
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

Cite this article as follows: Liliana Favre: “Foundations for MDA-based Forward Engineering”, in
Journal of Object Technology, vol. 4, no. 1, January-February 2005, pp. 129-153.
http://www.jot.fm/issues/issue_2005_01/article4

Foundations for MDA-based Forward
Engineering

Liliana Favre,
Universidad Nacional del Centro de la Provincia de Buenos Aires, CIC
(Comisión de Investigaciones Científicas de la Provincia de Buenos Aires),
Argentina

Abstract
Model Driven Architecture (MDA) is an emerging technology that is supposed to provide
a technical framework for information integration and tools interoperation; many UML
tools claim to be compliant with it. Model-to-model transformations are essential in
MDA. This article describes foundations for UML-based transformation tools. We
introduce the NEREUS language to cope with concepts of UML metamodel. A
transformational system to translate OCL to NEREUS was defined. In this framework,
we describe the NEREUS process to forward engineering UML static models to object-
oriented code. Eiffel was the language of choice in which to show the feasibility of our
approach. Transformations are supported by a library of reusable components and by a
system of transformation rules that allow translating UML/OCL constructions to
NEREUS specifications and Eiffel step-by-step.

1 INTRODUCTION

The standardization of UML regarded as notation leads to improvements in CASE
(Computer Aided Software Engineering) tools, methods and standard modeling libraries.
UML is used in many ways and different domains for expressing different types of
concepts such as language independent software specification, high-level architecture,
website structure, workflow specification and business modeling. It has been applied
successfully to build systems for different types of applications running on any type and
combination of hardware, operating system, programming language and network
[OMG03].

In the marketplace there are numerous UML CASE tools that differ widely in
functionality, usability, performance and platforms [Case03]. They are having a
significant impact on the software development industry. However, the support that they
provide has numerous gaps. Many tools can generate some code from a model, but that
usually goes no further than the generation of some template code. Reasoning about

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/article4

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

models of systems is well supported by automated theorem prover and model checkers,
however these tools are not integrated into UML-based environments. Also, these tools
provide limited facilities for refactoring and reverse engineering.

The OMG is promoting the MDA that is supposed to provide a technical framework
for information integration and tools inter-operation based on the separation of platform
specific models (PSM) from platform independent models (PIM). Many tools claim to
compliant with MDA. It is still evolving and some problems have been detected in the
transformation processes that require flexible code generation mechanisms [Kleppe03].

Formal and semi-formal techniques can play complementary roles in MDA-based
software development processes. We consider this integration beneficial for both semi-
formal and formal specification techniques. On the one hand, semi-formal techniques
have the ability to visualize language constructions allowing a great difference in the
productivity of the specification process, especially when the graphical view is supported
by means of good tools. On the other hand, formal specifications allow us to produce a
precise and analyzable software specification and automate model-to-model
transformations. The combination of UML and formal specifications offers the best of
both worlds to software developer.

In this article we describe foundations for MDA-based forward engineering.
Metamodeling is one key of the MDA. In this direction, we define the NEREUS language
to cope with concepts of UML metamodel. In particular this language is relation-centric,
that is it expresses different kinds of relations (dependency, association, aggregation,
composition) as primitives to develop specifications. Much more information can be
included in the specification metamodel using the combination of UML and OCL (Object
Constraint Language) [Warmer03]. A transformational system to translate OCL to
NEREUS was defined. NEREUS can be viewed as a communication bridge between
UML and other algebraic languages and between UML and object oriented languages.

The UML/OCL is used to generate high-level specifications which are independent
of any implementation technology. These specifications are tailored to specify
realizations that fit a specific technology, which in turn are used to generate the code.
Eiffel was the language of choice in which to show the feasibility of our approach. The
process is based on the adaptation of reusable components that are defined in a
framework that fits MDA. All of the proposed transformations can be automated; they
can be integrated into iterative and incremental software development processes
supported by the UML-based tools. Following this approach we can use the
transformations of the forward engineering process and apply them backwad to reverse
engineer code to a UML diagram.

The structure of the rest of this article is as follows. Section 2 discusses related work.
Section 3 gives a brief description of the NEREUS language. Section 4 describes the
NEREUS process to forward engineering UML models. Section 5 analyses a mapping
from UML/OCL to NEREUS. Section 6 describes how to transform NEREUS
specifications into Eiffel. Finally, Section 7 concludes and discusses further work.

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

2 RELATED WORK

Object orientation and formal languages

In the early 1980s, new specification languages or extensions of formal languages to
support object-oriented concepts began to develop. Among them the different extensions
of the Z language, for example Z++ [Lano91], OBJECT-Z [Smith00] or OOZE
[Alencar91] can be mentioned. Another language with object-oriented characteristics is
FOOPS [Rappanotti92].

Larch/Smalltalk was the first language with subtype and inheritance specification
[Cheon94] . Larch/C++ is another language with similar characteristics [Leavens96].

CASL-LTL, an extension of CASL [Astesiano02], has been provided to deal with
reactivity [Reggio99].

BON is an object-oriented method possessing graphical and textual languages for
specifying classes, their relations and assertions, written in first-order predicate logic
[Paige02].

Among the most recent languages, JML is a behavioral interface specification
language for formally specifying the behavior and interfaces of Java classes and functions
[Leavens02]. GSBLoo is an extension of GSBL with constructions that allow the
expression of different kinds of UML relations [Favre01].

Semi-formal and formal modeling techniques

Various works analyzed the integration of semiformal techniques and object-oriented
designs with formal techniques. [Bordeau95] introduces a method to derive Larch
specifications from class diagrams. [France97] describes the formalization of FUSION
models in Z.

A lot of work has been carried out dealing with the semantics for UML models. The
PreciseUML Group, pUML, was created in 1997 with the goal of giving precision to
UML [Evans98]. It is difficult to compare the existing results and to see how to integrate
them in order to define a standard semantics since they specify different UML subsets
and they are based on different formalisms.

[Bruel98] describes how to formalize UML models using Z, and [Breu97] does a
similar job using stream-oriented algebraic specifications. Additionally, [Gogolla97] does
this by transforming UML to TROLL and [Overgaard98] achieves it by using
operational semantics. U2B [Snook00] transforms UML models to B [Abrial96]. [Kim00,
Kim02] formalize UML by using OBJECT-Z. [Reggio01] presents a general framework
of the semantics of UML, where the different kinds of diagrams within a UML model are
given individual semantics and then such semantics are composed to get the semantics on
the overall model. [MCumber01] propose a general framework for formalizing UML

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

diagrams in terms of different formal languages using a mapping from UML metamodels
and formal languages metamodels.

