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In this paper we describe a taxonomy of object-oriented classes that catalogs each
class in an application according to the characteristics of that class, including the
properties of the data attributes and routines as well as the relationships with other
classes. Our taxonomy is motivated by the fact that the current research literature
contains no formal methodology for capturing the characteristics of a class. To il-
lustrate the advantages of the taxonomy, we apply it to the problem of choosing
implementation-based testing techniques and, more importantly, we show that our
taxonomy can expose characteristics of a class that remain uncovered by the chosen
testing technique.

1 INTRODUCTION

The trend in the development of large scale object-oriented systems has shifted
toward testable, robust models, with a focus on the prevention of faults and system
failure. One process that supports the construction of robust software is testing.
An advantage of software testing is the relative ease with which some of the testing
activities can be performed, such as executing the program using a given set of
inputs, or test cases, and then comparing the generated output to the expected
output [16]. However, the inadequacy of the infrastructure to support testing is well
documented [30].

The widespread use of the object-oriented (OO) paradigm has lead many devel-
opers to treat the class or class cluster as the basic test unit in an OO system [5].
However, the data attributes and routines of a class containing references, pointers,
inheritance, polymorphism, restricted accessibility, and deferred features complicate
class-based testing. These complications have resulted in an abundance of class-
based testing techniques described in the literature [1, 6, 17, 18, 21, 23, 32, 33].
Each of the testing techniques addresses one or more of these complications but no
one technique has emerged as the accepted approach de rigueur, possibly because
no single technique addresses all of the complications that classes may possess.

In this paper we describe a taxonomy of object-oriented classes that catalogs
each class in an application according to the characteristics of that class, including
the properties of the data attributes and routines as well as the relationships with

Cite this article as follows: Peter J. Clarke, Brian A. Malloy: ”A Taxonomy of OO Classes to
Support the Mapping of Testing Techniques to a Class”, in Journal of Object Technology, vol.
4, no. 5, July–August 2005, pp. 95–115,
http://www.jot.fm/issues/issues 2005 07/article2

http://www.jot.fm/issues/issue_2005_07/article2
http://www.jot.fm


A TAXONOMY OF OO CLASSES TO SUPPORT THE MAPPING OF TESTING TECHNIQUES TO A CLASS

other classes. The class characteristics in our taxonomy are captured by a set of
descriptors and a set of type families. Our taxonomy is motivated by the fact that
the current research literature contains no formal methodology for capturing the
characteristics of a class. Meyer describes an important taxonomy for cataloging
inheritance usage groups [28, 29]. However, our taxonomy can be applied to any
class and, using add-on descriptors, is adaptable to a wide range of OO languages.
Using the descriptors and type families, we show that our taxonomy partitions the
set of C++ classes into mutually exclusive sets.

To illustrate the advantages of the taxonomy, we apply it to the problem of
choosing implementation-based testing techniques and, more importantly, we show
that our taxonomy can expose characteristics of a class that remain uncovered by
the chosen testing technique. We describe a mapping algorithm that automates
the process of matching a class under test (CUT) to a list of implementation-based
testing techniques (IBTTs), reducing the analysis time required by the tester. The
matching process identifies those IBTTs that can suitably test characteristics of the
CUT and provides feedback to the tester for identification of the characteristics of
the CUT that are not suitably tested by any of the IBTTs in the list. The taxonomy
has also been applied to the non-trivial problem of computing impact analysis as a
maintenance activity [12].

In the next section we provide background and terminology about classes, class-
based testing and class abstraction techniques. In Section 3 we provide motivation
for our taxonomy of OO classes. In Section 4 we describe our taxonomy and in
Section 5 describe our approach to mapping IBTTs to classes to suitably test a
CUT. We review the related work in Section 6 and draw conclusions in Section 7.

2 BACKGROUND

In this section we introduce the terms class characteristics, implementation-based
testing, class abstraction and taxonomy. We also present a brief overview of several
IBTTs that we use to provide motivation for our taxonomy of OO classes.

Class Characteristics

Meyer defines a class as a static entity that represents an abstract data type with a
partial or total implementation [29]. The static description supplied by a class should
include a specification of the features that each object might contain. These features
fall into two categories: (1) attributes, and (2) routines. Attributes are referred to as
data items and instance variables in other OO languages while routines are referred
to as member functions and methods. Throughout this paper we use the terms
attributes and routines.

We define the class characteristics for a given class C as the properties of the fea-
tures in C and the dependencies C has with other types (built-in and user-defined)
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in the implementation. The properties of the features in C describe how criteria
such as types, accessibility, shared class features, polymorphism, dynamic binding,
deferred features, exception handling, and concurrency are represented in the at-
tributes and routines of C. The dependencies of C with other types are realized
through declarations and definitions of C’s features and C’s role in an inheritance
hierarchy.

The properties of the features in a class have been reviewed in the literature
[2, 26, 29, 34]. Most of the terms we use in this paper about the properties of the
features in a class are keywords in the programming languages C++ [34], Eiffel [29],
or Java [2]. The dependencies among classes are usually the result of declarations
or definitions of features, or the participation in an inheritance hierarchy. The
attributes and routine locals (variables or parameters) of a class can be declared as
one of many possible types. These types include: built-in types, user defined types,
and types provided by specialized libraries. Some OO languages also allow the use
of parameterized types whereby the actual type of the attribute or routine local is
only known when an instance of the class is created. Inheritance allows features
of the class to be reused in another class and permits the class to be extended to
include new features [29]. The use of inheritance may result in some classes having
deferred features.

