");
end in

let funnybutton =new FunnyButton(Save") in
funnybutton<— (OnClick = ClickHandler);
funnybutton.display();
funnybutton.setEnabletifue);
toolbar.addButton(funnybutton);

Figure 7: Another widget that expects to redefine a method.

Another way to implement the same functionalities is via object composition. For
instance, if saving the document requires further and complex operations, instead of in-
cluding all of these in a method, it can be more convenient to include them in an object
(with other methods than the one requested by the incomplete object). In particular, the
incomplete object only requires the methadC1ick: the object used for completion can
have more methods (hidden by subsumption). Moreover, the additional methods will be
hidden in order to avoid name clashes. For instance, we can define the class:

let SaveDocument =
mixin
method onClick =AdocAself. ...
method format =AdocAself. ...
method save =AdocAself. ...
method compress AdocAself.. ..
method display =AdocAself. ...
constructor Adoc {fieldinit = ref dog superinit = _}
end

If we instantiate this mixin we obtain a complete object (since there are neither expected
nor redefined methods), that can be used to complete the incomplete objects inGrigure
In particular, the methodisplay in the complete object type will be hidden by subsump-
tion, therefore it will not interfere with the methad splay of the clas8utton (indeed,

they perform different operations). Notice that the construct@®aetDocument returns,

in the fieldinit field, a reference to the passed document instance (the vatu@drinit

will be ignored, since an instance ®veDocument is already complete); this reference

will be used to initialize the private field of all the methods (since it is a reference every
methods will share the same value and can update it).

5 Type System

Besides functional, record, and reference types, our type system has class types, mixin
types, and object types (both for complete and incomplete objects):
T o= 1|1 —To| Tref | {my:Ty e
| class(T,Zq)| mixin(T1,72,20/,Z%,2£)| 0bj(Z) | obj(Zar, 2% ,2%)
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(T class va) (T class inst
[ vgiy— (Mt Y — (mytg e I+ e:class(y,{m:Tm})
- T
I I classval(vg, M) : class(y, {my : Tm ') I F newe:y— obj({mi:tm})
(T obj) (T se)
(M =} (T 1%
M E v {mtm HEY — {mytm < [ eobj(s) m:Thel
[ = obj({m = Vi }'M vg, M) : obj({m; : Ty €M) M- em:Ty

Figure 8: Typing rules for class related forms

wherel is a constant type; is the functional type operator ref is the type of locations
containing a value of type. = (possibly with a subscript) denotes a record type of the
form {m: Ty }iE', I CN. If m:tm € Z we say that théabel m occursin Z (with type
Tm). L(Z) denotes the set of all the labels occurringirilThe metavariablg ranges over
the set of typesTyping environmentare defined ad™:: =¢€ | I',x:1 | [,11<:12 where

X € Var, T is a well-formed type|1,1, are constant types, andi; ¢ dom(I"). Typing
judgmentsare the following:l - 11 <: T2, T1 iS a subtype of, andl’ - e: 1, e has typet.

Typing rules for lambda expressions are standard. Typing rules for expressions dealing
with imperative side-effects via stores and the rules for typing classes and records can
be found in P]. We do not need any form of recursive types because we do not use a
polymorphicMyTypeto typeself (see, for instance 1[/]). This prevents the type system
from typing binary methods, but it still allows it to type methods that moskfy, which
can be modelled as “void” methods that return nothing.

Typing rules for class and complete object related forms are given in Feglmerule
(T class va), class(y, Z,,) is the class type whengis the type of the generator’s argument
andX,, = {m :Tm } is a record type representing the interface of the objects instantiable
from the class. The type of a complete object is the record of its method types (rule
(T obj)). Notice that objects instantiated from class values do not have a simple record
type Z, but an object typebj(Z). This is useful for distinguishing standard complete
objects, which can be used for completing incomplete objects, from their internal auto-
referenceself, that has type. In the object expression, the second compongiis a
function fromself to self because it works on the first component of the object, which is
the record of object’s methods. The only operation allowed on complete objects is method
selection and it is typed as ordinary record component selection {rse)y.

