
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 7, September-October 2005 

 
 
 
 

Cite this column as follows: D. Lyon, M. Fuhrer and T. Rowland: “The JBoss Integration Plug-in 
for IntelliJ IDEA, Part2”, in Journal of Object Technology, vol. 4, no. 7, September-October 2005, 
pp. 25-34, http://www.jot.fm/issues/issue_2005_9/column3  
 

The JBoss Integration Plug-in for the 
IntelliJ IDEA, Part 2. 

Douglas Lyon, Fairfield University, Fairfield CT, U.S.A. 
Martin Fuhrer, President of Furher Engineering AG, Biel, Switzerland 
Thomas Rowland, Pitney Bowes, Shelton CT, U.S.A. 

 
 

Java is your friend. 
PL/1 is your crazy friend. 

ADA is your crazy friend who juggles porcupines. 
 - DL 

Abstract 
This paper is the second in a series of papers that describe a new plug-in for enabling 
the integration of the IntelliJ IDEA IDE with the JBoss application server. The JBoss 
plug-in was first conceived and implemented by Martin Fuhrer at Fuhrer Engineering. 
Part 1 discussed how to download and install the new JBoss plug-in, allowing the JBoss 
application server to integrate into the IntelliJ IDEA IDE development environment. It 
showed how to create a project with EJBs and web modules. 
This paper continues with our project created in Part 1 by describing how to add a 
stateless session bean. It is stateless because we are not concerned with remembering 
values of attributes between successive calls from the client. This paper also 
demonstrates that our session bean can be either remote (i.e., a bean with a remote 
interface) or it can be local (a bean with a remote interface). 

1 CREATING A SESSION BEAN WITH REMOTE INTERFACE 

This section describes the procedure for creating a session bean with a remote interface in 
the IntelliJ IDE. The examples in this section were performed on a Linux machine using 
IntelliJ IDE version 4.5 and JBoss version 4.0.1 RC1. 
Right-click on the EJB module (or control-click, on a Mac) to select the session bean 
menu item, as shown in Figure 1.1. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_9/column3


 
 THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART2 

 
 
 
 

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

 
 

Figure 1.1 Creating a new Session Bean 

In the New Session Bean dialog, shown in Figure 1.2, enter in the name of the session 
bean and the package. Select Enable Remote Interface. 
 

 
 

Figure 1.2 The New Session Bean dialog with remote interfaces enabled 

 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 27 

Select OK and the Session Bean dialog General panel will be displayed. 
 

 
 

Figure 1.3 The Session Bean dialog showing remote interfaces 
 

Now select the JBoss Server tab and type in the Remote JNDI (Java Naming and 
Directory Interface) Name, “hello”. 
 

 
 

Figure 1.4 The Session Bean dialog showing the Remote JNDI Name 



 
 THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART2 

 
 
 
 

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

Close the Session Bean dialog. The project JTree will now show the new session bean 
class and interfaces that you just created, as shown in Figure 1.5. 
 

 
 

Figure 1.5 The new session bean showing class and interfaces 

2 CREATING A SESSION BEAN WITH LOCAL INTERFACE 

This section describes the procedure for creating a session bean with a local interface in 
the IntelliJ IDE. In the [EJB 2.0] specification, local interfaces were added in order to 
optimize calls between beans residing in the same container. Local interfaces are more 
efficient because they do not rely on the Java Remote Method Invocation (RMI) 
mechanism, but their use is a tradeoff with flexibility, and they can only be used in 
certain situations. It is beyond the scope of this paper to discuss the differences between 
local and remote bean interfaces. The steps in creating a session bean with a local 
interface, and the servlet which invokes methods in the session bean, are much the same 
as in the previous sections that use the remote interface. However, we are showing it here 
at length to illustrate the capabilities of the IntelliJ IDE. 

The examples in this section were performed on a Windows 2000 machine using 
IntelliJ IDE version 4.5.4 and JBoss version 4.0.1 SP1. 

Right-click on the EJB module (or control-click, on a Mac) to select the session bean 
menu item, as shown in Figure 2.1. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 29 

 
 

Figure 2.1 Creating a new Session Bean 
 

In the New Session Bean dialog, shown in Figure 2.2, enter in the name of the session 
bean and the package. Select Enable Local Interface. IntelliJ will prefix the home and 
component interface names with local. 

 
 

Figure 2.2 The New Session Bean dialog with Local interfaces enabled 



 
 THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART2 

 
 
 
 

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

Select OK and the Session Bean dialog General panel will be displayed. 
 

