
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

Cite this article as follows: Dragan Djuric, Dragan Gasevic, Vladan Devedzic: “Ontology Modeling
and MDA”, in Journal of Object Technology, vol. 4, no. 1, January-February 2005, pp. 109-128.
http://www.jot.fm/issues/issue_2005_01/article3

Ontology Modeling and MDA
Dragan Djurić, Dragan Gašević, Vladan Devedžić, University of Belgrade,
Serbia and Montenegro

Abstract
The paper presents Ontology Definition Metamodel (ODM) that enables using Model
Driven Architecture (MDA) standards in ontological engineering. Other similar
metamodels are based on ontology representation languages, such as RDF(S),
DAML+OIL, etc. However, none of these other solutions uses the recent W3C effort –
The Web Ontology Language (OWL). In our approach, we firstly define the ODM place
in the context of the MDA four-layer architecture and identify the main OWL concepts.
Then, we define ODM using Meta-Object Facility (MOF). The relations between similar
MOF and OWL concepts are discussed in order to show their differences (e.g. MOF or
UML Class and OWL Class). The proposed ODM is a good starting point for defining an
OWL-based UML profile that will enable using the well-known UML notation in
ontological engineering more extensively.

1 INTRODUCTION

The Semantic Web and its XML-based languages are main directions of the future Web
development. Domain ontologies [Gruber93] are the most important part of the Semantic
Web applications. They are formal organization of domain knowledge, and in that way
enable knowledge sharing between different knowledge-base applications. Artificial
intelligence (AI) techniques are used for ontology creation, but those techniques are more
related to research laboratories, and they are unknown to wider software engineering
population.

In order to overcome the gap between software engineering practitioners and AI
techniques, there are a few proposals for UML use in ontology development
[Cranefield01]. But, UML itself does not satisfy needs for representation of ontology
concepts that are borrowed from the Descriptive Logic, and that are included in Semantic
Web ontology languages (e.g. RDF, RDF Schema, OWL, etc.). The OMG’s Model
Driven Architecture (MDA) concept has ability to create (using metamodeling) a family
of languages [Duddy02] that are defined in the similar way like the UML is. Accordingly,
in this paper, the authors define metamodel for ontology modeling language. This
metamodel is defined using Meta-Object Facility (MOF), and is based on the Web
Ontology Language (OWL).

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/article3

ONTOLOGY MODELING AND MDA

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

The overview of the Semantic Web languages and OWL is given in the next section,
while the description of the MDA and MOF is in the section three. In the section four we
give a framework for our approach of the ontology language metamodel in the MDA
context. The ontology metamodel definition in detail is shown in the section five. Basing
on the paper appendix, we give summary of the relations between OWL (as well as RDF
and RDF Schema), ODM concepts, and Ontology UML Profile. The last section contains
final conclusions. This work is a part of Good-Old-AI (http://goodoldai.org.yu) effort for
developing AIR - a platform for intelligent information systems.

2 AN OVERVIEW OF THE SEMANTIC WEB AND THE WEB
ONTOLOGY LANGUAGE

Before the expansion of the World Wide Web, there had been taken many different
approaches to represent knowledge or create taxonomies. No matter how these
approaches were good or bad, there was a significant problem – their interoperability. All
these solutions were isolated, limited to single applications or to a homogenous group of
applications, and oriented to a small domain. With the introduction of World Wide Web
and, later, XML technologies, the infrastructure for sharing data in a common way
emerged. However, current Web is only syntactically interoperable; it is designed for
direct human processing of the meaning of data.

The next step in Web evolution is the Semantic Web [Berners99], which will enable
machine-understandable data to be shared across the Net. The Semantic Web will be
powered by metadata, described by ontologies that will give machine-understandable
meaning to its data. Ontology is one of the most important concepts in knowledge
representation. It can be generally defined as shared formal conceptualization of
particular domain [Gruber93]. Ontologies are essential in the knowledge management
systems, agent systems, e-commerce… These ontologies must be interconnectable
enough to enable each ontology to be merged with others, creating one big encyclopedia
that will be understandable to software agents without direct human interference. Thus,
The World Wide Web and XML will provide the ontologies with interoperability, and
these interoperable ontologies will, in return, facilitate Web that can “know” something.