Class Abstraction Techniques

There are several class abstraction techniques (CATs) that provide alternative views
of an implemented class (or a cluster of classes) by reverse engineering the source
code [8, 14]. The CATs we consider in this paper are referred to by Gannod et al. [14]
as parser-based because they are based on the syntactic properties of a programming
language. We focus on CATs that support testing during the software development
process. These parser-based CATs typically fall into four broad categories: (1) use
of graphs for design recovery [22, 24, 27], (2) use of graphs for program analysis
[6, 18, 32, 33], (3) extraction of object oriented design metrics (OODMs) [7, 15, 25],
and (4) classification of class characteristics [17, 28].

Design information recovered from the source code of a software implementation
assist the tester in identifying the relationships that exists between the different
entities in the source code. Knowledge of these relationships can reduce the cost of
testing by generating a test order to reduce the number of stubs and/or drivers [5].
Program analysis is used to generate test information for several testing techniques.
Many of the graphs used during the generation of test information are derived from
control flow graphs (CFG), described in the next subsection. There is a greater
semantic difference between the source code and the graphs used during design
recovery than between the source code and the graphs generated for program analysis
[14].

Design metrics are used to determine or measure the quality of a software appli-
cation. Basili et al. [4] show that several of Chidamber and Kemerer’s [7] OODMs
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appear to be useful in predicting class fault-proneness during the early phases of the
software development. Harrold et al. [17] classify the features that a descendant
class in the C++ language may have. These include new feature, recursive feature,
redefined feature, virtual-new feature, virtual-recursive feature and virtual-redefined
feature. New features are declared in the descendant class and recursive features are
inherited from the parent class unchanged. A redefined feature is a routine that has
the same signature as a routine declared in the parent but with a different imple-
mentation. A virtual feature refers to a routine that is dynamically bound. Meyer
[28] presents a taxonomy that classifies the various inheritance usage groups.

In this paper we use the following definition of the term taxonomy [35]:

A taxonomy is the science of classification according to a pre-determined
system, with the resulting catalog used to provide a conceptual frame-
work for discussion, analysis, or information retrieval. In theory, the
development of a good taxonomy takes into account the importance of
separating elements of a group (taxon) into subgroups (taxa) that are
mutually exclusive, unambiguous, and taken together, include all possi-
bilities.

Implementation-Based Testing

We define implementation-based testing of an OO class as the process of operating a
class under specified conditions, observing or recording the results, and making an
evaluation of the class based on aspects of its implementation (source code). This
definition is based on the IEEE/ANSI definition for software testing [19]. This paper
focuses on testing techniques that generate test information based on the implemen-
tation, we refer to these techniques as Implementation-Based Testing Techniques or
IBTTs. We now provide a brief overview of a cross-section of IBTTs described in
the literature.

Test Tuple Generation: Several IBTTs generate test cases from tuples (referred
to as test tuples) based on some type of coverage criteria. Harrold and Rothermel
present a data flow testing technique for classes based on the procedural program-
ming paradigm [18]. The technique described in [18] uses the class control flow
graph (CCFG) to represent the classes in a program. Data-flow information com-
puted from the CCFG is used to generate intra-method, inter-method and intra-class
def-use pairs [18]. Sinha and Harrold describe a class of adequacy criteria that is
used to test the behavior of exception-handling constructs in Java programs [32].
The approach described in [32] is similar to that presented in [18], that is, data-flow
analysis is performed on an inter-procedural control flow graph (ICFG) that incor-
porates exception-handling constructs resulting in the identification of test tuples.
Souter and Pollock propose a testing technique known as OMEN (Object Manipu-
lations in addition to using Escape Information) that uses data-flow analysis based
on object manipulations to generate test tuples [33]. OMEN is based on a compiler
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optimization strategy for Java programs that creates a points-to-escape graph for a
given region of the program.

Koppol et al. describe a testing technique that generates test sequences selected
from labeled transition systems (LTS) [21]. An LTS is a type of state machine used
to model programs. The common approach to selecting test sequences from a reach-
ability graph. To overcome the state explosion problem with traditional reachability
graphs, Koppol et al. defined a new type of reachability graph for incremental anal-
ysis called an annotated labeled transition system (ALTS) [21]. During incremental
analysis test paths can be selected from the intermediate graphs or from the final re-
duced graph. Alexander and Offutt, present OO coupling criteria that focus on the
effects of inheritance and polymorphism [1]. This criteria uses quasi-interprocedural
data flow analysis, that is, complete information about data flows between units are
not needed. This approach requires data flow information from definitions to call
sites, from call sites to uses, and from entry definitions to exit nodes [1].

Message Sequence Generation: Some IBTTs generate message sequences that
are executed by instances of the CUT. These message sequences are generated based
on criteria associated with the implementation of the CUT. Buy et al. propose
an automated testing strategy for classes that uses data-flow analysis, symbolic
execution, and automatic deduction [6]. This IBTT generates message sequences
seeking to reveal failures dependent on the current state of the object. Kung et
al. use symbolic execution to generate an object state test model that is used to
construct a test tree [23]. The method sequences are then generated from the test
tree. The object state test model is represented as a hierarchical, concurrent object
state diagram (OSD), which identifies the possible states an object can enter during
execution. A test tree is generated from the OSD and message sequences produced.

