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Jens Palsberg, UCLA Computer Science Department

Method inlining is an optimisation that can be invalidated by later class loading. A
program analysis based on the current loaded classes might determine that a method
call has a unique target, but later class loading could add targets. If a compiler
speculatively inlines methods based on current information, then it will have to undo
the inlining when later classes invalidate the assumptions. The problem with undoing
inlining is that the optimised code might be executing at the time of undo and therefore
require a complicated, on-the-fly update of the program state. Previous work presented
techniques for dealing with invalidation including on-stack replacement, preexistence
analysis, extant analysis, and code patching. Until now, it has been an open question
whether such operations can be done in a type-safe manner, and no formal proof of
correctness exists in the literature.
In this paper we present a framework for reasoning about method inlining, dynamic
class loading, and type soundness. Our example language has both a nonoptimising
and an optimising semantics. At the point of dynamically loading a class, the optimis-
ing semantics does a whole-program analysis, inlines calls in the newly loaded code,
and patches the invalidated inlinings in all previously loaded code. The patching is
based on a new construct that models in-place update of machine code—a technique
used by some virtual machines to do speculative method inlining. The two semantics
are equivalent and both have a type soundness property—proving correctness and type
safety of the optimisation. Our framework can form the basis of virtual machines that
represent optimised code in a typed low-level language.

1 INTRODUCTION

Devirtualisation and consequent method inlining is an important, perhaps crucial,
optimisation for object-oriented languages. Previous work has explored inlining for
whole programs (see, e.g., [4]) and for programs that use dynamic class loading
(see, e.g., [9, 3, 1, 5, 12]). That work has devised analysis and transformations for
devirtualisation and method inlining, shown the effectiveness of these optimisations,
and argued informally for their correctness.

When a method inlining is invalidated by class loading, it is necessary to re-
virtualise the call, that is, intuitively, replace the inlined code with the call itself.
Intuitively, devirtualisation and revirtualisation are inverses of each other. Our goal
is to show that while existing revirtualisation techniques are usually not phrased
for typed intermediate languages, revirtualisation can be type safe. We will prove

Cite this article as follows: Neal Glew and Jens Palsberg: Method Inlining, Dynamic Class
Loading, and Type Soundness, in Journal of Object Technology, vol. 4, no. 8, 2005, pages
33–53,
http://www.jot.fm/issues/issues 2005 10/article2

http://www.jot.fm/issues/issues_2005_10/article2
http://www.jot.fm


METHOD INLINING, DYNAMIC CLASS LOADING, AND TYPE SOUNDNESS

the correctness of a well-known revirtualisation transformation in the presence of
dynamic class loading, and we will prove that the transformation preserves typeabil-
ity. As a further contribution, we work with a typed framework for dynamic class
loading that may be of independent interest.

At the end of this section we will describe our result in more detail. First we
review the issues with dynamic class loading, and describe the problems of proving
correctness and preserving typeability.

Dynamic Class Loading

To review the issues with devirtualisation in the presence of dynamic class loading,
consider this example program in Java:

class B { String cName;

void m() { ... } B x;

} if (...) { x = new C(); }

class C extends B { else {

void m() { ... } x = (B)(Class.forName(cName)

.newInstance());

} }

x.m();

The expression Class.forName(cName).newInstance() loads a class with name
cName and then instantiates it. The program uses class loading and it type checks.
Suppose now that we do a flow analysis of the program and determine that the call
site x.m() currently has a unique receiver, namely the m method in class C (we will
write C::m for this method). We could then go ahead and inline the call to that
method, knowing that later class loading might invalidate that inlining—we call this
speculative inlining . To see how such invalidation could happen, suppose that the
else branch gets executed and that it loads a class D which is a subclass of B and
which overrides the method m. Now there are two possible targets for the call x.m()
so the inlining of x.m() has been invalidated. At the Java level there is no easy way
to patch the inlined call such that it reverts to doing a dynamic dispatch.

The main problem is that an invalidated method inlining may be in a currently
executing method and therefore require a complicated, on-the-fly update of the
program state. There are essentially three solutions to this problem: on-stack re-
placement, avoid it by preexistance or extant analysis, or modify the code in place
but not the stacks. On-stack replacement works by recompiling code and updating
the stacks of all threads to point to the new code rather than the old and to use the
new stack frame layouts rather than the old ones. On-stack replacement is difficult
to implement and get right. Another strategy is to avoid modifying the program
state by limiting optimisation to cases that are easier to invalidate. For example, the
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preexistence analysis of Detlefs and Agesen [5] determines a set of methods for which
on-the-fly changes to the stack will not be needed (recompilation is needed for fu-
ture method invocations). Additionally, the extant analysis of Sreedhar, Burke, and
Choi [12] determines a set of method inlinings which cannot be invalidated by class
loading. Still, aggressive inlining and class loading will inevitably require updates of
the code memory, the stack memory, or both. The third technique, patching, avoids
stack updates by modifying the compiled code in-place to achive deoptimisation.
Our paper addresses this technique, proving it correct and showing how it can be
done in a type-safe manner.

In more detail, patching (used for example by Ishizaki et al. [9] and in ORP [2, 3])
is a form of in-place code modification for reverting to unoptimised code that works
as follows. The invocation x.m() that is currently monomorphic (calling say C::m)
is compiled to code like the following:

...

label l1:

[Inline x.C::m()]

label l3:

...