Naturally, achieving such goal is a challenging task and path to Semantic Web will
be longer than World Wide Web progress path was. The technology that has to enable
such Web must be powerful enough and intelligent enough to accomplish inference about
enormous quantities of data and yet be affordable and easy enough to use. That means
that both powerful infrastructure and easy-to-use tools must be provided to potential
users.

Common data interoperability in present applications is best achieved by using
XML. XML (eXtensible Markup Language) is a meta-language used to define other
languages. It describes a class of data objects called XML documents and partially
describes the behavior of computer programs which process them [Brickley00]. XML
defines neither the tags nor grammar, which makes it completely extensible. It only

http://goodoldai.org.yu

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

requires that document must be well-formed in a tree structure, so it could be parsed by
standard XML tools. In addition, the document can be structured to be valid. A valid
document is one that conforms to its XML Schema, which defines grammar and tag set
for specific XML formatting.

Semantic Web architecture is a functional, non-fixed architecture [Berners98].
Barnes-Lee defined three distinct levels that incrementally introduce expressive
primitives: metadata layer, schema layer and logical layer [Harmelen03].

While XML with XML Schema enables common, well-defined and easy processable
syntax, it tells nothing about semantics of data it describes. That means that some
standard must be built on top of XML that will describe semantics of data. The first step
in that direction is Resource Description Framework (RDF), a general model in metadata
layer and Resource Description Framework Schema (RDFS), language at schema layer.
The RDF data model defines a simple model for describing interrelationships among
resources in terms of named properties and values. RDF properties may be thought of as
attributes of resources and in this sense correspond to traditional attribute-value pairs.
RDF properties also represent relationships between resources. As such, the RDF data
model can therefore resemble an entity-relationship diagram [Berners98]. The RDF
Schema declares these properties, and provides mechanisms for defining the relationships
between these properties and other resources.

To enable reasoning services for the Semantic Web, another layer is needed on top
of RDF(S). That (logical) layer introduces ontology languages, that are based on meta-
modeling architecture defined in lower layer. It introduces a richer set of modeling
primitives which can be mapped to Descriptive Logic. This enables using of tools with
generic reasoning support, independent of specific problem domain. Common examples
of such languages are OIL and DAML. The newest emerging standard is W3C’s OWL.

The Web Ontology Language (OWL) is a semantic markup language for publishing
and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary
extension of RDF and is derived from the DAML+OIL Web ontology language
[Miller03]. The place of OWL in described architecture is shown on Figure 1.

Figure 1. OWL in the Semantic Web architecture

Since World Wide Web is almost unconstrained, OWL must provide open world
assumption and allow importing and mixing various ontologies. Some of them may be

ONTOLOGY MODELING AND MDA

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

even contradictory, but new information can never retract existing information, it can be
only added to it. In order to provide such capabilities and, in the same time, to support
calculations and reasoning in finite time with tools that can be built on existing or soon
available technologies, OWL introduces three increasingly expressive sublanguages for
various purposes: OWL Full, OWL DL and OWL Lite.

OWL Full provides maximal expressiveness and the syntactic freedom of RDF, but
doesn’t provide any computational guarantees. The main characteristic of OWL Full in
comparison to OWL DL and OWL Lite is that one class, which is, by definition, a
collection of individuals, can be the individual itself, like in RDF(S). It is obvious that
this approach can lead to models that need infinite time to compute.

OWL DL (Descriptive Logic) enables maximal expressiveness and guarantees
computational completeness (all entailments are guaranteed to be computed) and
decidability (all computations will finish in finite time). It includes all OWL Full
constructs, and appends some constraints. The most significant constraints are that class
cannot be an individual or property, or that property cannot be an individual or class.
OWL DL has good formal background since it is contrived on descriptive logic.

OWL Lite is intended mostly to support classification hierarchy and simple
constraint features. It is good starting point for tool builders. OWL Lite can be useful in
migrations of existing taxonomies to OWL.

OWL Full is an extension of OWL DL, which is an extension of OWL Lite, thus
every OWL Lite ontology is OWL DL and OWL Full ontology and every OWL DL
ontology is OWL Full ontology.