Other works describe advanced metamodeling techniques that allow the
enhancement of UML. [Gogolla02] analyzes the UML metamodel part dealing with
stereotypes, and make various suggestions for improving the definition and use of
stereotypes. [Barbier03] introduces a formal definition for the semantics of the Whole-
Part relation that can be incorporated into version 2.0 of UML.

UML-based tools

In the marketplace, there are about 100 UML CASE tools that differ widely in
functionality, usability, performance and platforms [Case03]. Current UML tools can
help with the mechanics of drawing and exporting UML diagrams, eliminating syntactic
errors and consistency errors between diagrams and supporting code generation and
reverse engineering.

A number of tools claiming to support OCL have emerged. For example, the main
task of USE tool [Ziemann03] is to validate and verify specifications consisting of
UML/OCL class diagrams. Key [Ahrendt02] is a tool based on Together [Case03]
enhanced with functionality for formal specification and deductive verification.

 Our work describes foundations for MDA-based forward engineering. The
following differences between our approach and some of the existing ones are worth
mentioning. In the first place, NEREUS is more expressive than other algebraic
languages and more suitable for representing certain aspects of the UML metamodel. As
GSBLoo is relation-centric: it expresses different kinds of relations as primitives to
develop specifications [Favre01]. The characteristics that distinguishes NEREUS from
GSBLoo is its neutrality language. NEREUS can be viewed as an intermediate notation
open to many algebraic languages such as CASL or Larch. In particular, we define the
semantics of NEREUS in terms of the CASL language. On the other hand, a system of
transformation rules to translate OCL to NEREUS is introduced.

We define a framework for reuse that fits MDA very closely. Component models are
defined in three different levels of abstraction: Platform Independent Component Model
(PICM), Platform Specific Component Model (PSCM) and Implementation Component
Model (IMC). A transformational approach for the integration of UML/OCL with
NEREUS is introduced. We propose to define PIM and PSMs by integrating UML/OCL
and NEREUS specifications. Also, we define how to transform PIMs into PSMs.
Transformations are supported by reusable components and by a system of
transformation rules that allow translating NEREUS specifications to object-oriented
code step-by-step.

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 133

3 FORMALIZATION OF THE UML STATIC VIEW

The concept of transformation of models is central to the realization of the benefits of
MDA [OMG03]. To enable automatic transformation of a model, we need the UML
metamodel that is written in a well-defined language.

The strongest point in UML metamodel is the modeling of class diagrams and well-
formed rules in OCL. In this direction, we propose the NEREUS language to cope with
the UML metamodel. NEREUS is suitable to build specifications in which the structural
aspects are important. NEREUS is relation-centric, that is it expresses different kinds of
relations (dependency, association, aggregation, composition) as primitives to develop
specifications.

NEREUS is an intermediate notation open to many other formal languages. In
particular, we define its semantics by giving a precise formal meaning to each of the
construction of the NEREUS in terms of the CASL language, due to it is a unifier of
proven algebraic languages [Astesiano02].

NEREUS allows us to develop PIM and PSMs that are full of information about
systems to be implemented.

The NEREUS Language

NEREUS consists of several constructions to express classes, associations and packages.
Fig 1 shows the relation between UML static models and NEREUS.

Fig. 1: UML versus NEREUS

 P

 C B

PACKAGE P
 CLASS C
 …
 END-CLASS

 CLASS B
 …
 END-CLASS

 ASSOCIATION A
 …
 END-ASSOCIATION

 …
END-PACKAGE

A

 UML NEREUS

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

The syntax of a basic specification is shown in Fig. 2. NEREUS distinguishes variable
parts in a specification by means of explicit parameterization. The elements of
<parameterList> are pairs C1-> C2 where C1 is the formal generic parameter
constrained by an existing class C2 (only subclasses of C2 will be a valid actual
parameter).

CLASS className [<parameterList>]
IMPORTS <importList>
INHERITS <inheritsList>
ASSOCIATES <associatesList>
DEFERRED
FUNCTIONS <functionList>
EFFECTIVE
TYPE <sortList>
FUNCTIONS <functionList>
AXIOMS <varList>
<axiomList>
END-CLASS

ASSOCIATION <relationName>
IS <constructorTypeName> [...: Class1; ...:Class2;
...:Role1; ...:Role2; ...:mult1; ...:mult2; ...:visibility1;
...: visibility2]
CONSTRAINED BY <constraintList>
END

PACKAGE <packageName>
IMPORTS <importsList>
INHERITS <inheritsList>
<elements>
END-PACKAGE

 Fig. 2: NEREUS Syntax

The IMPORTS clause expresses dependency relations. The specification of the new

class is based on the imported specifications declared in <importList> and their public
operations may be used in the new specification.

NEREUS distinguishes subclassing from subsorting. Subsorting is like inheritance of
behavior, while subclassing relies on the module viewpoint of classes. Subclassing is
expressed in the INHERITS clause, the specification of the class is built from the union
of the specifications of the classes appearing in the <inheritsList>. Subsortings are
declared by the following syntax s1, s2, s3,...,sn < s. Operations declared on some sort are
automatically inherit by its subsorts.

NEREUS allows us to define local instances of a class in the IMPORTS and
INHERITS clauses by the syntax className [<bindingList>] where the elements of
<bindingList> can be pairs of sorts s1: s2, and/or pairs of operations o1:o2 with o2 and
s2 belonging to the own part of ClassName. References to parameterized specifications
always instantiate the parameters. The sort of interest of a class (if any) is also implicitly
renamed each time the class is substituted or renamed.

NEREUS distinguishes deferred and effective parts. The DEFERRED clause
declares new sorts or operations that are incompletely defined. The EFFECTIVE clause
either declares new sorts or operations that are completely defined, or completes the
definition of some inherited sort or operation.

Operations are declared in FUNCTIONS clause. In NEREUS it is possible to specify
any of the three levels of visibility for operations: public, protected and private. These are
expressed by prefixing the symbols : + (public), # (protected), and - (private).

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135

NEREUS supports higher-order operations (a function f is higher-order if functional
sorts appear in a parameter sort or the result sort of f). In the context of OCL Collection
formalization, second-order operations are required. It is possible to limit the scope of
the declarations of auxiliary symbols by using local definitions.

NEREUS provides a taxonomy of constructor types that classifies binary
associations according to kind (aggregation, composition, association, association class,
qualified association), degree (unary, binary), navigability (unidirectional, bidirectional),
connectivity (one-to one, one-to-many, many-to-many). New associations can be defined
by the syntax shown in Fig. 2. The IS clause expresses the instantiation of
<constructorTypename> with classes, roles, visibility, and multiplicity. The
CONSTRAINED-BY clause allows the specification of static constraints in first order
logic.