We present the typing rules for mixin-related forms in Fig@reln the mixin type
mixin(Yp, Yd, 2o, 2%, 2z), Yb IS the expected argument type of the superclass generator,
Ya is the exact argument type of the mixin generalgy, = {m; : Tm, } are the exact types
of the new methods introduced by the mixly, = {m:Tm } are the exact types of the
methods redefined by the mixiag = {m: 1} are the types of the methods expected
to be supported by the superclass to which the mixin is applied. The rllesx{n)
and (T mixin va) assign the same type to their respective expressions. The type assigned
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[ = ermixin(yb,Yd, 2o/, 2% 2)

(T mixin ins)
[ new e:yy — obj(Zs,Z%,2£)

Forje AL T F VT Forke R: T FVm:Tm FOricE: T Fvyily
MV =3 TEri{mes—tm — tn ket

(T inc obj)
Mk ObJ<{mD = Vmp}peNUKUZ7Vg7 r, Nv R.a Z:> :Obj<29\£7zﬂ{7 Z‘Z>
ForjeAN: ThvVnn—=2—1Tn FOrkeR: TFvVpin—2Z—Tn —TIn
I F Ve:yg — {fieldinit:n,superinit:yp}
(T mixin)
mixin
method Mj = Vp,; U0
redefine mg = Vi ; K%
MF expect M (iefr)n( .mIXIn<yb,yd,ZN,ZR,ZZ>
constructor Vg,
end
[ Genn:yg — {gen:3 — 3 superinit:yp, redef : {m: 3 — T — Tm JK€%}
(T mixin val)

[ = mixinval(Gemn, AL, R, E) : mixin(Yb, Yd, Za7; 2% , 2E)

[ e imixin(yp, Yo, 2o, 2%, 22) [ €xiclass(ye,Zq7)
M+ Yo <:Yc M ZM<:Z$UZK L(ZM)QL(ZN) =0

(T mix app
M eloexiclass(ya, 2o UZgy)

where in all the rules
T=35,UZgUZr Za={MjiTm}, Zg = {Mk:Tm/}, 2 = {M Ty}
Tm are inferred from method bodies

Figure 9: Typing rules for mixin related forms

to an incomplete object is similar to the type of the mixin the object is the instance of,
but it does not contain information about the constructor (see Tuiec(ob)), since the
constructor has already been called when the incomplete object has been created. Notice
that in the rule T inc ob) the record of methods includes also expected methiods (

AN UR UE). This may seem to contradict the “nature” of expected methods. Indeed,
such methods in an incomplete object are “dummy” in the sense that they are of the
shapem = Aself.self.m (see Sectior8), and they will never be called, since the typing
prohibits invoking methods on incomplete objects. “Dummy” methods are a technical
trick that enables correct instantiation of incomplete objects (intuitively, must refer

to all the methods, not only the new ones, but also the ones that are still to be added).
When typing an incomplete object value and a mixin value, “dummy” methods allow us
to assign the typ& — % to the generatovg (the generator being a function frosalf to

self). In fact, the body of “dummy” methods simply calls the homonym methoseked

so the type inferred for expected and redefined methods will be consistent with the types
of “dummy” method bodies (and so with the types of expectedmsd methods sought
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M eobj(Za,2g,2%) m:tm € 2¢ MEVm 21— T
M (ZNUZKUZZ)<:21

(T meth add 1 -
M et (M =vn)iobj(Za U{M:Tm},Zg, 2z — {M Tm})

M eiobj(Za,Zg,2%) m:Ty € 2g MFVm 21— Ty
M+ (ZNUZKUZ£)<:21

(T meth add 2
FEeet (M =Vn):obj(ZaU{m: Tm},Zg —{M T}, 2g)

M+ egobj(ZN,ZK,Z@ I F e :obj(Zp)
M 2Zp <ZZ'EUER L(Z?) OL(ZN) =0

(T obj comp

[ = obj({m = v }'¥',vg, {},1,0,0) : obj(=,0,0)
[ obj({m = v }'€'  vg, 1) : obj(Z)

Figure 10: Typing rules for incomplete object-related forms

(T comp)

JCli r-z<y
. — (< record) (<: cobj)
F T, P <o {my it P [ F obj(Z) <:obj(Z’)

Figure 11: Subtyping for objects

by their sibling methods). If the “dummy” method “trick” was not used, filxeoperator
could not be applied to generate an incomplete object.

In the rule T mix app, ,, contains the type signatures of all the methods supported
by the superclass to which the mixin is applied. The superclass must provide all the
methods required by the mixins (expected and redefined). The resulting class contains
the signatures of all the methods defined by the mixin, and inherited from the superclass
(superclass may have more methods than required by the mixin constraints).