3 AN OVERVIEW OF MODEL DRIVEN ARCHITECTURE AND
META-OBJECT FACILITY

If we look back to the history of software development, we can see a notable increase of
models abstraction. Modeling becomes more and more separated from underlying
platform, making models of real world more reusable and easy to create by domain
experts, requiring less knowledge of specific computer systems. This places software
modeling closer to knowledge acquiring in knowledge engineering and vice versa.
Current stage in that evolution is OMG’s Model Driven Architecture [MOF02].

MDA defines three viewpoints (levels of abstraction) from which some system can
be seen. From a chosen viewpoint, a representation of a given system (viewpoint model)
can be defined. These models are (each corresponding to the viewpoint with the same
name): Computation Independent Model (CIM), Platform Independent Model (PIM) and
Platform Specific Model (PSM). CIM is a view of a system that does not show the details
of a system structure. In software engineering it is also known as a domain model, which
is concerned by domain experts. It is similar to a concept of ontology. PIM is model that
is computation dependent, but it is not aware of specific computer platform details. In
other words, it is targeted for technology-neutral virtual machine. Specification of

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

complete computer system is completed with PSM. The goal is to move human work
from PSM towards CIM and PIM and let the specific platform detail implementations be
generated as much as possible by automated tools which will do the transformation from
PIM to PSM.

MDA is based on the four-layer metamodeling architecture, and several OMG’s
complementary standards; which is shown in figure 2. These standards are Meta-Object
Facility (MOF) [Booch98], Unified Modeling Language (UML) [Booch98] and XML
Metadata Interchange (XMI) [XMI02]. Layers are: meta-metamodel (M3) layer,
metamodel (M2) layer, model (M1) layer and instance (M0) layer.

Figure 2. MDA four-layer MOF-based metadata architecture

On the top of this architecture is the meta-metamodel (MOF). It defines an abstract
language and framework for specifying, constructing and managing technology neutral
metamodels. It is the foundation for defining any modeling language; such as UML or
even MOF itself. MOF also defines a framework for implementing repositories that hold
metadata (e.g. models) described by metamodels [Booch98]. The main aim of having
four layers with common meta-metamodel is to support multiple metamodels and models;
to enable their extensibility, integration and generic model and metamodel management.

All metamodels, standard or custom, defined by MOF are positioned on the M2
layer. One of these is UML, a graphical modeling language for specifying, visualizing
and documenting software systems. With UML profiles, basic UML concepts (Class,

ONTOLOGY MODELING AND MDA

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Association, etc.) can be extended with new concepts (stereotypes) and adapted to
specific modeling needs. The models of the real world, represented by concepts defined
in the corresponding metamodel at M2 layer (e.g. UML metamodel) are on M1 layer.
Finally, at M0 layer, are things from the real world. An example would be: MOF Class
(at M3) is used to define UML Class (M2), which is used to define model: Person (UML
Class) and Tom, Dick and Harry (UML Objects) (M1), which represents reality (M0).

Another standard that is in base of this architecture is XMI, a standard that defines
mapping from MOF-defined metamodels to XML documents and Schemas. XML, which
has good software tools support, gives to XMI strength to enable solid shareability of
meta-metamodel, metamodels and models.

Present software tools support for MDA is concentrated primarily on UML as a
graphical notation, with no concern to metamodeling layers [Gasevic03]. UML CASE
tools (e.g. Rational Rose, Borland Together, Magic Draw, Poseidon for UML, etc.) have
good support for modeling at M1 layer and for programming languages code generation.
Using appropriate UML profile they can generate databases, XML Schemas, EJBs etc.
But, they lack support for M2 and M3 layers as well as unified serialization to XMI. It is
expected from future tools to support UML 2, which will enable common XMI
representation of UML models, and MOF-compliant model repositories at M2 and M3
layers, which will support metamodeling.

4 THE ONTOLOGY MODELING ARCHITECTURE

An overview

To be widely adopted by users and to succeed in real-world applications, knowledge
engineering and ontology modeling must catch up with mainstream software trends. It
will provide a good support in software tools and ease the integration with existing or
upcoming software tools and applications, which will add values to both sides. To be
employed in common applications, software knowledge management must be taken out
of laboratories and isolated high-tech applications and put closer to ordinary developers.
This issue has been addressed in more details in Cranefield’s papers [Cranefield01].

