
Vol. 4, No. 8, September–October 2005

Reasoning with specifications containing
method calls and model fields

David R. Cok, B65 MC01816, Eastman Kodak Company, Research & Devel-
opment Laboratories, Rochester, NY 14650-1816, USA, cok@frontiernet.net

Allowing abstraction in program specifications increases modularity and comprehen-
sibility and is as important in specifications as it is in the program itself; two such
abstraction mechanisms are method invocations and model fields. However, method
invocations do not map neatly into the first-order logics that are often used for assuring
the correctness of specifications. One problem is translating specifications in a way
that acknowledges the potential for exceptional behavior. Furthermore, translating
model fields into verification conditions exposes the non-trivial interactions between
frame conditions and the model representations. The ESC/Java2 tool has been able
to achieve a practical translation of method invocations and model fields within the
design constraints of its parent tool, ESC/Java. Furthermore, the techniques used are
applicable to other specification constructs such as generalized quantifiers.

1 INTRODUCTION

Research and practical capability in program verification is advancing significantly
with the help of clearer semantics, evolution of languages and tools, and experience
with industrial-scale software systems. One research thread in program verifica-
tion combines (a) specifications indicating the intent of a program with (b) tools
that check those specifications either dynamically at run-time or statically with-
out needing to execute the program. Using method calls in specifications provides
a level of abstraction and conciseness that promotes reading, writing and under-
standing specifications and will likely assist in their automated verification as well.
However, method calls in specifications have not been widely supported and have
unclear semantics in the light of potential exceptional behavior. ESC/Java [9, 10]
is a successful, publicly available, static checker, but it does not allow such abstrac-
tion. This paper discusses the implementation of an extension to ESC/Java, called
ESC/Java2 [7, 8], that allows the use of method calls in specifications, with a dis-
cussion of the difficulties caused by the possibility of exceptions or non-terminating
behavior. With that accomplished, other programming language constructs can
also be handled by the underlying prover. The approach described here is applica-
ble to any source code translator interfacing with a prover that operates in a generic
first-order logic.

Model fields [6, 17], though not present in Java itself, also provide a useful
abstraction. They can be used to model the behavior of interfaces and abstract

Cite this article as follows: David R. Cok: ”Reasoning with specifications containing
method calls and model fields”, in Journal of Object Technology, vol. 4, no. 8, September–
October 2005, pages 77–103,
http://www.jot.fm/issues/issues 2005 10/article4

mailto:cok@frontiernet.net
http://www.jot.fm/issues/issue_2005_10/article4
http://www.jot.fm

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

classes that do not have an implementation and they can be used to separate the
public and private aspects of a class’s specification. However, model fields exhibit
properties both of fields and of methods; the interactions of these properties lead to
complications and potential logical inconsistencies.

The solutions described in this paper were implemented and tested using the
Java Modeling Language[1], the ESC/Java2 tool, and its back-end theorem prover,
Simplify[25, 28]. The Java Modeling Language, described in section 2, is a specific
and fairly rich language for expressing specifications about Java programs; for ex-
ample, it supports both method calls in annotations and model fields. ESC/Java2,
introduced in section 3, is a tool that checks these specifications against the pro-
gram’s implementation. Section 4 describes Simplify, the theorem prover used by
ESC/Java2 to check the various logical conditions corresponding to the specifica-
tions. Section 5 describes a solution for translating method calls and issues arising
from exceptional termination, with an example in the Appendix. The issues and
implementation of model fields are described in section 6. Section 7 discusses appli-
cations to other specification language features and some outstanding issues. The
paper ends with descriptions of some future work, related work and conclusions, and
acknowledgements in sections 8-10.

2 THE JAVA MODELING LANGUAGE

The Java Modeling Language (JML) has by now been described in several publica-
tions [1, 16, 17] and that full description will not be repeated here. The discussion
in this paper can be illustrated using simple preconditions and postconditions.

• A behavior keyword introduces a specification case, which is a set of annota-
tions controlled by a conjunction of one or more preconditions.

• A requires keyword followed by a predicate declares a precondition for a
method.

• A ensures keyword followed by a predicate declares a postcondition for a
method that holds when the method terminates normally.

• A signals keyword declares a postcondition that holds if the method exits
with the given exception.

• A diverges keyword declares a condition that must be true of the program
state at the time the method is called (the pre-state) if the method never
terminates.

• A assignable keyword declares a frame condition, namely those fields that
may be assigned to (or modified) by a method.

• The pure modifier indicates a method that has no side-effects on the program
state.

• The \result identifier denotes the return value of a method.
• The \old identifier denotes an expression evaluated in the pre-state of a

method.
• The model modifier indicates a method or field that is defined in annotations

78 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

3 ESC/JAVA2

only.
• A represents clause indicates a constraint for the value of a model field.
• The in and maps clauses define additional contents of a datagroup correspond-

ing to a model field.
• An assert statement indicates an annotation predicate that is to be verified

at a given point in the program text.

Specifications are included in the text of a Java program by placing them in spe-
cially formatted comments, as shown in the figures. The syntax of the specification
predicates follows Java closely. It excludes any operations that have side effects, such
as the increment operator ++. Other operations, such as arithmetic and comparison
operators, have the same syntax and semantics as in Java. In particular, specifi-
cation predicates may include method calls, if those methods are designated pure;
tools supporting JML can then check that the implementations of pure methods
have no side-effects. Fig. 1 shows a class with specifications containing method in-
vocations. In it the public specifications of public methods use pure public methods
and not private implementation details. The combination of JML’s visibility modi-
fiers, pure methods, datagroups, and model methods and fields allows a separation
of public information from private implementation detail.

3 ESC/JAVA2

The ESC/Java2 tool [7, 8], an extension of ESC/Java [9, 10], implements the trans-
lation of Java programs and JML specifications into a target logic. ESC/Java was a
pioneering tool in the application of static program analysis and verification technol-
ogy to annotated Java programs. The tool and its built-in decision procedure operate
automatically with reasonable performance. The program annotations needed are
easily read, written and understood by those familiar with Java and are partially
consistent with the syntax and semantics of the separate Java Modeling Language
(JML) project [1, 19]. Consequently, the original ESC/Java was a research success
and was also successfully used by other groups for a variety of case studies [11, 12].

The ESC/Java2 project extends ESC/Java and its long-term utility by address-
ing a number of issues.

• ESC/Java2 fully parses current JML and Java 1.4, so it is compatible with the
variety of tools that now work with JML specifications.

• ESC/Java2 checks more of JML than did ESC/Java. For example, frame
conditions were not checked in ESC/Java, but errors in frame conditions could
cause the prover to reach incorrect conclusions. ESC/Java also lacked the
ability to use methods or model fields in annotations, limiting the annotations
to statements only about low-level representations.