Test Case Reuse: Harrold et al. propose a testing technique that uses an in-
cremental approach to testing OO software dependent on the inheritance hierarchy
component of the class structure [17]. The incremental approach reuses test sets cre-
ated for the class at the root of the inheritance hierarchy based on derived features.
These derived features are classified as: new and recursive for both attributes and
routines; redefined, virtual-new, virtual-recursive, and virtual-redefined for routines
only [17].

3 MOTIVATION FOR A TAXONOMY OF OO CLASSES

Our taxonomy of OO classes is motivated by the fact that there is no formal method-
ology described in the literature for capturing the characteristics of a class. However,
a formal and succinct method for describing a class would benefit both researchers
and practitioners in the area of OO testing. These benefits include: (1) further
automating the testing process by mapping IBTTs to a class under test (CUT), (2)
using the information generated from the class cataloging process to support the
execution of IBTTs, and (3) providing a basis for analyzing the type of coverage
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currently provided by existing IBTTs.

Researchers Class Characteristics Scope
(IBTT Name) Suited To Not Suited To

Alexander et al.[1] Primitive and user-defined Local variables of Cluster
(Polymorphic types, polymorphism, routines assigned
Relationships) dynamic binding return values
Buy et al. [6] Primitive types, Complex variables Class
(Automated) simple control flow e.g., arrays, structs;

references
Harrold et al. [17] Inherited classes Classes with no Cluster

(Incremental) parents
Harrold et al. [18] Primitive types, Complex variables Class

(Data-Flow) new attributes e.g., arrays, structs;
references,

polymorphism,
dynamic binding

Koppol et al. [21] Features exhibiting Features not exhibiting
(Concurrent concurrency concurrency Cluster
Programs) and synchronization and synchronization

Kung et al. [23] Primitive types, Large number of Class
(Object State) simple control flow attributes

Sinha et al. [32] Exception objects and Attributes/local Cluster
(Exception- variables, references to variables outside
Handling) exception objects exception mechanism

Souter et al. [33] Objects in the presence Primitive types, Cluster
(OMEN) of polymorphism, aliasing, references to

and inheritance primitive types

Table 1: Summary of IBTTs identifying the class characteristics that are suited to
and not suited to the respective IBTT. The characteristics in Columns 2 and 3, and
the scope in Column 4 are extracted from references cited in Column 1.

Table 1 shows a summary of the class characteristics that can be suitably tested
by a given IBTT and those class characteristics that cannot be suitably tested by
that IBTT. The term suitably tested is used to identify those characteristics of a
CUT that can be adequately tested by an IBTT in the opinion of the researcher
(or tester). Column 1 identifies the main researcher that developed the IBTT and
the name we associate with that IBTT, shown in italics. Column 2 identifies those
class characteristics that can be suitably tested by the IBTT in Column 1 of that
row. Column 3 identifies those class characteristics that cannot be suitably tested
by the IBTT in Column 1 of that row. Column 4 identifies the scope for which
the IBTT in Column 1 can be used to suitably test the characteristics in Column 2.
Note that the class characteristics in Columns 2 and 3, and scope in Column 4 were
extracted from the respective references shown in Column 1. For example, Row 2
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of Table 1 represents the information for the IBTT developed by Buy et al.[6]. The
name assigned to the IBTT developed by Buy et al. is Automated, shown in Row 2
Column 1. The class characteristics that can be suitably tested by the Automated
IBTT include: primitive types, and simple control flow, shown in Row 2 Column
2. The class characteristics that cannot be suitably tested by the Automated IBTT
include: complex variables - arrays, structs; references to variables, shown in Row 1
Column 3. For a further explanation on the meaning of the class characteristics for
each IBTT see the respective references listed in Column 1.

The information in Table 1 indicates that some IBTTs are more suitable for test-
ing classes that exhibit certain characteristics. Automating the process to generate
the summary of class characteristics for the CUT and mapping IBTTs to the CUT,
reduces the time the tester must spend analyzing the source code of the CUT and
its dependencies. Cataloging classes in a program using the appropriate classifica-
tion can also support the execution of existing IBTTs. For example, the IBTT by
Harrold et al. [17] (Incremental), Row 3 of Table 1, identifies those test cases that
can be reused from the test history of a parent class to test a derived class. To
achieve the aforementioned goal the cataloging process should include the classifi-
cation of the features in a derived class, as stated in Section 2 - Test Case Reuse.
The final advantage of cataloging the classes in a program, using the appropriate
classification, is that it provides a way of identifying how much coverage is provided
by existing IBTTs with respect to class characteristics. That is, how many different
groups of classes currently exist, and how many of these groups can be suitably tested
by existing IBTTs.

4 TAXONOMY OF OO CLASSES

In this section we describe our Taxonomy of OO Classes that is used to catalog each
class in an OO software application based on the characteristics of that class. These
characteristics include the properties of the class’ features (attributes and routines)
and the dependencies with other classes in the software application.

Structure of the Taxonomy

Our taxonomy of OO classes provides a mechanism whereby classes in any OO
language may be cataloged producing a cataloged entry. This cataloged entry contain
components representing the characteristics of class in a formal yet succinct manner.
Following we define the terms associated with our taxonomy of OO classes [9].