MDA and its four-layer architecture provides a solid basis for defining metamodels
of any modeling language, so it is the straight choice to define an ontology-modeling
language in MOF. Such language can utilize MDA’s support in modeling tools, model
management and interoperability with other MOF-defined metamodels. Present software
tools do not implement many of the concepts that are the basis of MDA. However, most
of these applications, which are mostly oriented to the UML and M1 layer, are expected
to be enhanced in the next few years to support MDA.

Currently, there is a RFP (Request for Proposal) within OMG that tries to define a
suitable language for modeling Semantic Web ontology languages in the context of MDA
[ODMRFP03]. According to this RFP the authors give their proposal of such

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

architecture. In our approach of ontology modeling in the scope of MDA, which is shown
in Figure 3, several specifications should be defined:

• Ontology Definition Metamodel (ODM)
• Ontology UML Profile – a UML Profile that supports UML notation for ontology

definition
• Two-way mappings between OWL and ODM, ODM and Ontology UML Profile

and from Ontology UML Profile to other UML profiles.

Figure 3. – Ontology modeling in the context of MDA and Semantic Web

Ontology Definition Metamodel (ODM) should be designed to comprehend common
ontology concepts. A good starting point for ODM construction is OWL since it is the
result of the evolution of existing ontology representation languages, and is going to be a
W3C recommendation. It is at the Logical layer of the Semantic Web [Harmelen03], on
top of RDF Schema (Schema layer). In order to make use of graphical modeling
capabilities of UML, an ODM should have a corresponding UML Profile [Sigel01]. This
profile enables graphical editing of ontologies using UML diagrams as well as other
benefits of using mature UML CASE tools. Both UML models and ODM models are
serialized in XMI format so the two-way transformation between them can be done using
XSL Transformation. OWL also has representation in the XML format, so another pair of
XSL Transformations should be provided for two-way mapping between ODM and
OWL. For mapping from the Ontology UML Profile into another, technology-specific
UML Profiles, additional transformations can be added to support usage of ontologies in
design of other domains and vice versa.

ONTOLOGY MODELING AND MDA

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Metamodeling: MDA vs. Functional Architecture

Before we start with more detailed description of ODM, we must clarify differences
between metamodeling based on MDA, and functional architecture which is used for
Web ontology languages definition. RDFS, as a schema layer language, has a non-
standard and non-fixed-layer metamodeling architecture, which makes some elements in
model have dual roles in the RDFS specification [Pan01]. Therefore, it is difficult to
understand by modelers, lacks clear semantics (by assigning dual roles to some elements)
and propagates “layer mistake” problem to languages it defines, in our case to OWL.
MDA, on the other side, has fixed and well-defined four-layer architecture. It has
separate metamodeling primitives on meta-metamodel and metamodel layer that are
separated from ontology language (or some other MOF-defined language) primitives,
which can have infinite layers, as in the case of OWL Full.

In OWL DL, functional architecture’s problems are partially solved by introducing
new modeling elements (owl:Class for example) that are used for defining ontologies.
In this case, rdfs:Class is used only for defining owl:Class,
owl:ObjectProperty and other ontology-modeling primitives. It is not used for
modeling ontologies, which is done using ontology-modeling primitives. On the other
hand, OWL Full allows unconstrained use of RDFS constructs, which means that it
completely inherits RDFS’ problems. ODM that supports OWL Full cannot be modeled
directly using MOF if we want to preserve fixed-layer architecture.

Accordingly, ODM will be designed primarily to support OWL DL. Support for
OWL Full will be included partially, for concepts that don’t introduce significant
problems or break fixed-layer architecture.

A brief comparative description of the most important metamodeling constructs in
MOF and RDF(S), which will make reading the next sections easier, is shown in Table 1.
Detailed description of MOF can be found in OMG’s MOF specification document
[Booch98]. RDF, RDFS and their concepts are described in detail in W3C documents
[Berners98].

Table 1. A brief description of basic MOF and RDF(S) metamodeling constructs

MOF element Short description RDF(S) element Short description

ModelElement

ModelElement classifies
the elementary, atomic
constructs of models. It is
the root element within the
MOF Model.

rdfs:Resource

Represents all things
described by RDF. Root
construct of majority of
RDF constructs.

DataType Models primitive data,
external types, etc. rdfs:Datatype Mechanism for grouping

primitive data.