The package is the mechanism provided by NEREUS for grouping classes and
associations and controls its visibility (Fig. 2). <importsList> lists the imported
packages; <inheritList> lists the inherited packages and <elements> are classes,
associations and packages.

Several useful predefined types are offered in NEREUS, for example Collection, Set,
Sequence, Bag, Boolean, String, Nat and enumerated types.

A detailed description may be found in [Favre03b]. In the next sections we give
several examples that illustrate NEREUS specifications.

4 MDA-BASED FORWARD ENGINEERING OF UML STATIC
MODELS

The MDA is a framework for software development that is driven by models in different
abstraction levels. Model-to-model transformations that can be automated are crucial in
MDA. The MDA process is divided into three main steps [Kleppe03]:

• Construct a model with a high level of abstraction that is called Platform
Independent model (PIM).

• Transform the PIM into one or more Platform Specific Models (PSM), each one
suited for different technologies.

• Transform the PSMs to code.
The PIM, PSMs and code describe a system in different levels of abstraction. The MDA
also defines the relation between them.

We define a MDA-based forward engineering of UML static models. We propose to
define PIMs and PSMs by integrating UML/OCL and NEREUS specifications. A PSM is
tailored to specify UML static models in terms of realizations that are available in one
specific technology. For example, an Eiffel PSM is a model in terms of Eiffel libraries.
The construction of a PSM and code is based on a number of reusable components that
can be manipulated in order to adapt them to new applications. The final step is the

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

transformation of the PSM to code. Eiffel was the language of choice in which to
experiment. Fig. 3 shows the main steps of the proposed process.

There is a need for reusable and adaptable transformation components. Reusable
components that will be used in a process based on MDA have also to be described in
different abstraction levels. We define a framework for reuse that fits MDA very closely.

Component models are defined in three different levels of abstraction: Platform
Independent Component Model (PICM), Platform Specific Component Model (PSCM)
and Implementation Component Model (IMC). The PICM level defines component
model with a high-level of abstraction, which is independent of any implementation
technology. A PICM is related to more than one PSCM, each suited for different
technologies.

Fig. 3: The MDA-based process

The PSCM level defines a component model that is tailored to specify realizations of the
PICM components which are code in a specific language.

We define specific reusable components for associations, OCL Collections and
design patterns [Gamma95].

A component is defined in three levels of abstraction that integrate NEREUS
incomplete algebraic specifications, complete algebraic specifications and Eiffel code.
Fig. 4 depicts a specific Association component. It describes a taxonomy of associations
classified according to kind, degree, navigability and multiplicity. The first level
describes a hierarchy of incomplete specifications of associations using NEREUS and
OCL. Every leaf in this level corresponds to sub-components at the second level. A
realization sub-component is a tree of algebraic specifications: the root is the most
abstract definition, the internal nodes correspond to different realizations of the root. For
example, for a “binary, bi-directional and many-to-many” association, different

 PIM

 CODE EIFFEL
 CODE

 CODE

 PSM EIFFEL
PSM

 PSM

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

realizations through hashing, sequences, or trees could be associated. These sub-
components specify realizations starting from algebraic specifications of Eiffel libraries.

Figure 4. The component Association

The implementation level associates each leaf of the realization level with different
implementations in Eiffel. Implementation sub-components express how to implement
associations and aggregations. For example, a bi-directional binary association with
multiplicity “one-to-one” will be implemented as an attribute in each associated class
containing a reference to the related object. On the contrary, if the association is “many-

...

...

...

Association

Whole- Part Binary Association Qualified Association

Aggregation Composition Unidirect. Bidirect.

1..1 *..*
...

..

Hash- Table

File-T Array-T Linked-T

Seq- Table Tree- Table

Scheme 1 Scheme 2 Scheme i

EIFFEL

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

to-many”, the best approach is to implement the association as a different class in which
each instance represents one link and its attributes.

The component reuse is based on the application of reuse operators: Rename, Hide,
Extend and Combine. These operators were defined on the three levels of components. A
formal description of them and examples are included in [Favre98].

The central part of the MDA is to automate the generation of a target model from a
source model. In the following sections we describe the vital transformations in this
process: how a UML/OCL static model is transformed into a NEREUS specification, and
how this specification is transformed into Eiffel.

5 FROM UML/OCL TO NEREUS

In this section we describe how to transform specifications consisting of UML class
diagrams together with OCL invariants and pre- and postconditions into a NEREUS
specification. The text of the NEREUS specification is completed gradually. First, the
signature and axioms are obtaining by instantiating the reusable scheme BOX_ . Next,
associations are transformed by instantiating reusable schemes that exist in the
component Association. Finally, OCL specifications are transformed using a set of
transformation rules. Then, a specification that reflects all the information of UML
diagram is constructed. Fig. 5 shows the main steps of this phase.

Package UML GS NEREUS

Fig. 5: From UML/OCL to NEREUS

Fig. 6 shows the BOX_ scheme. The attribute mapping requires two operations: an access
operation and a modifier. The access operation takes no arguments and returns the object
to which the receiver is mapped to. The modifier takes one argument and changes the
mapping of the receiver to that argument. In NEREUS no standard convention exists, but
frequently we use names such as get_ and set_ for them. Association specification is
constructed by instantiating the scheme ASSOCIATION_ (Fig. 7).

Translating
Interfaces

Translating
OCL

Translating
relations

Reusable Association
Schemes Component Transformation rules

OCL/NEREUS

Nereus Nereus

Schemes (BOX_,
ASSOCIATION)

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 139

CLASS Name
IMPORTS TP1,..., TPm, T-attr1, T-attr2,..., Tattrn
INHERITS B1,B2,..., Bm
ASSOCIATES
<<Aggregation-E1>>,...,<<Aggregation-Em>>,
<< Composition-C1>>,...,<<CompositionCk>>,
<< Association-D1>>,...,<<Association-Dk>>
EFFECTIVE
TYPE Name
FUNCTIONS
createName : T-attr1 x ... x T-attrn -> Name
seti : Name x T-attri -> Name
geti: Name -> T-attri 1<=i<=n

DEFERRED
FUNCTIONS
meth1: Name x TPi1 x TPi2 x TPin -> TPij
...
methr : Name x TPr1 x TPr2 ... x TPin -> TPij
AXIOMS
{ t1,t1’: T-attr1; t2,t2’:T-attr2;...; tn,tn’:T-attrn}
geti(create(t1,t2,...,tn)) = ti 1 ≤ i ≤ n

seti (create (t1,t2,...,tn), ti’) = create (t1,t2,...ti’,...,tn)

END-CLASS

Fig. 6: The BOX_ Scheme

ASSOCIATION ___
IS __ [__: Class1; __:Class2; __: Role1;__:Role2;
__:Mult1; __:Mult2; __:Visibility1; __:Visibility2]
CONSTRAINED BY __
END

Fig. 7: The ASSOCIATION_ Scheme

Fig. 8 shows a simple class diagram P&M in UML and NEREUS. P&M introduces two
classes (Person and Meeting) and a bidirectional association between them. We have
meetings in which persons may participate. The NEREUS specification is built by
instantiating the scheme BOX_ and the scheme ASSOCIATION_ .