Figure 10 shows the typing rules related to incomplete objects. A methocan be
added to an incomplete object (rul€ heth add }) only if this method is expected by
the incomplete object and if its type is a subtype of the expected one. The added method
completes the functionalities of some already present methods and may invoke some of
them as well. Thereforan’s self type Z; imposes some constraints on the type of the
incomplete object thaty is supposed to complete. Hence, the incomplete object must
provide all the methods listed iB;, on which the added method is parameteriz2gl.
is inferred fromm’s body. The rule for adding aext method to complete a methaoq
that is redefined in the incomplete object (rulenjeth add ) is similar and we omit its
explanation due to the lack of space.

The main novelty in the typing system with respect to the on&jak[the subtyping
relation on complete objects (Figutd). In the original calculus both depth and width
subtyping was defined on record types. Here, for uniformity with respect to object types,
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we define width subtyping only on record types as well. The cost we pay is a less ex-
pressive mixin application typing rule. However, modifying the subtyping rules in order
to allow also depth subtyping on record types only would be just a technicality and an
orthogonal issue with respect to the subject of the paper.

6 Properties of the system

Our system is proved sound, in the sense that “every well-typed program cannot go
wrong”, which implies the absence ofessage-not-understoodntime errors. We con-
siderprograms which are closed terms, and we introddaelty programsin the style

given in 28], which are a way to approximate the concept of reaching a “stuck state”
during the evaluation process, and prove that if the evaluation for a given prqgiaes

not diverge, then eithgp returns a value, op reduces to a faulty program. By using the
subject reduction property and proving that faulty programs are not typable, we show that
if a program has a type in our system, then it evaluates to a value, under the condition that
the program does not diverge. For complete proofs 28e [

Definition 6.1 (Contexts)

C::= []|Ce|eC|AC|{m=€...m=C M, 1=61,...,Mh =& }}==" C.x| Hh.C | H(x,C)h.e
| classval(C, M) | new C |Coe|eoC|C+«—+ m=e|C«—+ e|e—+ m=C|e—+ C
jen -] jex jen
ke R ke R —I] ke R
| mixin e | mixin e | mixin ez

method m; = Vi ; method m; = Vim;; method m; = Vim;;

method my =C; redefine My = Vi, ; redefine My = Vi ;

redefine My = Vi, ; redefine m =C,; expect my;

expect my; expect my; constructor C;

constructor V; constructor Vc; end

end end

The notion ofsubstitutions defined ase,/x|e;, where the expressiam is substituted for
all the free occurrences of the variablen the expressioe;.

Lemma 6.2 (General deduction properties)

i) If T+ C[e]:1, then there exist’, 1’ such that™ + e: T/;

i) If there exist nd™’, 1’ such thatl” + e: 1/, then there exist nd,t such thatl" +
Clel:t.

Lemma 6.3 (Property of <: w.rt. —) If I =11 — 12<:p, thenp =01 — 02, andl" -
o1<:T1andl F1y<:0o.

Lemma 6.4 (Weakening is Admissible)Let e be an expression, aRdandl™’ two typing
environments. |If, for all e FV(e), I''(x) = I'(x), thenT + e:1 ifandonlyif " -
e: T, for somert.
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Lemma 6.5 (Replacement)lf D is a deduction of” - C|ey]:T1, D; is a sub-deduction of
I+ e : T in D, Dy occurs inD in the hole([]) of C, andl + e;: 7/, thenl - Cley] i T.

Lemma 6.6 (Substitution) If ' x:T' F e:tandl + €:7, thenl - [€/Xe:T.
Lemma 6.7 (< : Weakening) If I, x:t+ e:gandl - U <1, thenl,x:T' - e:o
Lemma 6.8 (Fix) If T I fix(Ax.e):1thenl" - [fix(Ax.e)/x]e:T.

Lemma 6.9 Let D be a derivation of + obj({mp = vmp}PGT/,vg,fP’> obj(Zp), PC P
Then there exists a sub-derivati@h of D for I' - obj({m, = vmp}pepl,vg, P’ :obj(Zpr).

Definition 6.10 (— Relation) With — we denote the reflexive, transitive, and contex-
tual closure of—.