Class

Defines a classification over
a set of object instances by
defining the state and
behavior they exhibit.

rdfs:Class

Provides an abstraction
mechanism for grouping
similar resources.
In RDF(S),

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117

Classifier

Abstract concept that
defines classification. It is
specialized by Class,
DataType, etc.

rdfs:Class also
have function that is
similar to a MOF concept
of Classifier.

Association

Expresses relationships in
the metamodel between
pairs of instances of
Classes

Attribute
Defines a notional slot or
value holder, typically in
each instance of its Class.

rdf:Property
Defines relation between
subject resources and
object resources.

TypedElement

The TypedElement is an
element that requires a type
as part of its definition. A
TypedElement does not
itself define a type, but is
associated with a
Classifier. Examples
are object instances, data
values etc.

In RDF(S), any
rdfs:Resource can
be typed (via the
rdf:type property) by
some rdfs:Class

5 ESSENTIAL ODM CONCEPTS

Resource

OWL is built on top of RDF; thus it inherits its concepts, such as Resource, Property,
metamodeling capabilities etc. Resource is one of the basic RDF concepts; it represents
all things described by RDFS and OWL. It may represent anything on the Web: a Web
site, a Web page, a part of a Web page, or some other object named by URI. Compared to
ontology concepts, it can be viewed as a root concept, the Thing. In RDFS, Resource is
defined as an instance of rdfs:Class; since we use MOF as a meta-metamodeling
language, Resource will be defined as an instance of MOF Class. It is the root class of
most other basic ODM concepts that will be described: Ontology, Classifier, Property,
Instance etc. The root of this hierarchy is shown on Class Diagram in Figure 4. Other
class diagrams (shown in figures 5, 6 and 7) will depict these concepts in more detail.

ONTOLOGY MODELING AND MDA

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Figure 4. The hierarchy of basic ontology concepts

Ontology is a concept that aggregates other concepts (Classes, Properties,
etc.). It groups instances of other concepts that represent similar or related knowledge.
Classifier is the base class of concepts that are used for classification –
AbstractClass and DataType. Instance is the base class of concepts that are
classified by Classifiers – concrete Individuals and concrete DataValues.
Property is used to represent relationships between other concepts.
For example, Person is an AbstractClass (more precise - a Class) that
classifies many Individuals: Tom, Dick, Harry etc. All Persons have
some characteristics – name and occupation, which are represented by Properties –
name and occupation. These Properties can have values that are of certain
type; name can be a String (an example of DataType), occupation can be
Profession (another example of AbstractClass). Then, Profession classifies
concrete professions (its instances): Musician, Writer, Mechanic,
Astronaut…

Classifier

In RDFS and OWL, Class (rdfs:Class and owl:Class) represents a concept for
grouping resources with similar characteristics. This concept of Class (we can also call it
Ontology Class) is not completely identical as a concept of Class that is defined in UML
and object oriented programming languages. Every owl:Class is a set of individuals,
called class extension. These individuals are instances of that class. Two classes can have
the same class extension but still be different classes. Ontology classes are set-theoretic,
while traditional classes are more behavioral. Unlike a traditional class, an OWL class

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

does not directly define any attributes or relations with other resources, and there is no
any concept similar to methods. Attributes and relations are defined as Properties. In
ODM, a Class concept corresponding to rdfs:Class is defined as Classifier - an
instance of MOF Class that inherits Resource. A concept that complies with
owl:Class is ODM’s AbstractClass.

OWL further introduces six ways of defining a Class – class descriptions:
• A class can be defined by a class identifier (an URI reference) – For example, a

Class Person.
• As an exhaustive enumeration of individuals that form the instances of a Class.

For example, individuals Mick, Keith, Ron, Bill and Charlie form
an Enumeration – TheRollingStones. Note that they are also
members of a Class Person.

• As a property restriction – Class of all individuals that have the same restriction
on some of their characteristics.

• As an intersection – A Class of all individuals that are members of all
Classes that form an intersection. An intersection of Classes TheWailers
and TheRollingStones is a Class that does not have any member, since no
musician has played in both bands.

• As a union – A Class of all individuals that are members of any Class that forms
a union. A union of TheWailers and TheRollingStones, has twelve
individuals, all musicians from both bands.