Definition 4.1: Taxonomy of OO Classes. A taxonomy of OO classes T,
classifies an OO class C into a group based on the dependencies C has with other
types (built-in and user-defined) in the software application. The dependencies of
C with other types are realized through declarations and definitions of C’s features
and C’s role in an inheritance hierarchy. 2
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A class is cataloged using the taxonomy of OO classes T to produce a a summary
of class characteristics. This summary of class characteristics is referred to as a
cataloged entry.

Definition 4.2: Cataloged Entry. Each cataloged entry generated using T is a
5-tuple (C, N, A, R, F), where:

• C is the fully qualified name of the class.

• N, the Nomenclature Component, represents a group (or taxon) in T and
contains a single entry.

• A, the Attributes Component, is a list of entries representing the different
categories of attributes.

• R, the Routines Component, is a list of entries representing the different cate-
gories of routines.

• F, the Feature Classification Component, is a list of entries summarizing the
inherited features. 2

The Attributes, Routines and Feature Classification Components are collectively
referred to as Feature Properties. The entries in the Nomenclature Component, At-
tributes Component and Routines Component are referred to as component entries.
Following is the definition of a component entry:

Definition 4.3: Component Entry. A component entry in the Nomenclature,
Attributes, or Routines Components for class C cataloged using taxonomy T consists
of two parts: (1) the modifier that describes characteristics of C, and (2) a list of
type families that identifies the types associated with C. 2

One of the major goals of the taxonomy is the ability to represent the charac-
teristics of a class written in virtually any OO language. To achieve this goal the
modifier part of a component entry is divided into two parts: (1) core descriptors
that represent common characteristics found in OO languages, and (2) add-on de-
scriptors that represent characteristics peculiar to a specific OO language. Table
2 shows the descriptors and type families used to generate the various component
entries in a cataloged entry. Column 1 in Table 2 shows the descriptors used in the
modifier part of the Nomenclature Component entry. Columns 2 and 3 show the
descriptors used in the modifier part for each entry in the Attributes and Routines
Components respectively. The descriptors in parentheses represent the add-on de-
scriptors used to describe the characteristics of a class peculiar to the C++ language.
Column 4 shows the types families used in the Nomenclature, Attributes and Rou-
tines Component entries. The descriptors and types families in Table 2 are formally
described in reference [9], an informal description is presented in reference [12]

Illustrative Example

Figure 1 illustrates an application of our taxonomy to a C++ class. Figure 1(a)
shows the C++ code for classes Point, Cartesian and Polar. Class Point declares
two protected attributes, x and y, both of type int and five public routines three
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Descriptors Type
Nomenclature Attributes Routines Families

(Nested) New (Constant) NA no type
(Multi-Parents) Recursive New P primitive type

(Friend) Concurrent Recursive P* reference to P
(Has-Friend) Polymorphic Redefined U user-defined type

Generic Private Concurrent U* reference to U
Concurrent Protected Synchronized L library
Abstract Public Exception-R L* reference to L

Inheritance-free Constant Exception-H A any type (generics)
Parent Static Has-Polymorphic A* reference to A

External Child - Non-Virtual m < n > parameterized type
Internal Child - Virtual m < n >* reference to

- - Deferred parameterized type
- - Private where m ∈ {U, L}
- - Protected n is any combination of
- - Public {P, P*, U, U*, L, L*, A, A*}
- - Static -

Table 2: Descriptors (core and add-on) and type families used in a cataloged en-
try. The descriptors in parentheses are the add-on descriptors used to describe the
characteristics peculiar to the C++ language.

constructors, a virtual destructor, and the constant virtual routine print. Classes
Cartesian and Polar inherit from Point.

Figure 1(b) illustrates the cataloged entry for class Point. The Nomenclature
Component entry for class Point is Parent Families P, U* for the following reasons:
Point is the root of an inheritance hierarchy (Parent), and the data types used in
declarations are the primitive type int (Family P)and a reference to the user-defined
type Point (Family U*). The entry in the Attributes Component, is [2] Protected
Family P that represents the attributes x and y, line 3 Figure 1(a).

The entries in the Routines Component for the constructors are: [1] Non-Virtual
Public Family NA representing the zero argument constructor Point(), line 5, [1]
Non-Virtual Public Family P representing the two argument constructor Point(int
inX, int inY), line 6, and [1] Has-Polymorphic Non-Virtual Public Family U* for
the one argument constructor Point(Point & p), line 8. The destructor ~Point() is
cataloged as Virtual Public Family NA and routine print() as (Constant) Virtual
Public Family NA. The descriptors Protected and Public reflect the accessibility for
the attributes and routines in class Point. The binding of the routines are represented
by the descriptors Non-Virtual - static and Virtual - dynamic. The add-on descriptor
Constant, peculiar to C++, states that the routine print() prevents attributes of the
class from being modified. The Feature Classification Component in the cataloged
entry for class Point contains the entry None because class Point is not a derived
class, thereby not containing any derived features.
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1 class Point{
2 protected :
3 int x , y ;
4 public :
5 Point ( ) : x ( 0 ) , y (0){}
6 Point ( int inX , int inY ) :
7 x ( inX ) , y ( inY ){}
8 Point ( const Point & p ) :
9 x (p . x ) , y (p . y ){}