[out of line]

label l2:

x.m();

jump l3;

(Where out of line means after the end of the function being compiled.) Then if a
class is loaded that invalidates the inlining, the virtual machine writes a jump l2;

instruction at address l1. The virtual machine keeps datastructures on the side to
store the list of assumptions being made, and the patches required to revirtualise
when the assumptions no longer hold. So long as this write is atomic and properly
ordered with respect to the execution of other threads, this update will revirtualise
the code including any existing stack frames that are executing the code. The
exact details of how patching is done is not important to this paper, the important
properties is that it revirtualises code in place and is an atomic operation.

Correctness

That the technique of speculative inlining with patching is correct is far less obvious
than the correctness of inlining for whole programs. One goal of this paper is to
provide a framework that allows proving the correctness of current and future inlin-
ing techniques in the presence of dynamic class loading. In particular we will prove
correct speculative devirtualisation with patching to revirtualise when dynamic class
loading invalidates previous assumptions.
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Devising a framework for proving correctness of optimisations in the presence
of dynamic class loading is not straightforward. Traditionally, such optimisations
are seen as transformations of programs before they are run. The language the-
oretician formalises the transformation as a mapping from programs to programs
and proves that a program and its transformation have the same semantics. For
transformations like speculative devirtualisation with patching, transformations are
done by the just-in-time compiler (JIT) when it compiles both the initial program
and any dynamically loaded classes. Furthermore, dynamic class loading might
trigger transformations of existing code such as patching needed to revirtualise in-
linings invalidated by the newly loaded class. We cannot formalise this as mapping
of programs to programs. Instead we view optimisation as a second semantics for
programs. This optimising semantics includes the transformations of classes and
patching of code as part of its definition. Correctness is then proving that this
semantics and the standard semantics give the same meaning to a program.

Type Preservation

Security and reliability of software is becoming increasingly more important in the
internet age. One way to increase the reliability (and contribute to the security)
of the compilation process is to typecheck its output. For languages like Java and
CLI that are implemented with a virtual machine that uses JITs, such typechecking
could be done on the output of the JITs, thus partially or fully eliminating JITs
from the trusted computing base. As JITs are becoming increasingly sophisticated,
employing advanced optimisations such as method inlining and escape analysis,
checking their output provides significant benefits to reliability and security.

All of this presupposes that JITs can produce output that typechecks, and in
particular that devirtualisation can be done in a typeability preserving manner.
Our own previous work [7] shows how traditional whole program devirtualisation
techniques can be done in a typeability preserving manner without sacrificing perfor-
mance. Our paper and other work in this area (see [7] for references) has addressed
only whole program analysis and optimisation—it does not address dynamic class
loading.

Typeability preservation for speculative devirtualisation and dynamic class load-
ing is difficult for the following reasons: As we observed in our previous paper, for the
output of devirtualisation to typecheck some static type information must change to
reflect the flow analysis that drives the optimisation. For example, in the above pro-
gram, the statically declared type of x must change to C for the devirtualisation of
x.m() to x.C::m() to typecheck. If the devirtualisation is done speculatively, then
this changing of static type information must be done speculatively. Newly loaded
classes that invalidate the speculative assumptions must cause the static type in-
formation to change back. For example, if the forName is executed and produces
a class that does not have C::m as its m method, then x’s statically declared type
must change back to B along with the revirtualisation of x.m().

36 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8



1 INTRODUCTION

Formalising how all this type changing is done is challenging. Fortunately, there
is one analysis that does not require type changing, as it is never more precise than
the statically declared types. That analysis is Class Hierarchy Analysis (CHA [4]).
Furthermore this analysis is a popular choice in JITs that do devirtualisation as
it is linear time and more sophisticated analyses are cubic time, making them too
expensive for JITs. This paper concentrates on CHA, and shows that speculative
devirtualisation based on CHA and patching to revirtualise preserves typeability.
Future work should investigate if the required type changing for speculative devir-
tualisation and for revirtualisation can be formalised and proven correct for the more
precise analyses—we believe this is an interesting and challenging problem.

As with correctness, proving typeability preservation is not just showing that
the transformation takes typeable programs to typeable programs. Instead, we
show that the optimising semantics is type safe. In particular, proving the standard
type-preservation lemma for the optimising semantics will require showing that spec-
ulative devirtualisation and patching transformations preserve typeability.

Our Result

We present a framework for reasoning about method inlining, dynamic class loading,
and type soundness. As described above, this framework consists of two semantics
for a language with dynamic class loading. One semantics is standard and follows
previous work on formalising Java-like languages. The other semantics includes as
part of its definition of the reduction of programs, the application of speculative
devirtualisation to newly loaded classes and the application of patching to revirtu-
alise invalidated devirtualisations. We prove correctness by showing the equivalence
of these two semantics, and we prove typeability preservation by proving the type
safety of the optimising semantics. Our contributions are two: first, the framework
itself is the only attempt we know of to formalise and prove results about optimisa-
tion in the presence of dynamic class loading, and second, we show that speculative
devirtualisation using CHA and patching is typeability preserving.