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Fig. 8:Translating interfaces and relations

 Person Meeting

 name: String Participates title:String
 affiliation: String 2..* * start:Date
 address: String participants meetings end:Date
 isConfirmed:Bool
 numMeeting():Nat
 numConfirmedMeeting(): Nat duration() :Time
 checkDate():Bool
 cancel()
 numConfirmedParticipants():Nat

 P & M

PACKAGE P&M
CLASS Person
IMPORTS String, Nat
ASSOCIATES <<Participates>>
EFFECTIVE
TYPE Person
GENERATED-BY Create_Person
FUNCTIONS
createPerson: String x String x String -> Person
name: Person -> String
affiliation: Person -> String
address: Person -> String
set-name: Person x String -> Person
set-affiliation : Person x String -> Person
set-address: Person x String -> Person
AXIOMS {p:Person; m: Meeting; s, s1,
s2, s3: String; pa: Participates}
name(createPerson(s1,s2, s3)) = s1
affiliation (createPerson (s1, s2, s3)) = s2
address (createPerson (s1, s2, s3)) = s3
set-name (createPerson (s1, s2, s3), s) =
createPerson (s,s2,s3))
set-affiliation (createPerson(s1,s2, s3), s) =
createPerson (s1, s, s3))
…
END-CLASS
CLASS Meeting
IMPORTS String, Date, Boolean, Time

ASSOCIATES <<Participates>>
EFFECTIVE
TYPE Meeting
GENERATED-BY createMeeting
FUNCTIONS
createMeeting:
String x Date x Date x Boolean -> Meeting
tittle: Meeting -> String
start : Meeting -> Date
end : Meeting -> Date
isConfirmed : Meeting -> Boolean
set-tittle: Meeting x String -> Meeting
set-start : Meeting x Date -> Meeting
set-end: Meeting x Date -> Meeting
set-isConfirmed: Meeting x Boolean -> Boolean
AXIOMS {s: String; d, d1,: Date; b:Boolean;…}
title(createMeeting (s, d, d1, b)) = s
start (createMeeting (s, d, d1, b)) = d
end (createMeeting (s, d, d1, b)) = d1
isConfirmed (createMeeting (s, d, d1, b)) = b
...
END-CLASS
ASSOCIATION Participates
IS Bidirectional-Set [Person: Class1; Meeting:
Class2; participates: Role1; meetings: Role2; *:
Mult1; * : Mult2; + : Visibility1; +: Visibility2]
END
END_PACKAGE

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 141

Fig. 9 shows an instantiation of Bidirectional-Set scheme:

RELATION CLASS Bidirectional-Set
-- Bidirectional /* to */ as Set
INHERITS BinaryAssociation [Class1 ->Person, Class2->Meeting]
IMPORTS Set_Person: Set [Person], Set_Meeting: Set[Meeting]
EFFECTIVE
OPS name, frozen , changeable , addOnly , getRole1, getRole2, getMult1,getMult2,
getVisibility1, getVisibility2, isRelated, isEmpty, rightCardinality, leftCardinality
create: Typename->Participates
addLink:Participates(b) x Person(p) x Meeting(m)-> Participates
 pre: not isRelated(a,p,m)
isRightLinked: Participates x Person -> Boolean
isLeftLinked: Participates x Meeting -> Boolean
getMeetings: Participates(a) x Person(p) -> Set_Meeting
 pre: isRightLinked(a,p)
getParticipants: Participates(a) x Meeting(m)-> Set_Person
 pre: isLeftLinked(a,m)
remove: Participates (a) x Person (p) x Meeting (m) -> Participates
 pre: isRelated(a,p,m)
∀a:Participates; p,p1: Person; m,m1:Meeting; t:TypeName
name(create(t))= t
name(add(a,p,m)) = name(a)
isEmpty (create(t))= True
isEmpty(addLink(a,p,m))= False
frozen (a) = False changeable (a)= True addOnly (a) = False
getRole1(a) = “ participants” getRole2 (a) = “meetings”
getMult1(a) = * getMult2(a) = *
getVisibility1(a) = + getVisibility2(a) = +
isRelated (create(t),p,m) = False
isRelated(addLink(a,p,m),p1,m1) = (p=p1 and m=m1) or isRelated (a,p1,m1)
isRightLinked (create(t),p) = False
isRightLinked (addLink (a,p,m),p1)= if p=p1 then True else isRightLinked(a,p1)
isLeftLinked(create(t),m)= False
isLeftLinked(addLink(a,p,m),m1)= if m=m1 then True else isLeftLinked(a,m1)
rightCardinality(create(t),p)= 0
rightCardinality(addLink(a,p,m),p1) =
 if p=p1 then 1 + rightCardinality(a,p1) else rightCardinality(a,p1)
leftCardinality(create(t),m) = 0
leftCardinality(addLink(a,p,m),m1)=
if m=m1 then 1+ leftCardinality(a,m1) else leftCardinality(a,m1)
getMeetings(addLink(a,p,m),p1)=
if p=p1 then including (getMeetings(a,p1), m) else getMeetings(a,p1)
getParticipants (addLink (a,p,m),m1) =
 if m=m1 then including (getParticipants(a,m1) , m) else getParticipants(a,m1)
remove(addLink(a,p,m),p1,m1) = if (p=p1 and m=m1) then a else remove(a,p1,m1)
END-RELATION

Fig. 9: The association Participates

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

From OCL to NEREUS

The Object Constraint Language (OCL) is a query and expression language for UML.
Recently, a new version of OCL, version 2.0, has been defined [OMG03].

Analyzing OCL specifications we can derive axioms that will be included in the
NEREUS specifications. Preconditions written in OCL are used to generate preconditions
in NEREUS. Postconditions and invariants allow us to generate axioms in NEREUS.