• ESC/Java2 provides ongoing distribution and maintenance. As companies
were bought and research groups disbanded, there was no continuing develop-
ment or support of ESC/Java; the tool was untouched for over two years and
its source code was not available.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 79

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

public class MethodAnnotations {

private final int[] array = new int[20];

//@ in state; maps array[*] \into state;

//@ private invariant array != null;

private int size; //@ in state;

//@ public model JMLDataGroup state;

//@ private behavior

//@ ensures \result == array.length;

//@ signals (Exception) false;

//@ public model pure int capacity();

//@ private behavior

//@ ensures \result == size;

//@ signals (Exception) false;

public /*@ pure @*/ int size() { return size; }

//@ public invariant size() >= 0 && size() <= capacity();

//@ public behavior

//@ requires size() < capacity();

//@ assignable state;

//@ ensures size() == \old(size()+1);

//@ signals (Exception) false;

public void push(int i) {

array[size++] = i;

//@ assert size() == \old(size())+1;

}

//@ public behavior

//@ requires size() > 0;

//@ assignable state;

//@ ensures size() == \old(size()-1);

//@ signals (Exception) false;

public int pop() {

return array[--size];

}

}

Figure 1: An example class with specifications containing method invocations.

The engineering goals of ESC/Java were to be automatic and useful in finding
bugs and violations of program specifications. It was not designed to find all speci-
fication errors or to fully represent Java semantics. ESC/Java2 has continued that
spirit, though some unsound aspects have been corrected.

It is important to note that ESC/Java does not incorporate an explicit notion of
program state in the logical structure that represents the program. Instead, a single-
assignment calculus represents new values of program variables by new identifiers
in the logic. This simplifies the logic and makes it much easier to reason about
variables that remain unchanged; however, it also adds difficulty to the translation
of loops and of method calls used in annotations.

80 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 TRANSLATING USES OF METHOD CALLS IN ANNOTATIONS

4 SIMPLIFY

ESC/Java2 and ESC/Java translate program source code into guarded commands,
then into a single-assignment representation, and finally into verification conditions.
These conditions are passed to an accompanying theorem prover that may judge
them to be valid or invalid and may produce counterexamples to demonstrate in-
validity. The tool used is Simplify [25, 28], which accepts verification conditions
expressed in a first-order logic (including universal and existential quantification)
with equality and untyped total functions, extended with a simple theory of arith-
metic.

Simplify implements interacting and cooperating decision procedures for some
subdomains of first-order logic, along with heuristics to handle quantification, in
order to assess the satisfiability of a set of input formulas. In the context of a
programming language, the prover has knowledge of numerical and boolean values
and operators on those values. A base set of axioms describes the behavior of arrays,
types, and the subtype relationship. Object identity corresponds to a simple equality
relationship among untyped, uninterpreted constants. Object fields are modeled as
arrays: a field named f is considered an array, and a field reference o.f is translated
as the array reference f[o]. The various operators and built-in functions of Java
are modeled as function terms.

5 TRANSLATING USES OF METHOD CALLS IN ANNOTATIONS

Method calls within annotations

The problem at hand is to translate specification expressions containing method
calls into the target logic described above. Information about the behavior of a
method resides in the specifications of the method being called. Thus, we need to
translate the specifications of the called method in a manner similar to that used to
translate the calling expression.

In some cases there exists an expression whose value is the result of the method
call. For instance, if a method’s specifications have a postcondition of the form

ensures \result == ... ;

then one could extract such an expression, at least under the preconditions for which
the postcondition holds. That expression could then be substituted for the method
call itself, after appropriate substitution of actual for formal arguments. This pro-
cedure does not work in general however. There may not be such an expression
available. There may be more than one such expression available, requiring a pre-
scient choice of the best one to substitute for the method call. In addition, the
expression being substituted may contain other method calls that will themselves
require substitution; the substitution procedure may not terminate if there is any
recursive use of method calls in the annotations. Even without recursion, the depth
of rewriting can create very large verification conditions (easily consuming 256MB
on the ordinary but realistic sets of specifications contained in the JML library, in
experiments with ESC/Java2).

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 81

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

Inlining the implementation of the called method is another approach. This can
result in large, unwieldy verification conditions and does not work in the presence of
either recursion or overriding methods. It also can lose natural relationships between
identical subexpressions and complicates the logical predicates of a specification with
the imperative constructs of a method body. Also, we would like to be able to reason
about uses of methods without needing their implementations.

The approach most appropriate to modular reasoning and to the implementation
inherited from ESC/Java is to define a new uninterpreted function in the logic
corresponding to each pure method used in a specification. A naive translation of
methods to function terms would translate a method call of sort() into a function
term with no arguments, namely, (sort). This procedure encounters the following
complications.

• As will be obvious to any Java programmer, the argument list of the method
must include the receiver object (this), if the method is not static.1 Thus
a method call sort() in Java is translated into a term of the logic as (sort
this). This allows a natural distinction between the method calls sort() and
a.sort(). These are translated into the terms (sort this) and (sort a′), where
a′ is the translation of the programming language expression a. Reasoning
about aliasing is naturally handled as well: if it is established, for example,
that (EQ this a′), then (EQ (sort this) (sort a′)) will immediately follow.

• Secondly, the method implementation may use fields of the receiving object
that are not listed in the argument list. The values of instance fields may be
considered to be implicitly included by way of the this argument, but their
values then depend on the current program state.

• Most importantly, the semantics of equality among function terms is not ap-
propriate to the reference semantics of an object-oriented language such as
Java. Two function terms in the logic are equal if they have the same function
symbol, the same number of arguments, and the arguments are pairwise equal.
This definition of equality is fine for the immutable values of Java’s primitive
types, but not for reference values. Reference values referring to the same
object in different program states will test equal even though their internal
states may be different, since the logic used does not contain a global memory
model.

The translation procedure adopted here adds a state argument to the function
representing a method; the value used for that function argument is a unique con-
stant indicating the program state in which the method is being evaluated. It would
be equivalent to use a different name for the new function (rather than the same
name with a different state constant as argument) in each new context in which it
was being invoked. Remember that a method used in an annotation must be pure;
that is, it must not change the program state, at least in ways that are observed by

1Not quite as obviously, functions representing constructors of non-static inner classes must also
include a reference to an object of the enclosing class as an argument.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 TRANSLATING USES OF METHOD CALLS IN ANNOTATIONS

the program.2 Consequently the pre- and post-conditions of the pure method may
be evaluated in a common state. The state constant is uninterpreted; that is, it is
not used in any context other than to distinguish different program states. With this
procedure we can maintain the single-assignment mechanism adopted by ESC/Java,
without introducing a full memory model into the logic, but still utilize a first-order
logic for proof obligations. Having a representation of explicit state would enable a
more concise translation, since then the assumptions about the behavior of methods
could be universally quantified by a state variable. However, that would make for a
more complex logic and in any case would be a different design than that adopted
by ESC/Java and extended by ESC/Java2.

As uninterpreted values, the state constants serve simply to distinguish the values
produced by different instances of method calls in annotations. In each case the
single-assignment translation step ensures that each field and variable used in the
pre- and postconditions of the method is translated with its current value in that
state. Fields that are not mentioned in a frame condition (assignable or modifies
clause) are presumed to be unchanged from state to state.