Our framework can form the basis of virtual machines that represent optimised
code in a typed, low-level language. We view our work as the begining of a founda-
tion for type-safe just-in-time compilation, extending previous work which supports
type-safe off-line compilation [10, 13, 11, 14, 6].

Our approach does method inlining in two steps: (1) change some dynamic
method invocations to static method invocations and (2) inline the static method
invocations. The idea is, as in previous work, that in a dynamic method dispatch
e.m(e1, ..., en), if all the objects that e could evaluate to are instances of classes
which inherit m from a fixed class D, then the dynamic dispatch can be transformed
to a static dispatch e.D::m(e1, ..., en). (The expression e.D::m(e1, ..., en)

invokes D’s version of m on e with e1 through en as arguments.) A static dispatch
e.D::m(e1, ..., en) can be inlined to e′{this, x1, . . . , xn := e, e1, . . . , en} where D
has for method m, body e′ and parameters x1 through xn. This is nothing other than
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applying a nonstandard reduction rule at compile time, and it is straightforward to
show that the rule is typability preserving. Our optimising semantics explicitly
performs the first of the two steps; the other step is left implicit.

We have made a number of design choices for our framework, all compatible
with current virtual-machine technology. First of all, as already described, the flow
analysis used during class loading and JIT compilation is CHA. As demonstrated
by Glew and Palsberg [7], CHA is the simplest flow analysis which supports type-
safe method inlining in a setting without class loading. Moreover, CHA is fast and
therefore an attractive choice for a JIT compiler.

Second, our framework assumes that all inlinings can be invalidated. This design
choice simplifies our notation considerably. Note here that Sreedhar, Burke, and
Choi [12] showed that in practice there are many inlinings that cannot be invalidated
by class loading. Such stable inlinings are called unconditionally-monomorphic call
sites. There is no conceptual problem with adding support for unconditionally-
monomorphic call sites to our framework. Such an addition would lead to space
savings in the generated code, but not execution-time savings.

Third, our framework uses a simple construct called dynnew which abbreviates
the Java expression Class.forName(...).newInstance(), that is, an operation
that loads some class and immediately instantiates it. Using this construct means
that we do not need to model the result of Class.forName(...) and deal with
objects that reify classes, simplifying the operational semantics. It is also easy to
type check: it has type Object.

Fourth, we abstract some details of patching. In particular, we assume that it
is an atomic operation. An actual implementation of the technique in a virtual
machine must ensure this atomicity. It must atomically write the jump instruction,
it must ensure consistency between icache and dcache, and must correctly deal with
weak memory ordering on architectures with this model. Such concerns are very
low-level, we abstract them into an atomic operation that is appropriate for the
intermediate language level that we are considering.

Once the framework is defined, the main technical challenge is to reason about
the optimising semantics. In contrast to most work on type preservation and op-
timisation, our semantics depends on the optimisation which in turn depends on
the flow analysis which in turn must be a conservative approximation of the seman-
tics. In other words, the semantics, the transformation, and the analysis are all
interdependent and we must therefore reason about them together.

The following section presents our variant of Featherweight Java. Section 3
presents the optimising semantics that does class-hierarchy analysis, speculative
devirtualisation, and patching, and proves it type safe. Section 4 proves operational
correctness, that is, the equivalence of the standard semantics and the optimising
semantics.
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2 THE LANGUAGE

We formalise our results in Featherweight Java [8] (FJ) extended with a static dis-
patch construct and facilities for dynamic class loading and dynamic patching, a
language we call FJD. The language and its presentation follow the original FJ pa-
per as closely as possible, and is modeled after our previous paper on type-safe
method inlining [7]. In this extended abstract, we limit the informal explanations
to static dispatch, dynamic class loading, and dynamic patching.

Syntax

The syntax of FJD is:

P ::= (CD;S;e)

CD ::= class C extends C {C f; K M}

K ::= C(C f) {super(f); this.f = f;}

M ::= C m(C x) {return e;}

e ::= x` | e.f` | new` C(e) | (C)`e | e.m(e)` | e.C::m(e)` |
dynnew` | let x = e in x.C::m(y) patchto` x.m(y)

We use S to range over sets of labels. Each S is called a patch set.

There are eight forms of expression: variables x`, field selection e.f`, object
constructors new` C(e), casts (C)`e, dynamic method invocations e.m(e)`, static
method invocations e.C::m(e)`, combined dynamic class loading and object cre-
ation dynnew`, and patching (see below). Static method invocation invokes C’s
version of method m on object e, which should be in C or one of its subclasses.
Dynamic class loading loads a new class and creates a new object of it.

Patching is a conditional construct: the expression let x = e in x.C::m(y)

patchto` x.m(y) evaluates to the static dispatch x.C::m(y){x := e} unless the
label ` is in the patch set S, in which case it evaluates to the dynamic dispatch
x.m(y){x := e}. Our transformation uses patching to optimise a dynamic dispatch
to a static dispatch with the label initially not in the patch set. If class loading
invalidates the optimisation, it adds the label into the patch set. The construct
is formalised in Section 3. We use a specialised patch construct that is combined
with a standard let construct to simplify our proofs. A more general construct has
subtle order of evaluation issues, and the specialised construct is sufficient for our
needs. We reserve patching for our transformation, and assume that it does not
appear in the source program. In fact, there is no rule in the standard semantics for
patching. Note also that patch sets have to do with the patching construct, and are
not relevant for source programs. We include both in the syntax to have a single
language, which simplifies are formalisation.