10 virtual ˜ Point ( ){}
11 virtual void pr in t ( ) const {
12 cout << ” x = ” << x << ” , ”
13 << ” y = ” << y << endl ;}
14 } ;
15
16 class Cartes ian : public Point{
17 void pr in t ( ) const { cout <<
18 ” ab s c i s s a = ” << x << ” , ” <<
19 ” ord ina te = ” << y << endl ;}
20 } ;
21
22 class Polar : public Point{
23 void pr in t ( ) const { cout <<
24 ” d i s t ance = ” << x << ” , ”
25 << ” ang le = ” << y << endl ;}
26 } ;

[1] Virtual Public Family NA
{~Point()}

[1] (Constant) Virtual Public Family NA
{print()}

Feature Classification: None

PointClass:

Nomenclature: Parent Families P, U*

Feature Properties

[1]  Non−Virtual Public Family P
{Point(int inX, int inY)}

{Point()}

[1] Has−Polymorphic Non−Virtual 

[1]  Non−Virtual Public Family NA

Attributes: [2]  Protected Family P 
{x, y}

Routines:

{Point(const Point & p)}
Public Family U*

(a) (b)

Figure 1: (a) C++ code for classes Point, Cartesian, and Polar. (b) Cataloged entry
for class Point.

Properties of the Taxonomy

The properties of our taxonomy of OO classes are: (1) all groups of OO classes
are mutually exclusive, (2) each component entry is specified in an unambiguous
manner, and (3) all classes written in virtually any OO language can be cataloged
into a group. In this subsection we describe how our taxonomy of OO classes
satisfies properties (1) and (3). For property (2) we developed a regular grammar
that generates all possible strings for the components entries in a cataloged entry
[9].

Figure 2 shows a tree illustrating how our taxonomy of OO classes partitions the
set of classes into mutually exclusive groups (or taxa). Figure 2 contains only the
core descriptors and type families. An example of one such group is Non-Generic
Sequential Concrete Inheritance-Free Families P, shown along the top branch of the
tree in Figure 2. Since we consider the descriptors Non-Generic, Sequential, and
Concrete, as default descriptors, the Nomenclature becomes Inheritance-Free Fam-
ilies P. This group represents classes that are not part of an inheritance hierarchy
and contain data (attributes and routine locals) whose types are primitive. The
default descriptors, shown in italics in Figure 2, are added to ensure that the groups
of the taxonomy are mutually exclusive. A similar tree can also be created for the
add-on descriptors and preprended to the tree in Figure 2. Our results show that the
taxonomy generates 305664 groups of C++ classes [9]. In reference [9] we formally
define the descriptors using predicates and functions. In addition, all the possible
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Generic

Generic

Non−

Sequential

Concurrent

Concrete

Abstract

Sequential

Concurrent

. . .
. . .

Parent
Inheritance−Free

External Child
Internal Child

. . .
. . .

. . .
. . .

{Family NA, Family P, ... Families P U* L, ...
Families P P* U U* L L*, ... Families P U<P>, ...}

{Family NA, Family P, ... Families P U* L, ...
Families P P* U U* L L*, ... Families P U<P>, ...}

Figure 2: Mutually exclusive groups of classes. This figure illustrates the mutually
exclusive groups, taxa, of classes that are cataloged by our taxonomy. One such
group, Non-Generic Sequential Concrete Inheritance-Free Families P, is illustrated
in the upper right corner of the figure.

type families are define using set theory notation.

The approach used to show that the taxonomy covers all possible classes written
in the C++ language is based on the fact that a class definition uses one or more
keywords. Starting with the C++ keywords, we identify all those keywords used
in class definitions that are related to a class characteristic and hence a descriptor
(core and add-on) used in a component entry of the taxonomy. For each of the
keywords related to a descriptor, the context in which the keyword is used in a class
definition is stated and the associated descriptor identified. The grammar for the
C++ language [20] is used to identify the context in which each related keyword
is used. For example, the keyword class is used in six different contexts in a class
definition. These contexts of the keyword class maps to the descriptors Inheritance-
free, Parent, External Child, Internal Child, (Nested), and (Multi-Parent). A similar
approach is used for the type families used in the component entries of the taxonomy.

5 MAPPING OF TESTING TECHNIQUES TO A CUT

In this section we describe the process used to map IBTTs to a CUT. The mapping
process takes as input a summary of the CUT and a list summarizing the IBTTs
available to the tester, then identifies those IBTTs that can suitably test features
of the CUT. We assume that the list summarizing the IBTTs is initialized by the
tester based on his/her experience and the current testing environment, i.e., the
availability of IBTTs.
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Mapping Process

The mapping process accepts a summary of the CUT and a list summarizing the
IBTTs available to the tester, then identifies those features of the CUT that can
(cannot) be suitably tested by an IBTT. In Section 3 we stated that the term suitably
tested is used to refer to those entities that are adequately tested in the opinion of
the researcher or the tester.