JML specifications are often partial. That is, the behavior of the method is not
specified for all combinations of input. They may also be partial in the sense that
there is no value of the type of the result for the given arguments (such as for division
by 0). This is the case for conditions in which the method does not terminate or
terminates with an exception.

On the other hand, functions in Simplify’s logic are total. The logical term
introduced as the translation of a pure method will simply be undefined for those
function arguments for which the JML specification does not normally terminate or
the result is not specified. This is consistent with how partiality is handled elsewhere
in JML [18]. However, this partiality of specification affects how the method should
be translated and the deductions that can be inferred from its logical representation;
this problem is discussed in the following section.

Handling abnormal termination

In JML, a method’s ensures postcondition states that (under the given precondi-
tion) if a method terminates normally, then the given predicate holds; the signals

postcondition states that if the method terminates with the given exception, then
its predicate holds. In JML’s semantics, if a method terminates with an exception
or does not terminate at all, the result value is undefined. Thus, in order to reason
about the use of a method call in an annotation, we must know when a method does
terminate normally. That is, the assumption we need to generate for a method has
the form

(\forall args; normalReturn(args) ==> normalPostconditionHolds(args)).

2Which changes are considered observable and how to control what is observed are matters
of current research. JML currently does allow allocations of new objects to be performed by
pure methods; the state issues regarding those allocations are already handled within the logic of
ESC/Java by a separate ’allocation’ state variable.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 83

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

class Example {

public int i;

}

public class Good {

/*@ ensures o!=null && \result == o.i;

diverges false;

signals (Exception e) o == null; */

//@ pure

static public int valueOfI(Example o) throws IllegalArgumentException;

//@ ensures valueOfI(o) > 0;

public void init(Example o);

}

Figure 2: A class with a specification that includes normal, abnormal and non-
termination conditions.

in which normalReturn(args) is true precisely when the method always returns
normally for the given arguments. For those argument combinations for which the
method might possibly not return normally, the result must be undefined.

Consider the code fragment of Fig. 2. Since the diverges predicate is false,
we know that the method valueOfI will always terminate. Similarly, the signals

clause states that if !(o == null) then the method will not terminate exception-
ally.3 Hence if !(o == null) the method will terminate normally; consequently the
behavior of the method is defined by the assumption

(\forall Example o; !(o == null) ==>

(o!=null && valueOfI(state,o) == o.i)).
In general, with predicates for the signals and diverges clauses, the generated
assumption has the form

(\forall args ; !(signalsPredicate(args) || divergesPredicate(args)) ==>

(precondition(args) ==> postconditionHolds(args))).
However, what if the user omits the signals clause, as in Fig. 3? The default

for an absent signals clause is true, meaning that there is no restriction if the
method terminates exceptionally. The corresponding assumption is

(\forall Bad o; false==>(valueOfI(state,o)==o.i)).
This assumption is trivially true and says nothing that defines the behavior of the
valueOfI method.

It is not uncommon for a method’s specifications to omit the specification of
exceptional behavior, as in Fig. 3. The specification writer is simply stating that
as long as the method (or those it calls) does not throw exceptions, the result will
satisfy the given postcondition. However, if a method that is used in an annotation
does not provide signals and diverges clauses, the effect will be more significant.
In that case, any combination of method arguments might result in non-normal ter-
mination. Thus the returned value of the method is undefined for any argument
combination, and consequently no conclusion about the behavior of the method will

3JML only specifies exceptional behavior for those cases in which an object of type (or subtype
of) java.lang.Exception is thrown. In particular, there are no assertions about behavior if a
java.lang.Error is thrown. Other non-Exception Throwable objects are also ignored.

84 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 TRANSLATING USES OF METHOD CALLS IN ANNOTATIONS

public class Bad {

/*@ ensures \result == o.i; */

/*@ pure */

static public int valueOfI(Example o) throws IllegalArgumentException;

//@ ensures valueOfI(o) > 0;

public void init(Example o);

}

Figure 3: An inadequately specified method. Method valueOfI may throw an
IllegalArgumentException exception for any value of the argument.

be able to be drawn. Fortunately the result of omitting the signals clause will
be that the postcondition of the init method (in the example here) will not be
able to be established, rather than, say, silently stating that the method meets its
specifications. However the naive specification writer might be puzzled at this be-
havior without some warning that the generated assumptions are trivially satisfied.
In effect, for a method that is used in an annotation, a specification that omits a
statement of exceptional and divergent behavior is too weak to be useful.

One might take the approach that a method used in an annotation is expected to
terminate normally, at least for the preconditions under which it is called (referred
to as implicit specification of exceptions). However, this is equivalent to assuming
JML’s normal behavior or signals (Exception) false; when a signals clause
is missing. In contrast, the usual JML semantics is that a missing signals clause
is equivalent to signals (Exception) true;.

An alternate approach4 is that a method declared pure, which must be the
case for methods used in annotations, must always terminate normally, for any
precondition, in addition to having no side effects. This avoids the problem with
exceptional termination by definition, but significantly limits the Java methods that
might otherwise be considered pure.

Another approach (called explicit specification of exceptions) would require that
any method used in an annotation have a specification for its exceptional and di-
vergent behavior, as is shown in Fig. 2. The result of the method in question will
be undefined if the method does not terminate normally. Thus the specification
must at least be detailed enough to preclude exceptional or divergent behavior un-
der the circumstances in which the method is called. One can do this by stating
the conditions under which no Exception will occur. If there is a predicate only
for one particular exception type, there is still the possibility that for any argument
some other exception might be thrown. A simple specification idiom might be that
methods used in annotations only have normally terminating behavior (for the pre-
conditions in which they are used in a specification); using JML’s normal behavior

specifications would accomplish this. This approach has the advantage of a clear
semantics that is consistent with the current definition of JML; it has the disadvan-
tage that specifications for methods used in annotations must be more detailed than

4under discussion on the jmlspecs-interest mailing list at http://sourceforge.net/mail/
?group_id=65346.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 85

http://sourceforge.net/mail/?group_id=65346
http://sourceforge.net/mail/?group_id=65346

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

they might otherwise be written.
The requirement of extra detail is mitigated by the following recent evolution of

JML’s semantics. The default diverges clause is diverges false;. That is, an
omitted diverges clause is interpreted as requiring termination. The defined default
for an omitted signals clause is signals (Exception) true;, which allows an
Exception to be thrown. On the other hand, ESC/Java5 uses the throws clause of
the method declaration to define its default. ESC/Java and ESC/Java2 will only
allow those exceptions to be thrown that are explicitly listed in the throws clause,
not even permitting additional unchecked exceptions such as a RuntimeException.
Thus if a method declaration has an empty throws clause, then (for ESCJava(2))
the default signals clause is signals (Exception) false; this is consistent with
the desired behavior above, namely, a tight restriction on non-normal termination of
the method. Recent discussions6 have proposed that JML adopt this same default
behavior. In that case the explicit specification of exceptions will also be the natural
default.