An operation can be specified in OCL by means of preconditions and postconditions
by the following syntax:

Typename :: OperationName (parameter1:Type1,...): ReturnType
pre:_ some expression of self and parameter1
post: Result = _ some function of self and parameter1

self can be used in the expression to refer to the object on which an operation was called,
and the name Result is the name of the returned object, if there is any. The names of the
parameter (Parameter1,...) can also be used in the expression.

The value of a property in a postcondition is the value upon completion of the
operation. To refer to the value of a property at the start of the operation, the property
name has to postfix with “@” followed by the keyword “pre”. Fig. 10 shows the OCL
specifications linked to the package P&M (Fig. 8).This example was analyzed in
[Hussmann99] and [Padawitz00].

context Meeting:: checkDate():Bool
post: result = self.participants->collect(meetings) ->forAll(m | m<> self and
m.isConfirmed implies (after(self.end,m.start) or after(m.end,self.start)))

context Meeting::isConfirmed ()
post: result= self.checkdate() and self.numConfirmedParticipants > 2

context Meeting :: duration () : Time
post: result = timeDifference (self.end, self.start)

context Person:: numMeeting (): Nat
post: result = self.meetings -> size

context Person :: numConfirmedMeeting () : Nat
post: result= self.meetings -> select (isConfirmed) -> size

Fig. 10: OCL Specifications of P&M

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 143

The transformation process of OCL specifications to NEREUS is supported by a system
of transformation rules. Fig. 11 shows how to map some OCL expressions onto
NEREUS.

 OCL NEREUS

M-1 v (variable) v (variable)
M-2

Type -> OperationName(parameter1:Type1,...):
Rtype

OperationName:TypexType1x...-> Rtype

M-3 v. operation(v’) Operation (v,v’)
M-4 v->operation (v’) Operation(v,v’)
M-5 v.attribute attribute (v)
M-6 context A

object.rolename

get_ (A, object)

M-7 e.op op (Translate NEREUS (e))

Let TranslateNEREUS be functions that translate logical
expressions of OCL into first-order formalae in NEREUS.

M-8 collection-> op (v:Elem/ |boolean-expr-with-v)

op ::=select| forAll| reject| exists

LOCAL
OPS
f: Elem -> Boolean
∀ v : Elem
f (v)= Translate NEREUS (boolean-expr-with-v)
WITHIN
op (collection, f)
END-LOCAL

opv (collection, [f(v)]) Equivalent concise notation

M-9 collection-> collect (v:Elem | expr-with-v)

expr-with-v : S

LOCAL
OPS
f: Elem -> S
∀ v : Elem
f (v)= Translate NEREUS (expr-with-v)
WITHIN
collect (collection, f)
END-LOCAL

collectv (collection, [f(v)])

M-10 c->iterate (v:Elem; acc:Type = exp |

expr-with-v-and-acc)

LOCAL
OPS
f: Elem x Type -> Type
base: -> Type
∀ v : Elem; acc: Type
f(v,acc)=TranslateNEREUS(expr-with-v-and-acc)
base = Translate NEREUS (exp)
WITHIN
iterate (collection, f, base)
END-LOCAL

Fig. 11: Mapping basic expressions OCL

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

The following rules (Fig. 12) are used to generate the axioms for the Person and Meeting
classes (Fig. 13).

 OCL NEREUS
Rule 1
T → Op (<parameterList>) : ReturnType
post: expr

OPS
TranslateNEREUS (T → Op (<parameterList>) :
ReturnType)
 ∀ t : T, ...
 TranslateNEREUS (exp)

Rule 2
T-> forAll|exists|select |reject
(v :Type| boolean-expr-with-v)

 forAllv|existsv|selectv|rejectv (TranslateNEREUS (T),
TranslateNEREUS (boolean-expr-with-v)

Rule 3
T -> collect (v :type|v.property)

collectv (Translate NEREUS (T),
Translate NEREUS (v.property))

Rule 4
 T ->iterate(e:Elem; acc:Type = expr
 | Boolean-expr-with-e)

iteratev (TranslateNEREUS (T),
TranslateNEREUS(boolean-expr-with-e),
TranslateNEREUS(expr))

Fig. 12: Transformation Rules

CLASS Person
...
∀p:Person; s,s’: String; Pa: Participates
numConfirmedMeetings (p) =
size(selectm (getMeetings(Pa,p), [isConfirmed (m)]) Rule 1, 2
numMeetings (p) = size (getMeetings (Pa, p)) Reglas 1
END-CLASS

CLASS Meeting

∀m,m1:Meeting; s,s’:String; d,d’,d1,d1’:Date; b,b’:Boolean; Pa:Participates

duration (m) = timeDifference (end(m),start(m)) Rule 1
isConfirmed (cancel(m)) = False
isConfirmed (m)=checkDate(m) and NumConfirmedParticipants (m) > 2 Rule 1
checkDate(m) = Rules 1, 2, 3
forAllme (collectp (getParticipants(Pa,m), [getMeetings (Pa, p)]), [consistent (m,me)])
consistent(m,m1)= not (isConfirmed(m1)) or (end(m) < start(m1) or end(m1) < start(m))
 NumConfirmedParticipants (m) = size (getParticipants(Pa,m))
END-CLASS

Fig. 13: Translating OCL to NEREUS

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 145

6 FROM NEREUS TO EIFFEL

This section discusses the main steps for transforming NEREUS constructions into Eiffel
(Fig. 14). The Eiffel code is constructed gradually. First, associations and operation
signature are translated. The transformation is supported by reusable components. From
OCL and NEREUS specifications it is possible to construct contracts on Eiffel and /or
feature implementations by applying heuristics.

 NEREUS EIFFEL

Fig. 14: The NEREUS/Eiffel phase

Mapping Classes and Associations

For generating code from some NEREUS specification we need transformation rules. For
each class in NEREUS an Eiffel class is built.

If a NEREUS class is incomplete, i.e., it contains sorts and operations in the clause
DEFERRED, the keyword class in Eiffel is preceded by the keyword deferred. NEREUS
and Eiffel have the same syntax for declaring class parameters. Then, this transformation
is reduced to a trivial translation.

The relation introduced in NEREUS using the clause IMPORTS will be translated
into a client relation in Eiffel. The relation expressed through the keyword INHERITS in
NEREUS will become an inheritance relation in Eiffel. This provides the mechanism to
carry out modifications on the inherited classes that will allow adaptation. Also,
subsortings will become inheritance relations.