Metavariable ` ranges over a set of labels. Notice that there is a label associated
with every expression; we assume that labels are unique in the source program. For
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Field Lookup:

fields(CD, Object) =
(1)

CD(C) = class C extends D {C f; K M} fields(CD, D) = D g

fields(CD, C) = D g, C f
(2)

Method Type Lookup:

CD(C) = class C extends D {C f; K M} B0 m(B x) {return e;} ∈ M

mtype(CD, C, m) = B → B0
(3)

CD(C) = class C extends D {C f; K M} m not defined in M

mtype(CD, C, m) = mtype(CD, D, m)
(4)

Method Body Lookup:

CD(C) = class C extends D {C f; K M} B0 m(B x) {return e;} ∈ M

mbody(CD, C, m) = (x, e)
(5)

CD(C) = class C extends D {C f; K M} m not defined in M

mbody(CD, C, m) = mbody(CD, D, m)
(6)

Class of Method Lookup:

CD(C) = class C extends D {C f; K M} B0 m(B x) {return e;} ∈ M

impl(CD, C, m) = C::m
(7)

CD(C) = class C extends D {C f; K M} m not defined in M

impl(CD, C, m) = impl(CD, D, m)
(8)

Valid Method Overriding:

mtype(CD, D, m) = D → D0 implies C = D and C0 = D0

override(CD, D, m, C → C0)
(9)

Figure 1: Auxiliary Definitions

a program P, labels(P) denotes the set of labels used in P. To simplify the technical
definitions later, all the field names and argument names must be distinct. Any
well-typed program can easily be transformed to satisfy these conditions. Function
lab maps an expression to its label.

Some auxiliary definitions that are used in the rest of the paper appear in Fig-
ure 1. Unlike the FJ paper, we do not make the list of class declarations global,
but have them appear explicitly as parameters to functions, predicates, and rules.
Function fields(CD, C) returns a list of C’s fields and their types; mtype(CD, C, m) re-
turns the type of method m in class C, this type has the form D → D where D is
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fields(CD, C) = C f

(CD; S; X〈new`1 C(e).fi
`2〉) 7→s (CD; S; X〈ei〉)

(10)

CD ` C <: D

(CD; S; X〈(D)`1new`2 C(e)〉) 7→s (CD; S; X〈new`2 C(e)〉)
(11)

mbody(CD, C, m) = (x, e0)

(CD; S; X〈new`1 C(e).m(d)`2〉) 7→s (CD; S; X〈e0{this, x := new`1 C(e), d}〉)
(12)

mbody(CD, D, m) = (x, e0)

(CD; S; X〈new`1 C(e).D::m(d)`2〉) 7→s (CD; S; X〈e0{this, x := new`1 C(e), d}〉)
(13)

CD = class C extends · · ·

(CD; S; X〈dynnew`〉) CD,e7→s (CD,CD; S; X〈new C(e)〉)
(14)

Figure 2: Standard Operational Semantics

the return type and D are the argument types; mbody(CD, C, m) returns the body of
method m in class C, this has the form (x, e) where e is the expression to evaluate
and x are the parameter names; impl(CD, C, m) returns the class from which class C

inherits method m (this might be C itself if C declares m), this has the form D::m

where D is the class. Predicate override(CD, D, m, C → C) is true when method m of
type C → C may be declared in a subclass of D. It checks that if D declares or inherits
m then it has the same type, as required by Java’s type system. The more general
rule with contravariant argument types and covariant result types could be used,
and the results of this paper would still hold (with minor changes to some of our
rules).

Standard Operational Semantics

The language has two different operational semantics. The one presented in this
section can be thought of as the reference semantics for the language—any optimi-
sation should simulate this semantics. The other semantics models the devirtual-
isation optimisation we are trying to formalise. It is a semantics rather than just
a transformation because of the need to transform and patch at dynamic loading
time. Details and further motivation are given in Section 3.

The semantics is the same as for FJ and our previous paper [7], except for the
two new constructs and labels on the reduction relation. A reduction is optionally
labeled with a class definition and list of field initialiser expressions. This label
indicates the class that was loaded and what initial field values were used. The
sequence of such pairs is called the dynamic load sequence of the execution. The
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semantics appears in Figure 2. Metavariable X ranges over evaluation contexts,
which are expressions with exactly one hole; X〈e〉 denotes the expression formed by
replacing the hole in X by the expression e. Unlike the FJ paper, in addition to
making the list of class declarations explicit in the rules we make the evaluation
context explicit as well.