 
 

Figure 2.3 The Session Bean dialog showing Local interfaces 
 

Now select the JBoss Server tab and type in the Local JNDI (Java Naming and Directory 
Interface) Name, “hello”. 
 

 
 

Figure 2.4 The Session Bean dialog showing the Local JNDI Name 
 

Close the Session Bean dialog. The project JTree will now show the new session bean 
class and interfaces that you just created, as shown in Figure 2.5. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 31 

 
 

Figure 2.5 The new session bean showing class and interfaces 

3 ADDING METHODS TO THE BEAN CLASS 

Open the HelloBean class from the project JTree and add the two methods, sayHello and 
getDate, as shown in Figure 3.1. Placing the cursor on the sayHello and getDate method 
names will bring up light bulbs to the left of them. 
 

 
 

Figure 3.1 Adding new HelloBean methods 
 

Click on the light bulbs and accept the offer from the popup (shown in figure 3.2) to add 
the specification for each of your new methods to the HelloBean’s component interface. 

 
 

Figure 3.2 Popup offering to Synthesize Code 



 
 THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART2 

 
 
 
 

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

Accepting the offer to synthesize code causes the specifications to be automatically 
generated in the interfaces, as shown in Figures 3.3 and 3.4. Notice the difference 
between the local component interface and a remote component interface, instead of 
extending EJBObject, a local component interface extends EJBLocalObject. There is also 
no need for it to throw a RemoteException. Likewise, the local home interface extends 
EJBLocalHome instead of EJBHome, and again there is no need to throw a 
RemoteException. 
 

 
 

Figure 3.3 Synthesized Methods in the (remote) bean interface 
 

 
 

Figure 3.4 Synthesized Methods in the (local) bean interface 

4 CONCLUSION 

This paper discussed how the new JBoss application server integration plug-in makes it 
easy to create EJBs within the IntelliJ IDEA IDE environment. It showed that both 
remote and local bean interfaces are supported. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 33 

Now that you have created your EJB, you are ready for the next step, the creation of 
a servlet to interface to the EJB. This will be the topic of Part 3. 
The use of plug-in technologies has become increasingly prevalent in the IDE industry. 
This is understandable, as there are too many frameworks for the IDE manufacturer to 
support at any given time. A plug-in also gives third parties the ability to support 
frameworks that are not high-priority for the IDE manufacturer. Further, they enable the 
IDE to be leaner, incorporating support for only those features that users care about. 
Thus, we see the plug-in to be a popular trend in the IDE world and we see no slow-down 
in this trend. The question of how plug-in producers can make money from their plug-ins, 
remains open. 

LITERATURE CITED 

[EJB 2.0] Enterprise JavaBeans[tm] 2.0 Specification, available from 
http://java.sun.com/products/ejb/2.0.html. 

[Cavaness] Special Edition Using EJB 2.0, Chuck Cavaness and Brian Keeton, February 
2002. Chapter 3, EJB Concepts, can be downloaded from 
http://java.sun.com/developer/Books/ejbtechnology. 

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/developer/Books/ejbtechnology


 
 THE JBOSS INTEGRATION PLUG-IN FOR THE INTELLIJ IDEA, PART2 

 
 
 
 

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

About the authors 

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr. 
Lyon worked at AT&T Bell Laboratories. He has also worked for the 
Jet Propulsion Laboratory at the California Institute of Technology. He 
is currently the Chairman of the Computer Engineering Department at 
Fairfield University, a senior member of the IEEE and President of 
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at 

Lyon@DocJava.com. His website is http://www.DocJava.com. 
 

Martin Fuhrer has a degree as engineer in computer science from the 
School of Engineering and Information Technology in Biel/Switzerland. 
He is founder and president of Fuhrer Engineering Inc., a software 
development company located in Biel/Switzerland. He's mainly 
working in the field of web-based financial services and the online 
processing of realtime stock exchange data. He can be reached at 

info@fuhrer.com or through http://www.fuhrer.com. 
 

Thomas Rowland has a B.S. in Electrical Engineering and an M.S. in 
Software Engineering. He has been consulting as a Software Engineer 
for the past four years, working for Pfizer Pharmaceutical, Travelers 
Life & Annuity, and currently at Pitney Bowes. He has also worked for 
Hyperion Solutions for over 5 years. Mr. Rowland has also had some 
teaching stints along the way. He is listed in the National Register’s 

2005-2006 edition of the Who’s Who in Executives and Professionals. He resides in 
Connecticut and can be reached at rowlandtf@netscape.net. 

http://www.DocJava.com
mailto:Lyon@DocJava.com
http://www.fuhrer.com
info@fuhrer.com
rowlandtf@netscape.net