Associations are transformed by instantiating schemes that exist in the reusable
component Association. For every ASSOCIATES clause, a scheme in the
implementation level of the association component will be selected and instantiated. In
these cases, the implementation level schemes suggest including reference attributes in
the classes or introducing an intermediate class or container. Notice that the
transformation of an association does not necessarily imply the existence of an associated
class in the generated code as an efficient implementation can suggest including reference
attributes in the involved classes.

The scheme shown in Fig. 15 may be used to implement the Participates association
(Fig. 8).

 Translating
classes and
associations

Constructing
contracts/
implementations

EIFFEL

 Reusable Schemes Association Contracts Impl.
Heuristics Heuristics.

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

class Class1
...
feature {NONE}
-- data members for association Association_Name
rol2: UnboundedCollectionbyReference [Class2];
mult_rol1: MULTIPLICITY;
-- operations for association Association_Name
get_mult_rol2 : MULTIPLICITY is
 do
 Result:= mult_rol2
 end;
get_frozen_rol2 : BOOLEAN is
 do
 Result:= result_frozen1
 end;
add_only_rol2 : BOOLEAN is
 do
 Result:= result_add_only1
 end;
changeable_rol2 : BOOLEAN is
 do
 Result:= result_changeable1
 end;
cardinality_rol2 : INTEGER is
 do
 Result:= rol2.count
 end;
set_ rol2 (
d:UnboundedCollectionbyReference [Class2]) is
require
get_mult_rol2.get_upper_bound >= d.count
 do
 rol2 := d
 end;
get_ rol2 :
UnboundedCollectionbyReference[Class2] is
 do
 Result := rol2
 end;
remove_rol2 (e: Class2) is
require
is-related_rol2 (e) and not get_frozen_rol2 and
not add-only_rol2
 do
 rol2. prune (e)
 end;
add_rol2 (e: Class2) is
require is-related_rol2 (e) and not get_frozen_rol2
cardinality_rol2get_mult_rol2.get_upper_bound

 do
 rol2. put (e)
 end;
add_rol2 (e:Class2) is
require
is-related_rol2 (e) and
multiplicity_rol2get_mult_rol2.get_upper_bound and
not get_frozen_rol2
 do
 rol2. put (e)
 end;
 is_related_rol2 (e: Class2): BOOLEAN is
 do
 Result:=rol2. has (e)
 end;
invariant
mult_ rol2.get_lower_bound = LowerBound;
mult_ rol2.get_upper_bound = Upper Bound;
rol2.count >= LowerBound;
rol2.count <= Upper Bound
end – class Class1

class Class2
...
feature {NONE}
-- data members for association Association_Name
rol1: UnbondedCollectionby Reference [Class1];
mult_rol1: MULTIPLICITY;
-- operations for association Association_Name
...
add_rol1(e: Class1) is
require
is-related_rol1 (e) and and not get_frozen_rol1 and
 multiplicity_rol1get_mult_rol1.get_upper_bound
 do
 rol1. put (e)
 end;
 is_related_rol1 (e: Class2): BOOLEAN is
 do
 Result:=rol1. has (e)
 end;
invariant
mult_ rol1.get_lower_bound = LowerBound;
mult_ rol1.get_upper_bound = Upper Bound;
rol1.count >= LowerBound;
rol1.count <= Upper Bound
end – class Class2

Fig. 15: The Bidirectional_ Set*..* Scheme

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 147

New code can be added by a textual substitution in the form
[Class1: Person; Class2: Meeting; rol1: participants; rol2: meetings;

UnboundedCollectionbyReference: UnboundedSetbyReference; result_frozen1: false;
result_add_only1: false,......, LowerBound1:2; UpperBound: *; ..]

For the association Participates the following will be in the code:
• For each class there is a private attribute in the opposite class
• The type of the newly created attribute is a Set and it will have corresponding get_

and set_ operations.
Next, from the operation signatures, the interfaces for the features of the Eiffel class are
generated. The translation of each operation has a different treatment according to the
type of feature to which it makes reference (functions, procedures, variables, or
constants). It should also be considered that of all the domains of an operation, the first
one that coincides with the sort of the specified class is the object Current in Eiffel and it
should be eliminated from the list of parameters of the resultant feature. Second order
functionalities of collections are translated respecting the syntax of the Eiffel schemes for
Collection classes.

Constructing Eiffel contracts and implementations

Eiffel provides an assertion language. Assertions are Boolean expressions of semantic
properties of the classes. They can play the following roles:

• Precondition: Expresses the requirements that the client must satisfy to call a
routine.

• Postcondition: Expresses the conditions that the routine guarantees on return.
• Class invariant: Expresses the requirements that every object of the class must

satisfy after its creation.
The expression of the form old exp denotes the value that an attribute or expression exp
had on routine entry. Current refers to the target object itself and Result is the name of
the returned object, if there is any.

Let TranslateEiffel be a function that expresses the translation of a NEREUS term to
Eiffel. TranslateEiffel op(es,e2,e3,...) (where es, e2, e3 ... are well-formed non-ground
terms and es is a term of the sort of interest) can be given in the following inductive way:

TranslateEiffel op(es, e2, e3 ...) =
TranslateEiffel es.op (TranslateEiffele2, TranslateEiffel e3....)

Preconditions and axioms of a function written in NEREUS are used to generate
preconditions and postconditions for routines and invariants for Eiffel classes.

A NEREUS precondition, which is a well-formed term defined over functions and
constants of the global environment classes, is automatically translated to Eiffel

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

precondition. Axioms are translated to Eiffel post-conditions, invariants and
implementations. We define two heuristics to obtain postconditions and /or
implementations in Eiffel:

Invariant heuristics: It is possible to derive an invariant if it can establish a
correspondence between the functions in an axiom A and the class attributes that only
depend on the state of the object (that is to say, all the terms of the interest sort are
variables). Then, TranslateEiffel (A) is the Eiffel invariant.