Lemma 6.11 (Subject Reduction)If I - e: 1 and e— €, thenl" - € : 1.

Proof: The proof follows by cases on the one-stepreduction definition, followed by
induction on the number of steps of reduction usBi§ We present only the case con-
cerning object composition (ruleljj comp from Figureb).

Let us introduce the following notation:
Vi= ObJ<{ . '}7\/91 r, Na R, Z:)?VZ = 0bJ<{mp = Vmp}prP 7\/97 ?/>7 andz’ = ZNUZRUZZ

The visible interface of the complete object contains typgsvherep € P, whereas
the set of its methods might contain more methods, i.e., its methods,apec 7'. Hence
the types of methods hidden by the subsumptiortgrewhereh € # = 2’ — P,

By the rule(T obj comp: I - vi <+ Vv2:obj(Z7). We will prove that we can assign
the same type tobj(fix(incgen,incgen ALU R U ‘E), where incgen is defined as in rule
(obj comp) from Figure5. Analyzing the rule(T obj comp and using Lemm&.2 we
derive the following:

[ viiobj(Za,Zg,Zz) (1) T F v2iobj(Zp), P C 2 (2)
[ Sp<iZeUSg (3) L(Zp)NL(Ex) =0(4) obj() <:obj(Zr)

Notice that, because of the possibility of applying some subsumption steps to complete
object types, we must consider a ty@g (), a supertype obbj(X’), as the type of the
composition expression. Notice also that the incomplete olsjeéstparameterized oself
of typeZ =, UZg UZg, Whereas the complete objegtbeing added is parameterized
on self of typeZp. The type of newly obtainesklf is ¥’. HenceX = ¥/,

First of all, let us look at the judgement (1). Observing the (Tlénc obj) and using
Lemma6.2we derive:

Forj e AL: T = Vi it (5) Forke R: T F Vit (6) FOri€c £: T F Vi 1Ty (7)

FEvg:Z—3(8) TEri{m:Z—tm —In % (9)
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whereZ = 2, UZg UZg. Next, for the judgement (2), analyzing the ryfe obj) and
using Lemmab.2we deduce:
C = {mMp = Vi, }PE?  {mp T }PE? = 55 (10) T F Vi Zp — Zp (11)
For someself,s1,S ¢ dom(I"), using the projection ruld(x: T + X:T), we obtain:
M,self: 2/ F self: 2/ (x)
Mself:2,51:2,9:Zp F51:2Z (1) [yself:Y,9:2,9:2Zp F $:2p (x2)
Applying Lemma6.4to (8), (9), and (11) we derive:
Moself:3 b vg:Z —3(8) self:3 Fr:{m:Z — Tm — Tm J<% (9)
Moself:2',81:2,9:2p F Vy:Zp — Zp (11

Let us now have a look at the function incgen. First we look at its parf.géfe can
lNe:1—o MNEe't
a
apply the rule rFee:o (@pp) to (11’) and (*2) to derive, self .2/, s1: 2,5
ZpFVy:Zp Forl € P — (RUE) T, self:2),81:3,9:3p - (Vg S2).M 1Ty, .6, M
Tm € 2p — (ZKUZZ)
We can deduce the types foy : T, Wherel € #H using Lemma6.9. Forr € 2'nN

(R UE), methods are “dummy”, i.e. they are taken fremZ, so we have
Mself:2,51:2,9:Zp F S.My 1Ty 1.8, My 1Ty, € 2 N (Zg UZg).

Therefore, in the contexXt, self: X', s, : 32,5 : Zp, the record of methods produced by
gen will have the type(Zp — (24 UZg)) U (Zp N (g UZg)) = Zpr. SinceZy <:Zp
we deduce the type for ggn
Mself: 2 Fgen:X—Zp — Zp (12).
Now let us analyze the record of methods produced by incgen. Applying the rule
(app to (12) and (*) we obtairt, self : ¥’ - genyself: Zp — Zp sofix can be applied to
the above obtaining, self : ¥’ - fix(genself) : Zp.
Finally, applying the ruledpp) to (11’) and the above we deduce:
[, self: 3 1= vg fix(geny self) : Zp (13).
Selecting the appropriate methods froh3) we get:
Forke R: T,self:2' I (vqfix(gen self)).my:Tm (14)
Forie E: T,self:Z' I (v fix(gen self)).m: Ty (15)
Applying the rule (app) to (8’) and (*), and to (9’) and (*) we obtain:
Mself: X' vgself:Zand forke R : I, self: X' F r.my self i Tm, — Tm,.
Forj e Al T, self: 2 = (vg self).m; Ty i.€.,Mj i Tm; € 2y (16)
Forke R: T,self: 2’ = (r.my self)(vq fix(genself)).mg: Tm i.€., Mk Tm, € Zg (17)
Foric E: T,self:Z' I (v fix(genself)).m : Ty i.€.,m Ty € Zg (18)
From (16), (17), and (18), the record of methods produced by incgen has the type