Because the language is functional and each class has exactly one constructor of a
particular form, the values of the language, which are all objects, can be represented
using object constructors new` C(e). Field access reduces to the appropriate element
of e. The cast (D)`1new`2 C(e) reduces to the object new`2 C(e) if C is a subclass
of D. If C is not a subclass of D then the cast is irreducible representing that the
cast fails as a checked run-time error. The reduction rule for method invocation
new`1 C(e).m(d)`2 looks up the method body of m in C, if this is (`, x, e0) then the
reduced expression is the body e0 with the actuals d substituted for the formals x

and the object new`1 C(e) substituted for this. Static method invocation new`1

C(e).D::m(d)` reduces similarly except that the method is looked up in D, not C.
Note that this method lookup can be done at compile time and a static method
invocation can be implemented as a direct call rather than an indirect call through
a virtual-dispatch table. The rule for dynnew` simply adds the new class to the list
of classes in the program and reduces to a new expression using the field initialisers.
Because patching is reserved for our transformation, the standard semantics does
not refer to or change the patch set, nor does it have a rule for patching.

An irreducible expression is stuck if it is of the form x, X〈e.f`〉, X〈e.m(e)`〉, or
X〈e.D::m(e)`〉 (or X〈let x=e in x.C::m(y) patchto` x.m(y)〉, for the optimis-
ing semantics). The type system prevents stuck expressions from occurring during
execution of a program. Values, ranged over by metavariable v, are given by the
syntax:

v ::= new` C(v)

Irreducible expressions that are not stuck are either values, representing normal
termination, or have the form X〈(C)`1new`2 D(e)〉 where D is not a subclass of C,
representing a failed cast.

Type System

The type system consists of the following judgements:

Judgement Meaning
CD ` C <: D C is a subtype of D
CD; Γ ` e ∈ C e is well formed and of type C

CD ` M OK in C M is well formed in class C
CD ` CD OK CD is well formed
` P ∈ C P is well formed and of type C
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Subtyping:

CD ` C <: C

CD ` C <: D CD ` D <: E

CD ` C <: E

CD(C) = class C extends D {...}

CD ` C <: D
(15)

Expression Typing:

CD; Γ ` x` ∈ Γ(x)
(16)

CD; Γ ` e0 ∈ C0 fields(CD, C0) = C f

CD; Γ ` e0.f`
i ∈ Ci

(17)

fields(CD, C) = D f CD; Γ ` e ∈ E CD ` E <: D

CD; Γ ` new` C(e) ∈ C
(18)

CD; Γ ` e0 ∈ D

CD; Γ ` (C)`e0 ∈ C
(19)

CD; Γ ` e0 ∈ C0 mtype(CD, C0, m) = D → C CD; Γ ` e ∈ C CD ` C <: D

CD; Γ ` e0.m(e)` ∈ C
(20)

CD; Γ ` e0 ∈ C0 CD ` C0 <: D mtype(CD, D, m) = E → E0
CD; Γ ` e ∈ C CD ` C <: E

CD; Γ ` e0.D::m(e)
` ∈ E0

(21)

CD; Γ ` dynnew` ∈ Object
(22)

CD; Γ ` e ∈ C CD; Γ, x : C ` x.C::m(y)` ∈ D CD; Γ, x : C ` x.m(y)` ∈ D

CD; Γ ` let x = e in x.C::m(y) patchto` x.m(y) ∈ D
(23)

Method Typing:

CD; this : C, x : C ` e0 ∈ E0 CD ` E0 <: C0

CD(C) = class C extends D {...} override(CD, D, m, C → C0)

CD ` C0 m(C x) {return e0;} OK in C
(24)

Class Typing:

CD ` M OK in C fields(CD, D) = D g

K = C(D g, C f) {super(g); this.f=f;}

CD ` class C extends D {C f; K M} OK
(25)

Program Typing:
CD ` CD OK CD; ` e ∈ C

` (CD;S;e) ∈ C
(26)

Figure 3: Typing Rules
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A typing context Γ has the form x:C where there are no duplicate variable names.
The only types are the names of classes, and such a type includes all instances of
that class and its subclasses. The rules appear in Figure 3. The bar notation denotes
sequences of typing judgements, so CD; Γ ` e ∈ C abbreviates CD; Γ ` e1 ∈ C1, . . . ,
CD; Γ ` en ∈ Cn.

The rules for constructors and method invocation check that each actual has a
subtype of the corresponding formal. The typing rule for dynamic method dispatch
looks up the type of the method in the class of the receiver. The typing rule for
static method dispatch e.D::m(e)` requires that e has some subtype of D and looks
up the type of the method in D. Note that in the rule for patchto, the two branches
must have the same type. While the first expression (for our transformation) is
a speculative optimisation that will be patched when it is no longer semantically
correct, it continues to type check after class loading.

The rules are syntax directed, with the exception of the rules for subtyping. So,
disregarding the details of how subtyping judgments are derived, for any program
there is exactly one derivation possible. Thus for a program P and any ` appearing
in it, each expression labeled by ` has a uniquely determined static type. Each `
labels at most one expression. Let static-type(P, `) be the type of ` in program P.

In the presence of dynamic loading it is not enough that the original program
type checks. All dynamically loaded classes must also type check for there to be
a type safety guarantee. This is formalised as follows. An execution of a program
with classes CD with dynamic load sequence 〈(CD1, e1), . . .〉 (this sequence could be
finite or infinite) is type correct exactly when

` (CD, CD1, . . . , CDi; ∅; new` C(ei)) ∈ C

for all appropriate i where CDi = class C extends · · · and ` is fresh. Given these
definitions, the following type soundness result holds. Its proof is similar to standard
type soundness proofs [8].