The translation procedure

The translation, then, consists of the following steps:

• Select a unique function identifier for each method declaration in the program.
A family of overriding method declarations have the same identifier. One could
use distinct identifiers for different overriding methods and switch among them
based on the dynamic type of the receiver argument. It appears, however, that
using the same identifier for all members of an overriding family of methods and
then adding tests on the dynamic type into each specification’s preconditions
is a simpler design.

• Define a unique state constant (distinct from all other constants) for each
unique program state within a calling method’s implementation. A new state
is created after every operation with a side-effect. In practice, state constants
are only needed for those points in a program where an annotation containing
a method call occurs.

• Where a method call is used in an annotation expression, translate that
method invocation into the logic as a function term. Use the unique identifier
for the method as the function name. Include as arguments the translations
of (a) the state constant for this program state, (b) the receiver object (if the
method is not static), and (c) each of the actual arguments of the method call.

• The specifications of the called method must be turned into assumptions about
the behavior of the method. In the case of a family of overriding and overridden
methods, the specifications must have an additional antecedent of the form
(this instanceof T) for the type T in which the specification appears.

– They are first desugared by combining preconditions and postconditions
into stand-alone implications of the form ([27] describes the details):

5as I was reminded by a referee
6since the original workshop presentation, on the jmlspecs-interest mailing list

86 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 TRANSLATING USES OF METHOD CALLS IN ANNOTATIONS

ensures precondition ==> postcondition; .

– Recalling the discussion of exceptional postconditions above, we use as
the composite predicate the expression

(!signalsPredicate && !divergesPredicate) ==>

(precondition ==> postcondition).

– Any instance of \result is replaced by an instance of the function term,
with formal names for its arguments.

– The expression is enclosed in a universal quantification over its formal
parameters.

Thus the specification (in a class named Z)
//@ requires i != 0;

//@ signals (Exception) false;

//@ diverges false;

//@ ensures \result == i+1;

static /*@ pure */ public int next(int i);

in a state with state constant stateX creates the assumption
(\forall Z object; (\forall int i;

i != 0 ==> next(stateX,object,i) == i + 1)) .

Since values (e.g. of fields) are not extracted out of a memory model of a
program state, there is no quantification over the state constant. Instead the
assumption above is repeated with a different state constant in each context
where the method is called; any free variables are translated in the context
of that call. Also, recall that since the method being used in the annotation
must be pure, the preconditions, diverges conditions, signals conditions, and
normal postconditions are all evaluated in the same state.

• A pure Java method m may be used in a Java program and in an annotation.
A program fragment such as

int i = m();

//@ assert i == m();

should be provable (as long as m is presumed to terminate normally and be
deterministic), even without specific specifications about m’s result. In order to
connect such use of a method call in an annotation with its use in the program,
an implicit postcondition could be added to the method’s specification that
equates the result of the method to the term representing the method (e.g.
ensures \result == m(...)). This would add a corresponding assumption
to the verification conditions about the result of a method call in the program
source code. This assumption must not be used when the result is a fresh,
newly allocated object. The usefulness of this assumption in other cases is
being evaluated.

• If the called method has no specifications, then no other assumptions are
introduced describing the behavior of the method. This will limit the conclu-
sions that can be drawn, because the only connection between the value of a

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 87

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

method call in one program state and the value in another program state is
the definition of the value through the method’s specifications.

• JML allows annotations to appear in the body of a method as well; assert
statements are one example. These are translated in the same way as pre- and
postconditions; they simply use the appropriate state constant. Since loops
are partially unrolled by ESC/Java, they can be handled without additional
special treatment.

If there is more than one instance of the same method call within a given program
state, those calls are translated in the same way, enabling the prover to identify their
return values as equal (even in the absence of specifications). If a method call in
the postcondition occurs within an argument of \old, indicating that it is to be
evaluted in the pre-state, then it will be translated using the state constant for the
pre-state.

Appendix A contains a discussion of the details of an actual example translation.

An issue: are pure methods deterministic?

Using method invocations within annotations raises another issue: what is the rela-
tionship between the results of two different invocations (in annotations) of a pure
method that occur within the same program state?7 That is, can we assume that
assert m() == m(); will succeed?

The value of a method such as m() is constrained by the method’s postconditions
but may not be constrained to a single value. Assuming that the assertion above
will be true (if the value of m() is defined) corresponds to assuming that the method
execution is deterministic and not dependent on hidden volatile variables. In most
specification situations it would be quite difficult to specify straightforward behavior
without this assumption. ESC/Java2 currently presumes such deterministic behav-
ior for pure methods; it is easy to model non-determinism for non-pure methods.
JML does not have syntax to distinguish deterministic and non-deterministic meth-
ods.

This distinction is only relevant to those methods used in annotations, since we
want assertions such as the one above to be valid in annotations. Reasoning about
Java methods themselves is performed using only the method’s explicit specifica-
tions.

One situation in which m() == m(); ought to be false is when m() returns a
newly allocated object. The two invocations ought to produce two distinct instances
of the appropriate type. Since the program state does change because of the method
call, at least in that the heap is changed, one can debate whether m() ought to be
considered pure. JML currently allows this fairly common situation to be considered
pure; various functions (e.g. toString()) that return String objects are good

7Thanks to Peter Müller and Erik Poll for emphasizing the importance of determinism in using
methods in specifications; additional discussion of this point and of possible JML syntax is present
in the Jml-interest mailing group archives.

88 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

6 TRANSLATING USES OF MODEL FIELDS IN ANNOTATIONS

abstract class AbstractList {

//@ model public int size; //@ in isEmpty;

//@ model public boolean isEmpty;

//@ public represents isEmpty <- (size == 0);

//@ public invariant size >= 0;

//@ assignable isEmpty;

//@ ensures isEmpty;

abstract public void clear();

//@ assignable size; // but isEmpty is not assignable

//@ ensures size <= \old(size);

//@ ensures \old(size) > 0 ==> size > 0;

abstract public void shrink();

}

class ListImpl extends AbstractList {

//@ pure

private int length() { ... }

protected void clear() { ... }

protected void shrink() { ... }

//@ private represents size <- length();

}

public class Client {

//@ requires list != null;

//@ modifies list.size;

public void m(AbstractList list) {

list.shrink();

}

}

Figure 4: An example of the use of model fields.

examples of methods that are pure except for allocation and would not satisfy the
above equality.

6 TRANSLATING USES OF MODEL FIELDS IN ANNOTATIONS

Syntax

The syntax related to the declaration and use of model variables is shown in Fig. 4.
Within annotations, field declarations can appear as model declarations. These fields
simply represent values that are constrained by expressions or predicates given in
represents clauses. A represents clause may appear in either the class or interface
declaring a model field or in a subclass or subinterface.

Model field names may appear in assignable clauses. In that case the name
stands for a set (a datagroup) containing field designations and the contents of other
datagroups. A field may be declared as a member of a datagroup using the in or
maps (not shown) declarations; datagroups may be extended in subtypes. In Fig. 4,

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 89

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

the size model field is a member of the isEmpty datagroup, as well as automatically
being a member of the size datagroup.