25 UZg UZg = 2 therefore the type of incgen is
I FincgenX’ — %' (19) andl + fix(incgen : X’ (20)
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Finally, applying the rule (Tobj) to (19) and (20), we derive: I
obj(fix(incgen,incgen A\’ U R U ) : obj(X’) and by subsumption we get:I' + _
obj(fix(incgen,incgen ALU R U E) : obj(ZT). O -

Definition 6.12 (Evaluation Contexts) If v's stand for values, then evaluation contexts
E are defined as follows:

E::= []|Ee|VE|EX|HhE||{m=vy,....m=E m1=6.1,...,M = g }1=="
| newE|Ece|VvoE|E«~—+ m=e|E«—+ e|ve—+ m=E|v—+ E

The notion of theevaluation context Eenables us to make the evaluation procedure
deterministic with respect to side-effects. Note tRathe reduction context defined in
Section 4, and are almost identical: they differ only in th&does not included h.R.

This is becaus® is used when looking up heap values, and only the local heap can be
used for this.

Definition 6.13 (Programs and answers)Programsandanswersare defined as follows:
p 1= e, where gis a closed expression a:= v|Hhe

Hence programsare closed expressions and arel-typedif they can be assigned a type

in an empty type environment. When a program is evaluated by performing successive
reductions, each intermediate step is a program itself. There are two possible situations:
(i) reduction continues forever, i.e., the program diverg@sthe program reaches a final
state, i.e., no further reduction is possible. In this case, a program produces either an
answer, or a type-related error.

Next, we define the relatior- that represents the reduction relation for evaluation
contexts.

Definition 6.14 (— Relation) E[€] — E[€] if and only if e— €. With— we denote the
reflexive and transitive closure of.

This relation enables us to see the evaluation procedure as a (partial) fueetbn

from programs to answers. Hence, the partial funcewal is defined on programs as:
evallp) =a<= pr—a.

Corollary 6.15 (Subject Reduction for—-) If I - e:1 and e— €, thenl" - € :1.

Definition 6.16 (Faulty Programs) The faulty programsare the programs containing
some of the following sub-expressions:

e cv where cis a constant, v a value &(t, v) is not defined;

e V1o Where \, Vv, are values and ¥# Ax.e ref, ! = :=v;
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e lvwhere vis avalue and x;

e =V where vis avalue and=¢ x;

e Hh(x,v2).C[xv1] where \, Vv, are values;

e new vV where v is a value and classval(—,_) or v # mixin{—,_,_,_);
e v.Xwhere vis a value and {x; = vi}ie' or X # X, Vi;

e vioVy Where ¥y and v are values and # # classval(—,—) or vp #

mixinval(—, _,_, _);
e V1 —+ m= vy where y and v are values andv=£obj(_, _,_,_,_ _);
e V1 —+ V2 where \ and \ are values and ¥ # obj(—,—,—,_,_,_) Or Vo #

Obj(———)-

Definition 6.17 (Program Divergence)A program p diverges () if p — p’ for some
p’ and for all g’ such that p— p” there exist q such that’p- g.

Lemma 6.18 (Uniform Evaluation) For a program p, if there is no’much that p— p’
and g is faulty, then either g or p—- a, for some answer a.