Theorem 1 A type correct execution of a well-typed program cannot get stuck.

3 DEVIRTUALISATION

This section presents a devirtualisation optimisation that speculatively devirtualises
given current information and then patches when that information is invalidated by
dynamic class loading.

Class Hierarchy Analysis

Any devirtualisation optimisation is based on a flow analysis. This flow analysis
maps each expression in the program to a set of classes such that the expression
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always evaluates to an instance of one of those classes. In practice, a just-in-time
compiler can only afford to use a simple analysis such as Class Hierarchy Analysis
(CHA) or a variant of it. CHA maps an expression to all the classes that are subtypes
of the static type of the expression. This is a crude approximation to flow set, but
surprisingly effective in practice.

Formally, subclasses(P, C) is the set of subclasses of C (including C) in program
P. CHA is defined as:

CHA(P, `) = subclasses(P, static-type(P, `))

Program Transformation

The program transformation uses CHA to transform a program fragment in a com-
positional fashion. It transforms each program fragment into a similar program
fragment with the same label, and turns some dynamic method invocations into
patchable static method invocations. Specifically, a dynamic call is changed to a
static call when CHA determines that there is a unique target method.

The transformation consists of these parts, and appears in Figure 4.

Transformation Meaning
[[CD]]P the transformation of CD within program P

[[M]]P the transformation of M within program P

[[e]]P the transformation of e within program P

The transformation preserves typability, the proof is straightforward.

Theorem 2 If P=(CD;S;d), and C, M, and e appear in P then:

• If CD ` CD OK then [[CD]]P ` [[CD]]P OK.

• If CD ` M OK in D then [[CD]]P ` [[M]]P OK in D.

• If CD; Γ ` e ∈ D then [[CD]]P; Γ ` [[e]]P ∈ D.

Optimised Semantics

The optimised semantics uses CHA to speculatively devirtualise method calls, and
patching to undo these optimisations when dynamically loaded classes invalid the
speculative assumption. The initial program is optimised, so is any dynamically
loaded class and its corresponding field initialisers. The existing classes could also
be reoptimised at dynamic load time, but we do not include this step (it would be
straightforward to add).
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[[class C extends D {C f; K M}]]P = class C extends D {C f; K [[M]]P}
[[D m(E x) {return e;}]]P = D m(E x) {return [[e]]P;}

[[x`]]P = x`

[[e.f`]]P = [[e]]P.f
`

[[new` D(e)]]P = new` D([[e]]P)
[[(D)`e]]P = (D)`[[e]]P
[[e.m(e)`]]P = let x,x = [[e]]P,[[e]]P in

x.D::m(x) patchto` x.m(x)

where ∀E ∈ CHA(P, lab(e)) : impl(classes(P), E, m) = D::m, and x and x are fresh
[[e.m(e)`]]P = [[e]]P.m([[e]]P)

`

otherwise
[[e.D::m(e)`]]P = [[e]]P.D::m([[e]]P)

`

[[dynnew`]]P = dynnew`

Figure 4: The Transformation of Dynamic to Static Dispatch

Usually an operational semantics is defined just by a reduction relation between
program states. For FJD however, the optimised semantics is defined by its initial
states and by a reduction relation. The initial execution state for a program P =
(CD;S;e) is ([[CD]]P; S; [[e]]P). The reduction relation is defined in Figure 5.

The main differences between the semantics are the rule for dynamic new and
patching. In the optimised semantics the newly loaded class and field initialisers are
optimised using the new program. The existing classes are not transformed as they
were transformed either in forming the initial program state or in previous dynamic
loading steps. Loading a new class does not present new optimisation opportunities.
It only invalidates previous speculative optimisation—to handle this invalidation,
patches must be installed. Installing patches does not require transforming the
classes, it only requires adding labels to the patch set, in particular, all labels that
are now polymorphic call sites—the set poly(P), which is defined as follows.

poly(P) = {` | let ...,x=e,... in x.D::m(x) patchto` · · · in P and
¬∀E ∈ CHA(P, lab(e)) : impl(classes(P), E, m) = D::m}

Note that an actual implementation will have datastructures and use the newly
loaded class to efficiently determine the labels to patch without doing a full CHA of
the program.

The patching construct executes the static dispatch if the label is not in the
patch set, and executes the dynamic dispatch if the label is in the patch set. It
is zero time, in that, it does not reduce to the dispatch but rather to what the
dispatch reduces to. This is a technical device to simplify the proof of operational
correctness. It also reflects the cheap implementation cost of the construct. Other
than these remarks, the two rules just combine standard rules for let, the dispatch
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fields(CD, C) = C f

(CD; S; X〈new`1 C(e).fi
`2〉) 7→o (CD; S; X〈ei〉)

(27)

CD ` C <: D

(CD; S; X〈(D)`1new`2 C(e)〉) 7→o (CD; S; X〈new`2 C(e)〉)
(28)

mbody(CD, C, m) = (x, e0)

(CD; S; X〈new`1 C(e).m(d)`2〉) 7→o (CD; S; X〈e0{this, x := new`1 C(e), d}〉)
(29)

mbody(CD, D, m) = (x, e0)

(CD; S; X〈new`1 C(e).D::m(d)`2〉) 7→o (CD; S; X〈e0{this, x := new`1 C(e), d}〉)
(30)