The CUT is cataloged using our taxonomy of OO classes to produce a cata-
loged entry similar to the one shown in Figure 1(b). A similar approach is used to
summarize the IBTTs available to the tester. That is, for each IBTT one or more
catalog entries are created by the tester associating the characteristics of the class
that can be suitably tested by that IBTT. Each IBTT cataloged entry contains the
fields: (1) Priority - identifies the priority assigned by the tester, (2) Nomenclature
- group of classes suitably tested by the IBTT, (3) Attributes - groups of attributes
suitably tested, and (4) Routines - groups of routines suitably tested. The entries
in the Nomenclature, Attributes and Routines Components are represented using
EBNF notation. The tester assigned priority is used to order IBTTs that can be
used to test the same groups of attributes or routines.

In order to match the component entries in the catalog entry for the CUT and
a cataloged entry for an IBTT we use the matches operator defined as follows:

Definition 5.1: Boolean operator matches ('). The value of a component
entry A matches a component entry B if and only if: (1) the string of descriptors in
the modifier part of A is a string in the language generated by the modifier part of
B , and (2) the intersection of type families in A and B is nonempty. That is,

A ' B ⇐⇒ A.modifier ∈ L(B .modifier) and A.typeFamily ∩ B .typeFamily 6= ∅
where C .modifier is the string of descriptors of C , L(C .modifier) is the language
generated by the modifier component of C , and C .typeFamily is the set containing
the type families of C . 2

An example of the matches operator is, New Non-Virtual Public Families P U
' New (Non-Virtual | Virtual) (Private | Protected | Protected) [Static] Family P,
that evaluates to true. Using Definition 5.1 the component entries in the example
match, because New Non-Virtual Public ∈ L(New (Non-Virtual | Virtual) (Private
| Protected | Public) [Static] ) and {P ,U } ∩ {P} 6= ∅.

Mapping Algorithm

The algorithm IBTT CUTMap shown in Figure 3 maps IBTTs to a CUT. The
mapping relation from IBTTs to a CUT is suitably test. The parameters passed to
algorithm IBTT CUTMap, Figure 3, consist of: (1) cutEntry - a cataloged entry for
the CUT and (2) ibttList - a list containing a summary of the IBTTs available to the
tester. Note that the tester is responsible for initializing ibttList. The data returned
from algorithm IBTT CUTMap is stored in the variable ibttCutMap. The data in
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1: IBTT CUTMap(cutEntry, ibttList)
2: /*Input: cutEntry - A cataloged entry for the CUT

ibttList - A list containing summaries of IBTTs
Output: ibbtCutMap - variable containing:

(1) tupleList, list of tuples mapping IBTTs to characteristics of CUT, and
(2) charsNotTestedList,list of characteristics of CUT with no suitable IBTT. */

3: Initialize fields of ibbtCutMap
4: Create tuples for entries in Attributes and Routine components and add them to

ibbtCutMap.charsNotTestedList
5: for all ibtt in ibttList do
6: for all ibttEntry in ibtt do
7: /* Nomen - Nomenclature entry */
8: if cutEntry.Nomen ' ibttEntry.Nomen then
9: for all Attributes in cutEntry do

10: /* Attr - Attribute component entry */
11: if cutEntry.Attr ' ibttEntry.Attr then
12: Create 4-tuple, update ibbtCutMap.tupleList using ibttEntry.Priority, and

tag cutEntry.Attr in ibbtCutMap.charsNotTestedList
13: end if
14: end for
15: for all Routines in cutEntry do
16: /* Rout - Routine component entry */
17: if cutEntry.Rout ' ibttEntry.Rout then
18: Create 4-tuple, update ibbtCutMap.tupleList using ibttEntry.Priority, and

tag cutEntry.Rout in ibbtCutMap.charsNotTestedList
19: end if
20: end for
21: end if
22: end for
23: end for
24: return ibttCutMap
25: end IBTT CUTMap

Figure 3: Overview of Algorithm to map IBTTs to a CUT.

ibttCutMap consists of: (1) tupleList - a list of tuples representing the mapping from
IBTTs to the CUT, and (2) charsNotTestedList - a list of the class characteristics
that cannot be suitably tested by any IBTTs in ibttList.

Line 3 of algorithm IBTT CUTMap shown in Figure 3 initializes the fields in ibtt-
CutMap. Line 4 creates ordered pairs for all the entries in the Attributes and Rou-
tines Components of cutEntry and adds them to the variable ibttCutMap.charsNot-
TestedList. The loop lines 5 through 23 sequences through each IBTT in ibttList.
The entries in the various components of the IBTT under consideration are com-
pared to the entries in the corresponding components in the CUT seeking a match.
If there is a match between the corresponding Nomenclature component entries, line
8, then the Attributes and Routines component entries are compared. A match be-
tween corresponding entries in the Attributes Component, line 11, creates a 4-tuple,
adds it to the tuple list ibbtCutMap.tupleList, and the component entry of the CUT,
cutEntry.Attr, in ibttCutMap.charsNotTestedList is tagged as tested. If more than one
feature can be suitably tested by an IBTT then ibbtCutMap.tupleList contains the
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IBTT with the highest priority.

Similar actions, to those for the Attributes Component, are performed for the
entries in the Routines Component, line 17. The only change is that the difference
between the type families of the component entries being matched may not be the
empty set, line 17. To use the priority field in deciding which IBTT to use to test
the routine the difference between the type families of the component entries on line
17 must be the same. When the 4-tuple, line 18, is created it is updated with the
type families that matched on line 17 and the appropriate descriptors.