Proof: By induction on the structure qd, by proving one of the following: eithqp itself
is faulty (then, since— is reflexive, there is a faulty, coinciding with p, such that
p — p/, therefore the hypothesis of the lemma does not applyper p’ andp’ is
closed, omp is an answer. We present only the c@se p1 ¢ p2: we first consideps, for
which we have three possibilities:

1. p1— qrandqy is closed. Thenp; = Eq[p'], o1 = E1[d] for some contexi;, where
P —d.ForE=Ejop, p= p1op2=Ei[p]ep2=E[p]— E[d] is closed;

2. p1is faulty: pis faulty;

3. p1is an answer: ifp; # mixinval(—,_,_, ), thenpis faulty. Otherwise, we ana-
lyze p>. There are following cases to consider:
a. p2 — 0z andqy is closed. Thenp, = Ex[p/],q2 = Ez[q/] for some contexEy,
wherep’ — . ForE = p1Ep, p= p1o p2 = p1oEx[p'] = E[p] — E[(] is closed;
b. p2 is faulty: p is faulty;
C. p2 is an answer: ifpp # classval(—,_), thenp is faulty. Otherwisep reduces in
the empty contexE = [ ], according to therfiixinapp rule.

Lemma 6.19 (Faulty Programs are Untypable)If p is faulty there are nd , T such that
MN-p:t.

Theorem 6.20 (Soundness).et p be a program: i€ F p:t then either p} or p—— a
ande - a:t, for some answer a.
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We can now define a functioeval from programsto {answer$ U L where L is a
special value given to the evaluation process of a prograrhen it evaluates to a program _
p’ which is faulty. The following are two properties, both corollaries of Theoe2Q. -

Corollary 6.21 (Strong Soundness)Let p be a program: i€+ p:1 and eval(p) = a,
for some answer a, theat- a: 1.

Corollary 6.22 (Weak Soundness)Let p be a program: i€ - p: T, then evdl(p) # L.

7 Conclusions

We presented a possible solution to solve the “method composition versus width subtyp-
ing” conflict where object composition and subtyping safely coexist. We remark that the
high-level ideas underpinning our solution are general. In particular, the idea of having
self “split” into two parts when composing two objects, one taking care of the statically
bound methods, the other one dealing with the dynamically bound ones, can be applied
within any setting presenting the same problem. Moreover, with respect to the dictionar-
ies of [25] in the late-binding setting, our early-binding setting provides a corresponding
solution that is more oriented to an implementation and, in particular, would not suffer
from overheads due to dictionary management and lookups, as the original calculus does,
as pointed out inZ5] itself. The approach we chose here was to allow width subtyping
on complete objects only. It is possible to have width subtyping on incomplete objects as
well, if hidden method names are carried along:irf the type of the object;ii( in the

object itself. Solutioni would imply a more restrictive typing rule for object composi-
tion, to also check the possible conflicts among non-hidden and hidden methods, and rule
out such conflicts completely. We think, though, that such a solution is too restrictive, as
we think this kind of name clash is not an error. Hidden method name information in the
object (solutionif)) would solve all possible ambiguities at run-time, but it would be less
standard, as the subsumption rule would act on the object expression, not only on its type.
Nevertheless, we think this solution has the advantage of being quite general, even though
it might be considered not elegant, and it will be presented as future work.

An explicit form of incomplete objects was introduced 8}, [where an extension of
Lambda Calculus of Objects dt7] is presented. In this work, “labelled” types are used to
collect information on the mutual dependencies among methods, enabling a safe subtyp-
ing in width. Labels are also used to implement the notionarhpletionwhich permits
adding methods in an arbitrary order allowing the typing of methods that refer to methods
not yet present in the object, thus supporting a form of incomplete objects. However, to
the best of our knowledge, there exist no attempts other than ours to instantiate mixins in
order to obtain prototypical incomplete objects within a hybrid class-based/object-based
framework. Traits have been proposed i@§] as an alternative to class and mixin inheri-
tance to enhance code reuse in object-oriented programs: they are collections of methods
that can be used as “building blocks” for assembling classes. Traits are concerned with
the reuse of behavior, while our main concern is the composition of objects together with
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their state. An interesting future direction is the study of incomplete objects using traits
instead of mixins, starting from the typed calculus of tralig [

We plan to add to our calculus the possibility to combine two mixins, thus introducing
higher-order mixingmixins that can be applied to other mixins yielding other mixins),
along the lines of4]. This integration seems to be smooth and it would result in a rather
complete mixin-based setting. Moreover, we want to study a form of object-based method
overrideand a more general form of method addition. Both these extensions will add
issues to the subtyping problem. Furthermore, we will study a composition operation
between two complete objects (e.g., no missing methods). Finally, incomplete objects are
a natural feature to be added tadMl1 [ 7], a coordination language where object-oriented
mobile code is exchanged among the nodes of a network.
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