The specification of the method AbstractList.clear() declares that the method
may change isEmpty and in fact ensures that its value is true when the method
terminates. Since size is a member of the isEmpty datagroup, it also might
be modified in the execution of clear(). In contrast, AbstractList.shrink()

may modify size but may not modify isEmpty (so the second ensures clause for
AbstractList.shrink() is redundant).

Interaction of frame conditions and model field representations

The implementation of model fields, pure methods, and checking of frame conditions
in JML and ESC/Java has brought to the fore current problems in JML with the
interactions between frame conditions and model fields. As shown in the example,
model fields may be listed in frame conditions, either explicitly or implicitly as
members of a listed datagroup, just as Java fields may be. If a model field is
contained in the frame condition, its value may change during the execution of the
method; if it is omitted from the frame condition, its value must not change during
the execution of the method.

However, depending on the representation of the model field, its value may be
affected by the values of fields that are not members of its datagroup and may not
even be members of the class hierarchy that contains the model field. Changes to
such fields may change the abstract value of the model field; the methods causing
such changes may not even be aware of the existence of the model field in question
and consequently will not list it in its modifies clause.

On the other hand, if a model field is specified as modifiable by the body of a
method, we need to be able to reason about its changing value at each assignment
or method call within the body of the method. A method call is accompanied by
its own specifications. If those state the effect of the method call on the value
of the model field, appropriate reasoning can be performed; if the method call’s
specifications say nothing about the value of the model field after the call, then the
resulting value of the model field will understandably be arbitrary. An assignment
is analogous to a method call without specifications. The effect of an assignment on
a concrete field is well known: only the concrete field assigned to is modified and all
others are unchanged. But without some restriction on the model fields that might
be affected by assignment to a particular concrete field, the value of a model field
after the assignment is undetermined.

These issues, considering both soundness and modularity, have been discussed in
more detail and addressed in previous and ongoing work, though the implementation
of those results in JML and its related tools is not complete. Müller’s thesis[22] and
a subsequent paper with Poetzsch-Heffter and Leavens[23] propose a universe type
system and a concept of relevant locations to control visibility and use of concrete
and model fields and to assign responsibility for reasoning about their modification.
Implementation of the universe type system is underway in JML. It may also be
possible to use JML’s syntax for defining datagroups to help specify relationships

90 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

6 TRANSLATING USES OF MODEL FIELDS IN ANNOTATIONS

between fields and model values they affect; restrictions on the fields allowed in a
represents clause may be desirable and even necessary.8 Two other relevant pieces
of work have appeared since the original workshop presentation of this paper in 2004,
that on Spec# [3] and further work on universe types to provide encapsulation that
controls aliasing [24].

Verification conditions for model fields

JML and ESC/Java were designed to do modular specification and checking. Any
representation clause for a particular model field may not be visible within the
modules at hand; if it is visible, JML provides two forms: a functional representation
and a predicate representation. Work on translation of model variables in JML for
the LOOP tool occurred concurrently with the work in this paper and is discussed
in [4]. That paper also translates model field representations as invariants but does
not discuss the interaction with frame conditions outlined above.

Functional and predicate representations

JML denotes a functional representation by the syntax
//@ represents x <- expression ;

There is a specific value, provided by the expression, for the model variable (in a
given program state). This expression could be simply substituted for occurrences of
the model field, as stated by Breunesse and Poll [4]. However, this is successful only
in simple cases. If there is heavy use of model variables, the nested substitutions
can be quite deep. Furthermore, JML allows multiple redundant representations,
requiring a choice of which to use. Finally, direct or mutual recursion would pro-
hibit simple substitution. It is simpler to translate such a representation in the
same way as a predicate representation, generating an appropriate invariant for
each represents clause.

JML also allows the values of model variables to be specified with a predicate
representation:

//@ represents x \such that predicate ;

In this case the predicate naturally implies an invariant; but it does not necessarily
give an executable expression for the model variable and may not even constrain the
model variable to a single value. As Breunesse and Poll point out, if there are no
possible values satisfying the predicate, inconsistency in the generated assumptions
can result, if appropriate care is not taken.

Non-assignable model fields

If a model variable is neither implicitly nor explicitly mentioned in a method’s
assignable clauses9, then its value may not change during the course of the body

8Private communications with Gary Leavens and Clyde Ruby related to Ruby’s in-progress
thesis.

9including not specified by a JML datagroup

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 91

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

of the method. Such a non-assignable model field is translated in the same way
other fields are, as a simple variable or an array reference. No new variable names
are needed as the program state changes since the value of the field is presumed not
to change. If the model field has a represents clause, that representation implies
an assumption about the value of the model field. We include that assumption in
the pre-state assumptions. The assumption ought to be true in all states throughout
the method’s execution. We currently do not check that this is true; a future en-
hancement should verify this presumption since otherwise inconsistent assumptions
may be introduced, as discussed above.

Assignable model fields

If the model field is assignable within a method, then one must allow for different
values at different states in the course of the method’s execution. In ESC/Java’s
current translation scheme, this is easier to manage using a translation of the model
field as a function term, with state and receiver arguments; this corresponds to the
translation that would occur for a method call with no arguments, as discussed in
section 5.

At each location where the model field is used, the assumptions generated from
the represents clauses are also stated, so that they can be evaluated in the ex-
ecution state at that point in the method’s execution. This corresponds to the
introduction of the post-conditions of a method invocation that is used in an anno-
tation.

Model fields with no representation

A model field, particularly in an abstract class or interface, may have no repre-
sentation at all. It may be used in the specification of various methods, but its
representation would be supplied by derived classes that implement the interface.
Those representations are not necessarily visible within the classes seen by a method
being checked when doing modular checking of specifications. Fig. 5 shows an ex-
ample of such an interface. Another example is shown in Fig. 4, in which the model
field AbstractList.size has no representation in AbstractList; it is given a repre-
sentation in List in terms of the class representation supplied in that derived class.
In this situation, an assignable model field is still translated as a method call, but
now there are no assumptions generated from represents clauses. Instead, only
the pre- and post-conditions of methods whose specifications mention the model
variable provide information about the behavior of the variable.

7 APPLICATION TO OTHER ANNOTATION CONSTRUCTS

With a mechanism for translating method calls to an underlying first-order logic im-
plemented in ESC/Java2, some other specification constructs can be readily trans-
lated and used in static checking as well. These are described briefly in this section.

92 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

7 APPLICATION TO OTHER ANNOTATION CONSTRUCTS

public interface NoRep {

//@ public model String outputText;

//@ invariant outputText != null;

/*@ assignable outputText;

ensures outputText.equals(

\old(outputText) + s); */

public void print(String s);

}

Figure 5: The specification and code for the interface NoRep, demonstrating a model
field with no representation.