 NEREUS EIFFEL
CLASS Bounded-Sequence [Elem]
...
∀ s: Bounded-Sequence; e: Elem
full (s) = (capacity (s) = count (s))
empty (s) = (count(s) =0)

class BOUNDED-Sequence [G]
...
capacity:INTEGER
count: INTEGER
full: BOOLEAN
empty: BOOLEAN
invariant
full = (count = capacity)
empty = (count = 0)

CLASS Set [Elem]
....
∀ s: Set; e: Elem
 Current
has (s,e) implies count(extend (s, e)) =count (s)
 old
not has (s,e) implies count(extend (s, e)) =
 count (s) + 1

class SET [G]

...
extend (e : G)
....
ensure
old has (e) implies count = old count
not old has (e) implies (count = old count + 1)

CLASS Set [Elem]
....
∀s: Set; e: Elem
has (s, e) => not empty (s)
 Result

class SET[G]
....
has (e : G) :BOOLEAN
...
ensure
Result implies not empty

CLASS Meeting
...
∀ p: Person
numMeetings (p)= size(getParticipates (p))

class Meeting
...
numMeeting (p:PERSON)
 do
 Result := meetings.size()
 end

Fig. 16: From axioms to contracts/implementations in Eiffel

Postcondition / implementation heuristics: A postcondition can automatically be
generated from one axiom if a term e(<list-of-arguments>) which is associated to an
operation op, can be distinguished within itself in such a way that any other term of the
axiom depends upon the <list-of-arguments> or constants. Then, the postcondition will
associate itself with the feature linked to the term and will obviously depend only upon
the previous state of the method execution, upon the state after its execution and upon the
method arguments. If the selected term e is linked with a value belonging to the sort of

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 149

interest, it is associated with Current and the sort then it is associated to old. If the
selected term e is linked with a value the different sort, it is associated with Result. If the
resulting expression is in the form Result =… it is possible to generate the body of the
feature.The programmer can also incorporate assertions that reflect purely
implementation aspects. Fig 16 shows examples of transformations.

For simple operations the body of the feature could be generated from OCL post-
conditions but frequently the body of the feature must be written. In that case, generating
code for the pre and post-conditions ensures that the code conforms to the specification in
the UML diagrams.

In this article we show a small example of applying the NEREUS process. In more
complex and realistic examples the code might be generated starting from components of
design patterns[Gamma95].

7 CONCLUSIONS

In this article we describe foundations for MDA-based forward engineering. We define
the NEREUS language to cope with concepts of UML metamodel and a system of
transformation rules to translate OCL to NEREUS. Then, the UML metamodel can be
formalized in NEREUS. We define the semantics of NEREUS by giving a precise formal
meaning to each of the constructions of the NEREUS specification in terms of the CASL
language. However, NEREUS is an intermediate notation open to many other formal
languages. A rigorous semantics clarifies the intended meaning of the UML/OCL
metamodel, ensures that no corner cases are left out, and provides a reference for
implementation.

UML/OCL class diagrams are used to generate NEREUS specifications, which in
turn are used to generate the code. NEREUS allows us to keep a trace of structure of
UML models in the specification structure that will make easier to maintain consistency
between the various levels when the system evolves. The process is based on the
adaptation of reusable components that are defined in a framework that fits MDA.

All the UML model information (classes, associations and OCL specifications) are
overturned in specifications having implementation implications. In particular, we show
how to translate different kinds of UML associations to Eiffel. Also, we describe how to
construct assertions and code from algebraic specifications.

The proposed transformations preserve the integrity between specifications and code.
Modifications at specification levels must be applied again to produce a new
implementation. Most of the transformations can be undone, which provides great
flexibility in code generation process supported by the existing UML CASE tools.

The transformational approach has the advantage that it allows the automatic
recording of the design decisions made during the code generation from the UML
diagrams. Following this approach we can use the transformations and apply them
backward to reverse engineer code to a UML diagram.

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

The transformation of algebraic specifications to Eiffel code was prototyped
[Favre98]. Later works introduced an integration of the previous result with UML. The
OCL/NEREUS transformation rules were prototyped [Favre00; Favre03a]. The obtained
results show the feasibility of our approach.

As a perspective to this work, we foresee the integration of our results in the existing
UML CASE tools. Also, we foresee to use these foundations to define rigorous round-trip
processes, which support working with design patterns. UML metamodel formalization in
NEREUS could be used to establish the notion of behavioral equivalence that is
fundamental for refactoring.

REFERENCES

[Abrial96] J. Abrial: The B Book: Assignning Programs to Meanings. Cambridge
University Press, 1996.

[Alencar 91] A. Alencar, J. Goguen: “OOZE: An Object-oriented Z Environment”,
Proceedings of the European Conference on Object-oriented
Programming, ECOOP 91, Lecture Notes in Computer Science 512, pp.
180-199, Springer-Verlag, 1991.

[Ahrendt02] W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hähnle, W. Menzel, W.
Mostowski, P. Schmitt: “The KeY System: Integrating Object-Oriented
Design and Formal Methods”, Proceedings of FASE 2002 ETAPS 02,
Grenoble, France. Available at http://i12www.ira.uka.de/~projekt/index.html,
2002.

[Astesiano02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D.
Sannella; A. Tarlecki: “CASL: The Common Algebraic Specification
Language”, Theoretical Computer Science, 286(2), pp.153-196, 2002.

[Barbier03] F. Barbier, B. Henderson-Sellers, A. Le Parc-Lacayrelle, J. Bruel:
“Formalization of the Whole-Part Relationship in the Unified Modeling
Language”, IEEE Transactions on Software Engineering, Vol. 29, no. 5,
2003

[Bordeau95] R. Bordeau, B. Cheng: “A Formal Semantic for Object Model Diagrams”,
IEEE Transactions on Software Engineering, Vol. 21, No 10,
October,1995.

[Breu97] R. Breu, R. Grosu, F. Huber, B. Rumpe, W. Schwerin : “Towards a Precise
Semantics for Object-Oriented Modeling Techniques”, Proceedings of the
ECOOP’97, Lecture Notes in Computer Science 1241, pp. 314-364,
Springer-Verlag, 1997.

http://i12www.ira.uka.de/~projekt/index.html

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 151

[Bruel98] J. Bruel, R. France: “Transforming UML Models to Formal
Specifications”, Proc. of <<UML>> 98- Beyond the notation, Lecture
Notes in Computer science 1618, Springer-Verlag, 1998.

[Case03] UML Tools: Available www.objectsbydesign.com/tools

[Evans98] A. Evans, R. France, K. Lano, B. Rumpe: “The UML as a Formal
Modeling Notation”, Computer Standards & Interfaces, 19, 1998.

[Favre98] L. Favre: “Object-Oriented Reuse through Algebraic Specifications”,
Technology of Object-Oriented Languages and Systems, Tools 28 (C.
Mingins;B. Meyer eds.), pp. 101-112, IEEE Computer Society, 1998.

[Favre00] L. Favre, L. Martínez, C. Pereira: "Transforming UML Static Models into
Object-Oriented Code". Technology of Object Oriented Languages and
Systems, TOOLS 37 (eds. B. Henderson-Sellers, B. Meyer), IEEE
Computer Press, pp 170-181, Australia, 2000.