CD = class C extends · · · P = (CD,CD; S; X〈new` C(e)〉)
CD′ = [[CD]]P e′ = [[e]]P S′ = S ∪ poly(P)

(CD; S; X〈dynnew`〉) CD,e7→o (CD,CD
′; S′; X〈new` C(e′)〉)

(31)

` /∈ S x{x := e} = new`1 C(d1) y{x := e} = d2 mbody(CD, D, m) = (z, e0)

(CD; S; X〈e0{this, z := new`1 C(d1), d2}〉)
L7→o P

(CD; S; X〈let x = e in x.D::m(y) patchto` x.m(y)〉) L7→o P
(32)

` ∈ S x{x := e} = new`1 C(d1) y{x := e} = d2 mbody(CD, C, m) = (z, e0)

(CD; S; X〈e0{this, z := new`1 C(d1), d2}〉)
L7→o P

(CD; S; X〈let x = e in x.D::m(y) patchto` x.m(y)〉) L7→o P
(33)

Figure 5: Optimised Operational Semantics
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rules, and the condition.

The optimised semantics is also type safe. The proof is straightforward given
the previous theorem.

Theorem 3 A type correct, optimised execution of a well-typed program cannot get
stuck.

4 CORRECTNESS

This section will prove that the optimisation is correct. Specifically it will show that
the optimised semantics simulates the standard semantics and vice versa.

To state the result we need a correspondence relation. This relation generalises
the transformation slightly to reflect the fact that the transformation is applied at
consecutive loading points rather than all at once. Its definition appears in Figure 6.
Essentially, where the left program has a dynamic dispatch the right program may
have one of two expressions. It can have a corresponding dynamic dispatch. It can
also have a static dispatch that is patched to a dynamic dispatch if the dynamic
dispatch is monomorphic in the current program (the subscript P on the relation)
or if the patch label is in the current patch set (the subscript S on the relation).

The transformation is a special case of correspondence.

Theorem 4

• For any P, if the initial state in the optimising semantics for P is P′ then
corresponds(P, P′).

• For any P and S, correspondsP,S(CD, [[CD]]P).

• For any P and S, correspondsP,S(e, [[e]]P).

Proof: The proof is a straightforward induction on the structure of P, CD, or e.
The cases in the transformation correspond directly to cases for correspondence.

The optimised semantics simulates the standard semantics and vice versa.

Theorem 5 If corresponds(P1, P
′
1) then:

• If P1
L7→s P2 then P′

1
L7→o P

′
2 and corresponds(P2, P

′
2) for some P′

2.

• If P′
1

L7→o P
′
2 then P1

L7→s P2 and corresponds(P2, P
′
2) for some P2.

To prove this theorem we need two lemmas.
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correspondsP,S(x
`, x`)

(34)

correspondsP,S(e1, e2)

correspondsP,S(e1.f`, e2.f`)
(35)

correspondsP,S(e1, e2)

correspondsP,S(new
` C(e1), new

` C(e2))
(36)

correspondsP,S(e1, e2)

correspondsP,S((C)
`e1, (C)`e2)

(37)

correspondsP,S(e1, e2) correspondsP,S(e1, e2)

correspondsP,S(e1.m(e1)`, e2.m(e2)`)
(38)

∀D ∈ CHA(P, lab(e1)) : impl(classes(P), D, m) = C::m

correspondsP,S(e1, e2) correspondsP,S(e1, e2)
e′ = let x,x = e2,e2 in x.C::m(x) patchto` x.m(x)

correspondsP,S(e1.m(e1)`, e′)
(39)

` ∈ S correspondsP,S(e1, e2) correspondsP,S(e1, e2)
e′ = let x,x = e2,e2 in x.C::m(x) patchto` x.m(x)

correspondsP,S(e1.m(e1)`, e′)
(40)

correspondsP,S(e1, e2) correspondsP,S(e1, e2)

correspondsP,S(e1.C::m(e1)`, e2.C::m(e2)`)
(41)

correspondsP,S(dynnew
`, dynnew`)

(42)

correspondsP,S(e1, e2)

correspondsP,S(D m(C x) {return e1;}, D m(C x) {return e2;})
(43)

correspondsP,S(M1, M2)

correspondsP,S(class C extends D {C f; K M1}, class C extends D {C f; K M2})
(44)

P = (CD1;S1;e1) correspondsP,S2
(CD1, CD2) correspondsP,S2

(e1, e2)

corresponds(P, (CD1;S2;e2))
(45)

Figure 6: The Correspondence Relation
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Lemma 1 If correspondsP,S(X〈e〉, e2) then e2 = X′〈e′〉, correspondsP,S(X, X
′), and

correspondsP,S(e, e
′) for some X′ and e′. If correspondsP,S(e1, X

′〈e′〉) then e1 = X〈e〉,
correspondsP,S(X, X

′), and correspondsP,S(e, e
′) for some X′ and e′.

Proof: The proof is a straightforward induction on the structure of X or X′.

Lemma 2 If correspondsP,S(e1, e2) and correspondsP,S(e1, e2) then:

correspondsP,S(e1{x := e1}, e2{x := e2})

Proof: The proof is a straightforward induction on the structure of the derivation
of correspondsP,S(e1, e2).