Constructor calls in annotations

Constructor calls in annotations can be treated as calls of static methods. That is,
they do not depend on an implicit this argument. If they are constructors of a Java
inner class, they will depend on an implicit argument representing an instance of the
enclosing class. Since some of the arguments may be reference values, the translated
function must also have a state constant as an argument. The assumptions about the
constructed value are formed from the specifications of the constructor declaration.

Constructor calls are different than method calls in that they dynamically allo-
cate new objects on the heap. Thus the result is a reference value not equal to any
previous reference value. ESC/Java2 (following ESC/Java) provides axioms con-
cerning allocation that ensure this behavior, but those are beyond the scope of this
paper.

Array allocation in annotations

Translating expressions that allocate new arrays, such as new int[9], is quite
straightforward. These expressions do not depend on the current state nor on any
implicit receiver argument. Consequently a single function whose arguments in-
clude the dimensions of the array and the type of its elements is all that is needed.
Just as for constructors, axioms regarding allocation are required, so that the value
produced by a new array expression is known to be different than any previously
produced reference value. Axioms about the dimensions, type, and initial values of
the array are also needed. ESC/Java included such a function and axioms in its
built-in axiom set, as does ESC/Java2.

Quantified expressions

Besides the usual universal and existential quantified expressions, JML also defines
the generalized quantifiers \min, \max, \sum, \prod, and \num of. For example, the
value of the expression

(\min int i; i <= 0 && i < 10; p(i))

is the smallest value of p(i) for i in the given range.
The translation of each of these consists of syntactically replacing the expression

with a skolemized function call (whose name is unique) and introducing appropriate

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 93

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

assumptions about the function. Implicit receiver and state arguments are also
needed, as described previously. If the quantifier is within the scope of another
quantified expression, there will also need to be function arguments for any bound
variable used in the replaced expression.

One must also introduce assumptions concerning the value of this introduced
function, corresponding to the value of the original quantified expression. For ex-
ample, the assumptions associated with

(\min decl; range-predicate; expr)
are

(\exists decl; range-predicate) ==>
(\exists decl; range-predicate && MIN(...)== expr)

and
(\forall decl; range-predicate ==> MIN(...)<= expr),

with suitable universal quantification and where MIN(...) is replaced by the actual
skolem function call expression.10

ESC/Java2 currently contains support for \min and \max. However, the axioms
for \sum, \prod, and \num of are most naturally expressed recursively; reasoning
about them requires induction, which is not readily supported by Simplify.

Exceptional behavior

Constructor calls in annotations have the same problems with exceptional behavior
as do method calls and they can be handled in the same way using the conventional
specifications. However, quantified expressions and model variables both utilize
expressions that may throw exceptions and neither have the syntax that method
declarations have to specify the conditions under which exceptional behavior may
or may not happen. How to handle exceptional behavior in these cases remains an
unresearched question.

8 FUTURE WORK

Immutable values

The complication of introducing state constants as additional arguments is a result
of the underlying logic using uninterpreted values for reference quantities in the
programming language. Since these reference values refer to mutable objects, one
must retain a state value to indicate which state of the object is meant. If all of the
arguments were primitive type values such as integers and booleans, then a state
value would not be needed. These values of non-reference types are immutable: if
two values compare equal, they will always have the same properties in any program
state.

10The value of the quantified expression when the range predicate is empty is not handled here.
JML currently defines this as the largest value of the type of the quantified expression for \min,
and the smallest such value for \max. It might also be considered as undefined.

94 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

8 FUTURE WORK

Some reference types are also immutable. For example, objects of the class
java.lang.String that compare equal (with either == or .equals()) will always
have identical properties even in future program states. One requirement for the
instances of a type to be immutable is that no method of the type modify the
internal state of the instance; this condition is assured to hold if all methods of the
type and any subtype are pure. However, it is also necessary for immutability that
the internal representation not contain mutable objects and that the representation
not be exposed in a way that the internal state could be modified by some external
means.

Reasoning with immutable objects is potentially simpler and more efficient than
with typical mutable objects. JML includes a library of classes representing math-
ematical concepts useful in specifying classes [18]; they are heavily used in the
specification of JML code and sample classes and in JML’s specifications of Java
classes. Checking these specifications might be more straightforward if it could be
established that instances of these classes are immutable. For this to be possible, we
need a set of sufficient conditions for immutability that can be statically checked,
a proof of soundness regarding immutability, and a demonstration by a working
implementation of the utility of immutable classes in program verification.

Proof management

When creating mathematical proofs, the resulting proof will usually be simpler,
shorter and more understandable if one can work entirely with more abstract con-
cepts (e.g. a Group or Sequence) and the theorems that have been established about
them. Only when necessary will a mathematician resort to expanding the defini-
tions of these abstract concepts and assembling the proof in terms of lower-level
constructions. A similar situation arises in checking the verification conditions that
are produced in the course of static checking of programs. One can write spec-
ifications using abstractions such as method calls and model fields. Those have
definitions in terms of their implementations within classes or perhaps in terms of
objects in JML’s mathematical library. All of the invariants and axioms for all of
these higher and lower level constructions constitute a large set of logical conditions
for a decision procedure to handle. Indeed, the introduction of abstraction mech-
anisms into ESC/Java2 has resulted in much larger sets of verification conditions
being presented to Simplify. The problem is that Simplify simply matches terms
that are equal, seeking to show unsatisfiability; it does not have heuristics to guide
it to use primarily invariants concerning abstract concepts or to purposely “expand
their definitions” in terms of implementation concepts. The need for such heuristics
will become more important as automated checking of software programs tackles
larger sets of software and seeks industrial-strength robustness in its results.

Methods and dynamic types

Method invocations in annotations are currently translated using the static type of
the receiver. Sometimes more information about the receiver is known that would

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 95

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

class Super {

//@ ensures \result >= 0;

/*@ pure */ public int m();

}

class Sub extends Super {

//@ also ensures \result <= 0;

/*@ pure */ public int m();

}

public class Inheritance {

//@ requires s != null;

public void mm(Super s) {

//@ assert s.m() >= 0; // Line A

if (s instanceof Sub) {

Sub ss = (Sub)s;

//@ assert ss.m() == 0; // Line B

//@ assert ((Sub)s).m() == 0; // Line C

//@ assert s.m() == 0; // Line D

}

}

}

Figure 6: An example showing the use of inherited specifications.

permit additional deductions. In Fig. 6, the assertions at lines A, B, and C can
each be proved knowing only the static type of the receiver. The assertion at line D,
however, requires the additional information that the dynamic type of the receiver is
Sub; ESC/Java2 does not yet represent this information in the generated verification
conditions.

Specification language enhancements

As has been discussed above, this work with specification abstractions has pointed
out areas in which specification languages such as JML may need enhancement.

• JML needs a syntax and semantics to enable control and reasoning about
which field assignments might modify (and which definitely do not modify)
which model field values.

• JML needs a way to distinguish deterministic from non-deterministic methods.

• Specifications in JML need to adopt a style that precludes divergent or excep-
tional behavior for methods and related constructs used in annotations.