[Favre01] L. Favre: “A Formal Mapping between UML Static Models and Algebraic
Specifications”. Practical UML-Based Rigorous Development Methods-
Countering or Integrating the eXtremist (A. Evans, R. France, A. Moreira,
B. Rumpe eds.), Lecture Notes in Informatics (P 7) SEW, pp. 113-127, GI
Edition Konner Kollen-Verlag, Alemania, 2001.

[Favre03a] L. Favre, L. Martínez, C. Pereira: “Forward Engineering and UML: From
UML Static Models to Eiffel Code”. UML and the Unified Process
(Liliana Favre editor) Chapter IX. pp. 199-217, IRM Press, USA, 2003.

[Favre03b] L. Favre: The Nereus Language, Technical Report, INTIA, Universidad
Nacional del Centro, Argentina, 2003.

[France97] R. France, J. Bruel, M. Larrondo-Petrie: “An Integrated Object-Oriented
and Formal Modeling Environment”, JOOP, November-December, 1997

[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements
of Reusable Object Oriented Software, Addison Wesley, Reading (Mass),
1995.

[Gogolla97] M. Gogolla, M. Richters: ”On Constraints and Queries in UML”,
Proceedings UML’97 Workshop The Unified Modeling Language-
Technical Aspects and Applications. Physica-Verlag, Heidelberg, pp. 109-
121, 1997.

[Gogolla02] M. Gogolla, B. Henderson-Sellers: “Formal Analysis of UML Stereotypes
within the UML Metamodel”, Proceedings of <<UML>> 2002, 5th Int.
Conf. Unified Modeling Language (S. Cook; H. Hussmann; J.M. Jezequel,
eds.), Lecture Notes in Computer Science, Springer-Verlag, 2002

[Hussmann99] H. Hussmann, M. Cerioli, G. Reggio, F. Tort: Abstract Data Types and
UML Models, Report DISI-TR-99-15, University of Genova, 1999.

http://www.objectsbydesign.com/tools

FOUNDATIONS FOR MDA-BASED FORWARD ENGINEERING

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

[Kim99] S. Kim, D. Carrington: “Formalizing the UML Class Diagram using
OBJECT-Z”, Proceedings of UML 99, Lecture Notes in Computer
Science1723, pp. 83-98, Springer-Verlag, 1999.

[Kim02] S. Kim, D. Carrington: “A Formal Model of the UML Metamodel: The
UML State Machine and Its Integrity Constraints”, Lecture Notes in
Computer science 2272, pp. 497, Springer-Verlag, 2002.

[Kleppe 03] Anneke Kleppe, Jos Warmer, Wim Bast: MDA Explained. The Model
Driven Architecture: Practice and Promise, Addison Wesley, April 2003.

[Lano 91] K. Lano: “Z++, An Object-Oriented Extension to Z”, Z User Workshop,
Springer Workshops in Computing, pp.151-172, 1991.

[Leavens96] G. Leavens: “An Overview of Larch/C++: Behavioral Specification for
C++ Modules”, Specification of Behavioral Semantics in Object-Oriented
Information Modeling, Kluwer Academic Publishers, Chapter 8, pp. 121-
142, 1996.

[Leavens02] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby: JML Reference
Manual Draft Revision 1.1, Available at: www.cs.iastate.edu/~leavens, 2002

[McUmber01] W. McUmber, B. Cheng: “A General Framework for Formalizing UML
with Formal Languages”, IEEE International Conference on Software
Engineering (ICSE01), Canada, 2001.

[Meyer92] B. Meyer Eiffel: The Language. Prentice Hall, 1992.

[OMG 03] OMG (eds): Unified Modeling Language Specification: Version 1.5,
2003,. Available at www.omg.org

[Overgaard98] G. Overgaard: “A Formal Approach to Relationships in the Unified
Modeling Language”, Proceedings of Workshop on Precise Semantic of
Modeling Notations, International Conference on Software Engineering,
ICSE’98, Japan, 1998.

[Padawitz00] P. Padawitz: “Swinging UML: how to Make Class Diagrams and State
Machines Amenable to constraint Solving and proving” Proc. of
<<UML>> 2000-The Unified Modeling Language . Lecture Notes in
Computer Science 1939, pp 265-277, Springer, 2000.

[Paige02] R. Paige, L. Kaminskaya, J. Ostroff: “BON-CASE: An Extensible CASE
Tool for Formal Specification and Reasoning”, Journal of Object
Technology (JOT) vol 1, No 3, Special Issue: TOOLS USA 2002
Proceedings, pp. 77-96, 2002.

[Rapanotti 92] L. Rapanotti, A. Socorro. Introducing FOOPS. Report PRG-TR-28-92,
Programming Research Group, Oxford University Computing Laboratory,
1992.

http://www.cs.iastate.edu/~leavens

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 153

[Smith 00] G. Smith: The Object-Z Specification Language. Advances in Formal
Methods, Kluwer Academic Publishers, 2000.

[Reggio99] G. Reggio, E. Astesiano, C. Choppy: CASL-LTL: A CASL extension for
dynamic systems. Available at ftp://ftp.disi.unige.it/person/ReggioG, 1999.

[Reggio01] G. Reggio, M. Cerioli, E. Astesiano: “Towards a Rigorous Semantics of
UML Supporting its Multiview Approach”, Proceedings of Fundamental
Approaches to Software Engineering (FASE 2001). Lecture Notes in
Computer Science 2029, pp. 171, Springer-Verlag, 2001.

[Snook00] C. Snook, M. Butler: Tool-Supported Use of UML for Constructing B
Specifications, Technical Report, Department of Electronics and Computer
Science, University of Southampton, United Kingdom, 2000.

[Warmer 03] Jos Warmer, Anneke Kleppe: The Object Constraint Language. Second
Edition. Getting your Models Ready for MDA, Addison Wesley, August
2003.

[Ziemann03] P. Ziemann, M. Gogolla: “Validating OCL Specifications with the USE
Tool- An Example Based on the BART CASE Study”, Electronic Notes in
Theoretical Computer Science 80, 2003.

About the author
Liliana Favre is a professor of Computer Science at Computer Science Department in
the Universidad Nacional del Centro, Argentina. She is researcher of CIC (Comisión de
Investigaciones Científicas de la Provincia de Buenos Aires). Currently, she is research
leader of the “Software Technology” group at Universidad Nacional del Centro. Her
current research interests are focused on rigorous software and system engineering
mainly on the integration of formal techniques with UML. She can be reached at
lfavre@arnet.com.ar.

ftp://ftp.disi.unige.it/person/ReggioG
mailto:lfavre@arnet.com.ar