The running time of algorithm IBTT CUTMap is O(j ∗n ∗max (a, r)). The value
j represents the number of IBTTs in the input list ibttList and n is the cost required
to check if Nomenclature component entries match, line 8 of Figure 3. The value a
is the cost to compare each entry in the Attributes Component of the CUT and the
IBTT entry line 11. The value r is the cost to compare each entry in the Routines
Component of the CUT and the IBTT entry, line 17 of Figure 3. Note that although
the running time appears to be a cubic function, the values of a and r are expected
to be small [11].

An Application of the Mapping Algorithm

In this subsection we describe an application of algorithm IBTT CUTMap shown in
Figure 3. The input to algorithm IBTT CUTMap consist of: (1) a cataloged entry
for class Point, Figure 1(b), and (2) a summary of the Data-Flow IBTT by Harrold
et al. [18], Figure 4. In this example the Data-Flow IBTT is assigned the unique
identifier Data-Flow Harrold94. We limit the number of IBTTs in this example to
one due to the space restrictions. We stress the fact that the summary of IBTTs in
ibttList, the second input parameter of algorithm IBTT CUTMap, is supplied by the
tester. For the purpose of this example we assigned possible values to the component
entries of the Data-Flow IBTT in Figure 4.

The component entries of each cataloged entry in Figure 4 is written using EBNF
notation. For example, the Nomenclature component entry in the first cataloged
entry of the IBTT summary for Data-Flow Harrold94 is (Inheritance-free | Parent)
Family P. This Nomenclature entry says that this IBTT can be used to suitably
test: (1) any class that is not part of an inheritance hierarchy and contains prim-
itive data types, or (2) any class that is the root of an inheritance hierarchy and
contains primitive data types. The Attributes entry for the first cataloged entry in
Data-Flow Harrold94, Figure 4, is (Private | Protected) [Static] Family P. The entry
states that Data-Flow Harrold94 can suitably test attributes that are either private
or protected, can be static, and are primitive types.

The output generated after applying algorithm IBTT CUTMap to cutEntry, con-
taining a cataloged entry of class Point, and ibttList, containing catalog entries for
Data-Flow Harrold94, is shown in Figure 5. Figure 5(a) represents the variable ibbt-
CutMap a local variable that references the two lists returned from IBTT CUTMap.
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UniqueID: Data−Flow_Harrold94
EntryList:

3Priority:

Nomenclature:

Feature Properties

Attributes:

Routines:

Priority: 3

Nomenclature:

Feature Properties

Attributes:

Routines:

(Inheritance−free | Parent) Family P

(Private | Protected) [Static] Family P

(Non−Virtual | Virtual) (Private |
Protected | Public) [Static] Family P

(External Child | Internal Child) Family P

New (Private | Protected) [Static] Family P

(New | Redefined) (Non−Virtual | Virtual)

(Private | Protected | Public) [Static] Family P

Figure 4: Summary of the Data-flow IBTT, the single IBTT stored in ibttList, used
as input to algorithm IBTT CUTMap.

These lists include: (1) ibbtCutMap.tupleList - the features of class Point suitably
test by Data-Flow Harrold94, Figure 5(b), and (2) ibttCutMap.charsNotTestedList -
the features that cannot be suitably tested by Data-Flow Harrold94, Figure 5(c). The
first entry in Figure 5(b) is a 4-tuple consisting of: (1) Characteristic - a component
entry representing the attributes x and y in class Point, (2) Feature Pairs - consisting
of (x, ATTRIBUTE) and (y, ATTRIBUTE) for the two attributes in class Point, (3)
IBTT Name - the IBTT Data-Flow Harrold94, that can suitably test the listed fea-
ture pairs, and (4) IBTT Priority - tester assigned priority, 3. Figure 5(c) contains a
list of 2-tuples, each 2-tuple consisting of the feature characteristics that cannot be
suitably tested by any IBTT, and a list of the features with the stated characteristic.

Applying algorithm IBTT CUTMap, Figure 3, to the input described in para-
graph one of this subsection results in the following events. The variable ibbtCutMap
is initialized on line 3 of algorithm IBTT CUTMap. All the Attributes and Routines
component entries from the CUT for class Point are copied to the variable ibbt-
CutMap.charsNotTestedList, line 4. There is only one ibtt in ibttList therefore the
loop lines 5 through 23 is executed once. A match occurs on line 8 between the
Nomenclature component entry of cutEntry and the first cataloged entry for the
IBTT Data-Flow Harrold94, Figure 1(b) and Figure 4 respectively. A match occurs
between the Attribute component entries, line 11 of algorithm IBTT CUTMap, re-
sulting in a 4-tuple being created and added to ibbtCutMap.tupleList, the first entry in
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Class: Point

charsNotTestedListtupleList

(a)

Characteristic:
Protected Family P

Feature Pairs:

IBTT Name: Data−Flow_Harrold94

IBTT Priority: 3

Characteristic:
Non−Virtual Public Family P

Feature Pairs: (Point, ROUTINE)

IBTT Name: Data−Flow_Harrold94

IBTT Priority: 3

(x, ATTRIBUTE)
(y, ATTRIBUTE)

Characteristic:
Non−Virtual Public Family NA

Feature Pairs:

Characteristic: Has−Polymorphic
Non−Virtual Public Family U*

Feature Pairs:

Characteristic:
(Constant) Virtual Public Family NA

Feature Pairs:

Characteristic:
Virtual Public Family NA

Feature Pairs:

(Point, ROUTINE)

(Point, ROUTINE)

(~Point, ROUTINE)

(print, ROUTINE)

(b) (c)

Figure 5: Output of algorithm IBTT CUTMap after mapping the IBTT Data-
Flow Harrold94 to class Point. (a) Structure of variable ibttCutMap. (b) Contents
of list ibttCutMap.tupleList. (c) Contents of list ibttCutMap.charsNotTestedList.