9 OTHER WORK AND CONCLUSIONS

There are by now several tools that statically check specifications against source code
by logical reasoning. Java is a common but not the exclusive source language. The
target logics and the accompanying provers vary widely: for example, Krakatoa [20]
uses the Coq proof assistant, Jive [21] and LOOP [13, 15] use PVS [26], KeY [2]
uses OCL and its own prover, and JACK [5] interfaces with Atelier B, Simplify, Coq
and PVS.

96 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

10 ACKNOWLEDGMENTS

It is also typical to carefully specify the mapping of the semantics of the source
language into the target logic. However, definitions of the specification language are
less common. The one example known to the author is the definition for the LOOP
tool, which is not publicly available, of an early version of JML [15]. The LOOP
tool has a comprehensive representation of Java’s memory model and the program
translation and all work in PVS focuses directly on this model. The LOOP tool
permits one to specify and reason about specifications that use pure methods. To
do so, one either uses the specifications alone, in a manner similar to that which
is described in this paper, or one uses the implementations of the methods and
symbolically executes them within PVS. The latter approach is implied, for example,
in [14], though it notes that the semantics of method invocations in specifications
is still unclear. Similarly, Krakatoa defines all logical predicates in the context of
a global heap; it also introduces a new assumption to encapsulate the behavior of
pure methods. KeY allows simple query functions that do not cause exceptional
behavior.

Though there are similar aspects among these approaches, the solution used by
ESC/Java2 for translating method calls demonstrates a straightforward translation
in the context of a general purpose first-order logic and prover. In doing so it
maintains the design philosophy and usefulness of the original ESC/Java tool, while
adding the capability of using method calls in annotations. The discussion above
also illustrates the complexities of handling potentially non-normally terminating
functions in a specification language. It appears that the tools above that handle
method calls all implicitly use the implicit specification of exceptions of section 5.
ESC/Java2 has been successfully using this approach in its recent alpha releases
and is in the early stages of experimentation with the preferred explicit or default
specifications.

A similar approach to that used for method calls can also be used for model fields,
with an optimization available for model fields that are not modifiable within the
method that uses them. However, there is an outstanding issue related to reasoning
about model fields: how to know in a modular fashion which model fields, if any,
might have their values changed by a given assignment statement.

10 ACKNOWLEDGMENTS

Thanks to Joseph Kiniry for comments on an early version of the paper and for some
material on LOOP. Kiniry also is a partner in the support, maintenance and devel-
opment of ESC/Java2. Thanks also to Gary Leavens for comments that improved
the discussion overall, to Peter Müller for pointers and comments on previous work,
as well as to the reviewers of both the precursor workshop (Formal Techniques for
Java-like Programs, 2004) paper and this journal version. I am particularly grateful
to those reviewers that took the time to provide detailed comments and suggestions.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 97

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

REFERENCES

[1] Many references to papers on JML can be found on the JML project website,
http://www.cs.iastate.edu/~leavens/JML/papers.shtml.

[2] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool: In-
tegrating object oriented design and formal verification. Software and System
Modeling, Online First, 2004. http://www.sosym.org.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. Presented at CASSIS 2004. To be published., May 2004.

[4] C.-B. Breunesse and E. Poll. Verifying JML specifications with model fields.
In Formal Techniques for Java-like Programs. Proceedings of the ECOOP’2003
Workshop, pages 51–60, 2003. Technical Report 408, ETH Zurich.

[5] L. Burdy and A. Requet. JACK: Java applet correctness kit. In Proceedings,
4th Gemplus Developer Conference, Singapore, Nov. 2002.

[6] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards. Model variables:
Cleanly supporting abstraction in design by contract. Technical Report 03-10a,
Department of Computer Science, Iowa State University, Sept. 2003. Available
from http://archives.cs.iastate.edu/.

[7] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. Technical
report, University of Nijmegen, 2004. NIII Technical Report NIII-R0413.

[8] D. R. Cok and J. Kiniry. ESC/Java2 : Uniting ESC/Java and JML. progress
and issues in building and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an internet voting tally
system. Lecture Notes in Computer Science, 3362:108–128, Jan. 2005.

[9] C. Flanagan, K. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata, et al.
The Extended Static Checker for Java, 1999. See http://research.compaq.

com/SRC/esc/.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI’02),
volume 37, 5 of SIGPLAN, pages 234–245, New York, June 2002. ACM Press.

[11] E.-M. Hubbers. Integrating Tools for Automatic Program Verification. In
M. Broy and A. Zamulin, editors, Proceedings of the Andrei Ershov Fifth In-
ternational Conference Perspectives of System Informatics, volume 2890 of
Lecture Notes in Computer Science, pages 214–221. Springer–Verlag, 2003.
http://www.iis.nsk.su/psi03.

98 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

http://www.cs.iastate.edu/~leavens/JML/papers.shtml
http://www.sosym.org
http://archives.cs.iastate.edu/
http://research.compaq.com/SRC/esc/
http://research.compaq.com/SRC/esc/
http://www.iis.nsk.su/psi03

10 ACKNOWLEDGMENTS

[12] E.-M. Hubbers, M. Oostdijk, and E. Poll. Implementing a Formally Verifi-
able Security Protocol in Java Card. In D. Hutter, G. Müller, W. Stephan,
and M. Ullmann, editors, Proceedings of the First International Conference
on Security in Pervasive Computing, volume 2802 of Lecture Notes in Com-
puter Science, pages 213–226. Springer–Verlag, 2004. March 12–14, 2003,
http://www.dfki.de/SPC2003/.

[13] B. Jacobs. Weakest precondition reasoning for Java programs with JML anno-
tations. Journal of Logic and Algebraic Programming, 58:61–88, 2004.

[14] B. Jacobs, J. Kiniry, and M. Warnier. Java Program Verification Challenges.
In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors,
Formal Methods for Components and Objects, volume 2852 of Lecture Notes in
Computer Science, pages 202–219. Springer, Berlin, 2003.

[15] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering (FASE), vol-
ume 2029 of Lecture Notes in Computer Science, pages 284–299. Springer, 2001.

[16] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, Boston,
1999.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-
06t, Iowa State University, Department of Computer Science, Dec. 2002. See
www.jmlspecs.org.

[18] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of
JML accommodates both runtime assertion checking and formal verification. In
F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal
Methods for Components and Objects: First International Symposium, FMCO
2002, Leiden, The Netherlands, November 2002, Revised Lectures, volume 2852
of Lecture Notes in Computer Science. Springer–Verlag, Berlin, 2003.

[19] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations
and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
Minneapolis, Minnesota, pages 105–106. ACM, Oct. 2000.

[20] C. Marché, C. Paulin, and X. Urbain. The Krakatoa tool for JML/Java program
certification. Available at http://krakatoa.lri.fr, 2003.

[21] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The jive system—imple-
mentation description. Available at http://softech.informatik.uni-kl.

de/old/en/publications/jive.html, 2000.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 99

http://www.dfki.de/SPC2003/
http://krakatoa.lri.fr
http://softech.informatik.uni-kl.de/old/en/publications/jive.html
http://softech.informatik.uni-kl.de/old/en/publications/jive.html

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

[22] P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[23] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of
frame properties in JML. Concurrency and Computation: Practice and Expe-
rience, 15:117–154, 2003.