Proof: [Of Theorem 5] Assume that corresponds(P1, P
′
1) holds, P1=(CD;S;e),

and P′
1=(CD

′;S′;e′). By the rules for correspondence, correspondsP1,S′(CD, CD′) and
correspondsP1,S′(e, e′). Note that these correspondences will hold for also for a pro-
gram with the same class hierarchy as P1, which will be the case in all the cases
below except dynamic new.

• Let P1
L7→s P2. There are several cases for this reduction:

– Case e=X〈new`1 C(e).f`2
i 〉: In this case P2=(CD;S;X〈ei〉). By Lemma 1

and the rules for correspondence, e′=X′〈new`1 C(e′).f`2
i 〉 where X and X′

correspond and e and e′ correspond. Letting P′
2=(CD

′;S’;X′〈e′
i〉), clearly

P2
L7→o P

′
2. By the rules for correspondence, P2 and P′

2 correspond.

– The cases for casting and static dispatch are similar to the case for field
selection.

– Case e=X〈new`1 C(e).m(d)`2〉: In this case P2=(CD;S;X〈e0{this, x :=
new`1 C(e), d}〉) where mbody(CD, C, m) = (x,e0). By Lemma 1, e′=X′〈e′′〉
where X and X′ correspond and new`1 C(e).m(d)`2 and e′′ correspond.
There are three rules for deriving this last correspondence:

∗ Rule 38: This case is similar to the one for field selection.

∗ Rule 39: In this case, e′′=let y,y=new`1 C(e′),d′ in y.D::m(y)

patchto`2 y.m(y) where e and e′ correspond and d and d′ corre-
spond. Also, ∀E ∈ CHA(P1, `1) : impl(classes(P1), E, m) = D::m. In
particular, mbody(CD, C, m) = mbody(CD, D, m), so by the rules for cor-
respondence, mbody(CD′, C, m) = mbody(CD′, D, m). Letting

P′
2=(CD

′;S′;X′〈e′
0{this, x := new`1 C(e′), d

′}〉)

where mbody(CD′, C, m) = (x,e′
0), clearly P′

1
L7→o P′

2 (whether or not
`2 ∈ S′). By the rules for correspondence, e0 and e′

0 correspond. By
Lemma 2 and the rules for correspondence, P2 and P′

2 correspond.

50 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8



5 CONCLUSION

∗ Rule 40: In this case, e′′=let y,y=new`1 C(e′),d′ in y.D::m(y)

patchto`2 y.m(y) where e and e′ correspond and d and d′ corre-
spond. Also, `2 ∈ S′. Letting

P′
2=(CD

′;S′;X′〈e′
0{this, x := new`1 C(e′), d

′}〉)

where mbody(CD′, C, m) = (x,e′
0), clearly P′

1
L7→o P′

2. By the rules for
correspondence, e0 and e′

0 correspond. By Lemma 2 and the rules
for correspondence, P2 and P′

2 correspond.

– Case e=X〈dynnew`〉: In this case P2=(CD,CD;S;X〈new` C(e)〉), L = CD,e,
and CD=class C extends · · ·. By Lemma 1 and the rules for correspon-
dence, e′=X′〈dynnew`〉 where X and X′ correspond. Letting

P = (CD′,CD;S′;X′〈new` C(e)〉)
CD′ = [[CD]]P
e′ = [[e]]P
S′′ = S′ ∪ poly(P)
P′

2 = (CD′,CD′;S′′;X′〈new` C(e′)〉)

clearly P2
L7→o P′

2. The key is to show that corresponds(P2, P
′
2). It is

straightforward to establish that CHA(P, `) = CHA(P2, `) for all appro-
priate ` (1). Since the transformation depends only upon the CHA of a
program, CD′ = [[CD]]P2

and e′ = [[e]]P2
. By Theorem 4, we have that

correspondsP2,S′′(CD, CD′) and correspondsP2,S′′(e, e′). The derivation of
correspondsP1,S′(X, X′) can be used to derive correspondsP2,S′′(X, X′) except
in the case of Rules 39 and 40. In the case of Rule 40, S′′ is a super-
set of S′, so the rule still applies. In the case of Rule 39, the condition
∀D ∈ CHA(P2, lab(e1)) : impl(classes(P), D, m) = C::m might not hold.
But in this case, by (1), `′ ∈ poly(P) where `′ is the label of the patching
construct in question, so Rule 40 applies instead. A similar argument
shows that correspondsP2,S′′(CD, CD′). Then by the rules for correspon-
dence, P2 and P′

2 correspond.

• The proof of the second assertion is similar to the proof of the first assertion.

5 CONCLUSION

In this paper, we study the problem of devirtualisation in the presence of dynamic
class loading. In particular, we specified and proved correct speculative devirtu-
alisation with patching for revirtualisation when assumptions no longer hold. In
addition we proved this technique type preserving. Combined with a transforma-
tion to replace devirtualised invocations with an appropriately substituted method
body, which is easily proven correct and type preserving, we have addressed method
inlining in the presence of dynamic class loading. Our work was done for a simply
yet effective analysis (CHA); future work will address more precise analyses and the
typing changing problems with revirtualisation.
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