Figure 5(b). In addition, the component entry Protected Family P is tagged for dele-
tion in ibbtCutMap.charsNotTestedList. The second entry in ibbtCutMap.tupleList,
Figure 5(b), is added as a result of a match between the Routine component entry
for the two-argument constructor Point and the Routine component entry in the first
cataloged entry for the IBTT Data-Flow Harrold94. There is no match between the
Nomenclature entries of the CUT and the second cataloged entry of the IBTT Data-
Flow Harrold94, line 5 of algorithm IBTT CUTMap, resulting in variable ibbtCutMap,
Figure 5, being returned.

Limitations of the Mapping Process

There are several limitations of our mapping process. One limitation is the fact
that our taxonomy does not capture any information regarding the type of control
structures used in the various routines in a class. Several pre-OO IBTTs used
coverage criteria based on the analysis of control structures [31]. A second limitation
is that algorithm IBTT CUTMap does not fully exploit the priorities assigned to the
IBTT, in particular the priorities assigned to individual catalog entries for an IBTT.
We are investigating ways to fully utilize these priorities to provide better accuracy
in the mapping process.
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The class abstraction techniques (CATs) used during testing include graphs for
design recovery, graphs for program analysis, OODMs and the classification of class
characteristics. In this section we focus on CATs that are closely related to the
classification of class characteristics.

Harrison et al. [15] overview three OODM sets, including a cross-section of the
set developed by Lorenz et al. [25]. The OODM set by Lorenz et al. contains
metrics that reflect certain characteristics of a class closely related to our taxonomy
of OO classes. Three of the metrics in the set by Lorenz et al. are: Number of Public
Methods (PM), Number of Methods Inherited by a subclass (NMO), and Number of
Methods Overridden by a subclass (NMO). Although the OODM set by Lorenz et
al. identify several class characteristics it does not show how these characteristics
are combined in the class. Our taxonomy of OO classes can identify the number of
routines (methods) in a derived class that are public and inherited (recursive). The
combination of class characteristics are essential when mapping IBTTs to a CUT.
An analysis of our cataloged entry reveals that of the 10 OODMs by Lorenz et al.
[25], reviewed by Harrison et al. [15], TaxTOOL generates 8 of them directly [9].

Harrold et al. [17] classify the features of a derived class and use this classifi-
cation to identify those test cases from the parent’s test history that can be reused
when testing the derived class. A brief summary of the testing technique by Harrold
et al. is presented in Section 2. Our taxonomy of OO classes extends the clas-
sification presented by Harrold et al. [17] to include characteristics for all classes
written in virtually any OO language. In addition to the classification of inherited
features we classify properties of features such as types, accessibility, shared class
features, polymorphism, dynamic binding, deferred features, exception handling,
and concurrency. The dependencies of a class with other types are also classified in
our taxonomy. Barbey et al. [3] state that the approach by Harrold et al. can be
enhanced by first cataloging the inherited class using the taxonomy of inheritance
usage groups proposed by Meyer [28, 29]. Unlike our approach to cataloging classes
which is based solely on the syntactic structure of the source code, English et al. [13]
concluded that semantic analysis is necessary in almost 70% of the cases categorized
into the individual inheritance relationships identified by Meyer.

An initial version of our taxonomy of OO classes is presented in reference [10].
The version presented in this paper has been revised as follows: (1) extending the
number of descriptors in the Nomenclature, Attributes, and Routines components
to more accurately summarize the characteristics of the class, (2) using add-on
descriptors to catalog classes written in virtually any OO language, (3) renaming
the type families (class associated types) to be more meaningful, and (4) extending
the type families to include parameterized types. The mapping process in reference
[10] is based solely on the Nomenclature component entry. We have extended the
mapping process to include the entries in the Attributes and Routines components.
In addition, we have defined the Boolean operator matches that uses both parts of
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a component entry to identify if an IBTT can suitably test a feature in the CUT.

7 CONCLUDING REMARKS

We have presented a taxonomy of object-oriented classes that catalogs each class in
an application according to the characteristics of that class, including the properties
of the data attributes and routines as well as the relationships with other classes.
The class characteristics in our taxonomy are captured by a set of descriptors and
a set of type families. We have described our use of add-on descriptors to enable
the taxonomy to be applied to a wide range of OO languages. Using the descriptors
and type families, we show that our taxonomy partitions the set of C++ classes
into mutually exclusive sets. We described a mapping algorithm that uses the tax-
onomy to automate the process of matching a class under test (CUT) to a list of
implementation-based testing techniques (IBTTs), reducing the analysis time re-
quired by the tester. The matching process identifies those IBTTs that can suitably
test characteristics of the CUT and provides feedback to the tester for identifica-
tion of the characteristics of the CUT that are not suitably tested by any of the
IBTTs in the list. Our taxonomy has also been applied to the non-trivial problem
of computing impact analysis as a maintenance activity [12].
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