[24] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for
layered object structures. Technical Report 424, ETH Zurich, Mar. 2005.

[25] C. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford Uni-
versity, Stanford, CA 94035, 1980. Available from University Microfilms.

[26] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. Hen-
zinger, editors, Computer Aided Verification, number 1102 in Lecture Notes in
Computer Science, pages 411–414. Springer, 1996.

[27] A. D. Raghavan and G. T. Leavens. Desugaring JML method specifications.
Technical Report 00-03d, Iowa State University, Department of Computer Sci-
ence, July 2003.

[28] Unpublished reports about Simplify are available online at http://research.
compaq.com/SRC/esc/Simplify.html.

ABOUT THE AUTHORS

Dr. David Cok received his Ph.D. in Physics from Harvard Uni-
versity and is currently Chief Technologist for the Photographic
Center at the Kodak Research Lab. His research interests include
image processing, image understanding, machine learning and op-
timization, as well as static tools for applying formal methods in
industrial software development environments. He can be reached
at david.cok@kodak.com.

A AN EXAMPLE

This section shows an example translation of some simple code contrived to show
concisely the translation of method invocations in annotations. The verification
conditions shown in Fig. 8 are a subset of the formulae generated by the translation
of the method m in the code of Fig. 7. The verification conditions have been rewritten
from the internal language used by Simplify to an equivalent, but more readable,
form using the syntax of conventional first-order logic. The various numerical suffixes
are appended by the translation mechanism to create related but distinct names (the
names typically contain an associated line number in the program text).

100 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

http://research.compaq.com/SRC/esc/Simplify.html
http://research.compaq.com/SRC/esc/Simplify.html
mailto:david.cok@kodak.com

A AN EXAMPLE

public class Trans {

public static class C {

public int z;

}

boolean b;

//@ diverges false;

//@ ensures b || \result == (c.z == 1);

//@ signals (Exception) false;

//@ pure

public boolean p(C c, String s);

//@ requires p(c,"A"); // A

//@ modifies b;

//@ ensures p(c,"Z"); // Z

public void m(C c) {

//@ assert p(c,"B"); // B

b = p(c,"Q"); // Q

//@ assert p(c,"C") && p(c,"D"); // C

c = new C();

//@ assert p(c,"E"); // E

}

}

Figure 7: A somewhat contrived example to illustrate the translations of method
calls.

• The ASSUME statement in line (2) of Fig. 8 states the assumption that the
precondition in line A of Fig. 7 holds. Note the function form used to represent
the call of Trans.p: it has the unique name Trans.p and it contains a state
constant, this parameter, and the actual arguments of the call.

• The assumption about the value of this call of Trans.p is provided in the
ASSUME statement in line (1). It is quantified over the object and the two
formal arguments of the method call. It makes the assumption that either b
is true or the returned result is equivalent to whether the z field of the object
c has the value 1 ; it also assumes that the type of the result is boolean. The
same state constant is used in lines (1) and (2).

• The ASSERT at line (4) is the translation of the assert statement at line B.

• The ASSUME at line (3) is the assumption associated with line (4) for the
call of Trans.p in the assert statement at line B. There has been no change
of state as yet, so the same state constant is used. In fact, this ASSUME
is redundant with that in line (1) and could be omitted by an appropriate
optimization.

• The translation of line Q generates lines 5-7. Line (5) shows the assumption
that equates the value of the function term Trans.p to a temporary variable
(RES.18); this variable is the result of the method call within the program; in
line (6) the method specifications are applied to that variable to state that the
ensures predicate holds if the method returns normally; line (7) defines the

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 101

REASONING WITH SPECIFICATIONS CONTAINING
METHOD CALLS AND MODEL FIELDS

new, post-assignment, value for the variable b (fields are expressed as arrays in
Simplify’s logic). The Java assignment statement also causes a state change.

• Lines (8) and (9) are the translation of the assert statement of line C. Note
that both translations use the same, new state value as well as the new value
of b.

• Lines (10) and (11) are the translation of the assert statement of line E. There
has been another state change and a new variable representing c (namely
RES.20).

• Finally, lines (12) and (13) represent the postcondition. Per JML’s semantics,
it uses the value of b in the post-state, but the value of the formal argument
c from the pre-state. In line (13), the precondition is evaluated with the
pre-state state constant (state.pre) and the post-condition with the post-state
state constant (state.20); state.pre and state are later equated (not shown).

102 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

A AN EXAMPLE

1) ASSUME ∀ brokenObj, c, s :
((b.5[brokenObj]

∨
(Trans.p(state, brokenObj, c, s) == integralEQ(z.3[c], 1)))∧

is(Trans.p(state, brokenObj, c, s), \type(boolean)))
2) ASSUME Trans.p(state, this, c.16, “A”)

3) ASSUME ∀ brokenObj34, c1, s1 :
((b.5[brokenObj34]

∨
(Trans.p(state, brokenObj34, c1, s1) == integralEQ(z.3[c1], 1))),∧

is(Trans.p(state, brokenObj34, c1, s1), \type(boolean)))
4) ASSERT Trans.p(state, this, c.16, “B”)

5) ASSUME RES.18 == Trans.p(state, this, c.16, ”Q”)
6) ASSUME anyEQ(EC.18, ecReturn) ⇒

(b.5[this]
∨

(RES.18 == integralEQ(z.3[c.16], 1)))
7) ASSUME anyEQ(b.18, store(b.5, this,RES.18))

8) ASSUME ∀ brokenObj35, c2, s2 :
((b.18[brokenObj35]

∨
(Trans.p(state.18, brokenObj35, c2, s2) == integralEQ(z.3[c2], 1)))∧
is(Trans.p(state.18, brokenObj35, c2, s2), \type(boolean)))

9) ASSERT Trans.p(state.18, this, c.16, “C”)
∧

Trans.p(state.18, this, c.16, “D”)

10) ASSUME ∀ brokenObj, c3, s3 :
((b.18[brokenObj]

∨
(Trans.p(state.20, brokenObj, c3, s3) == integralEQ(z.3[c3], 1)))∧
is(Trans.p(state.20, brokenObj, c3, s3), \type(boolean)))

11) ASSERT Trans.p(state.20, this,RES.20, “E”)

12) ASSUME ∀ brokenObj, c4, s4 :
((b.18[brokenObj]

∨
(Trans.p(state.20, brokenObj, c4, s4) == integralEQ(z.3[c4], 1))),∧
is(Trans.p(state.20, brokenObj, c4, s4), \type(boolean)))

13) ASSERT Trans.p(state.pre, this, c.16, “A”) ⇒
Trans.p(state.20, this, c.16, “Z”)

Figure 8: A subset of the formulae generated from the translation of the code in
Fig. 7. The nomenclature brokenObj is inherited from ESC/Java to help identify
the object for which an assertion does not hold in a counterexample.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 103