• As a complement – A Class of all individuals that are not members of other,
complement class. A complement of TheRollingStones is a Class that
has about six billion members – all Persons that are not members of
TheRollingStones.

• AllDifferent is a helper class, which states that all of its instances are have
different identity.

The first concept, named class is modeled as ODM Class. Other five species are
defined in OWL as subclasses of owl:Class, and are shown in Figure 5.

If we define class descriptions as simple subclasses of Class, like it is defined in
OWL, we will have some problems related to the differences between RDFS and MOF
concept of a class and the open-world assumption of the Semantic Web. While in RDFS
some class instance can be easily defined to be a member of many class extensions in the
same time, in MOF it can be instance of exactly one class. The open-world assumption
might demand some flexibility, i.e. that class which was a Union becomes an
Intersection, which is not possible to model in MOF, since each instance can be the
instance of only one Class, i.e. dynamic classifiers are not allowed.

To solve this problem, we used the idea captured in the Decorator design pattern
[Gamma95]. In Figure 5, we define ClassDescription as a subclass of Class
which can encapsulate a Class. In that way, we can have a chain of additions to the

ONTOLOGY MODELING AND MDA

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

starting definition of Class (i.e., speaking in software engineering terms, we can add
further responsibilities to the original concept of Class). For example, if we have some
simple Class, we can define union by decorating that class with Union, and change it
later to intersection, by removing the union decorator and decorating the class with
Intersection.

Figure 5. The hierarchy of Ontology Classes in ODM

Property

Ontology Class attributes or associations are represented through properties. A property
is a relation between a subject resource and an object resource. Therefore, it might look
similar to a concept of attribute and association in traditional, object oriented sense.
However, the important difference is that Property is stand-alone; it does not depend of
any Class (or resource) as associations or attributes are in UML. In ontology languages, a
property can be defined even with no classes associated to it. In ODM, Property is an
instance of MOF Class that inherits Resource.

In addition to the concept of rdf:Property, which is defined in RDF, OWL
distinguishes two types of properties: owl:ObjectProperty, whose range can be
only an Individual, and owl:DatatypeProperty, whose range can be only
DataValue. In ODM, these concepts are instances of MOF Class that inherit
Property. OWL also defines additional concepts, global cardinality constraints on a
Property that can further refine the Property. These concepts are also represented
as instances of MOF Class.

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 121

In OWL, various types of global property constraints are defined as subclasses of
Property. Here we have the same problem we had with OWL classes, since some
property might have multiple global constraints, for example symmetric and transitive. In
this case we also apply the Decorator design pattern, just like we did with Class
Descriptions. The resulting class diagram is shown in Figure 6. If we want to define, for
example, symmetric property, we will decorate ObjectProperty with
SymmetricProperty, and if we later decide that this property also should be
transitive, we can simply decorate it again with TransitiveProperty.

Figure 6. The hierarchy of Ontology Properties in ODM

Properties predefined in RDFS and OWL

We have seen how predefined concepts, which are defined in OWL as instances of
rdf:Class, are defined in ODM as instances of MOF Class with some changes in
the hierarchy. RDF(S) and OWL have some predefined concepts that are instances of
rdf:Property. These predefined properties are used to make relationships between
concepts in OWL metamodel. In ODM, they are modeled as MOF Associations or
as MOF Attributes.

Predefined properties of RDF(S) and OWL and their ODM counterparts are not
completely identical. For example, the predefined property rdf:type states that a
rdfs:Resource is an instance of a rdfs:Class. In ODM, it is represented as an
Association between Classifier and Instance, as shown in Figure 7, which is
obviously a narrower usage than is defined in RDF. Recall that Classifier is further
specialized in AbstractClass and DataType, and that Instance is specialized
in Individual and DataValue. Such differences are caused by differences
between MDA and Functional architecture. In RDF, rdf:type property is used as both

ONTOLOGY MODELING AND MDA

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

metamodeling and modeling concept while in MDA, MOF is used for metamodeling, and
ODM for modeling. Since ODM type association is not used for metamodeling, it is a
narrower concept than rdf:type, thereby they are not equal.

Figure 7. Key relationships among Ontology concepts

Example of predefined property that is modeled as a MOF Attribute is shown in Figure 4,
as each of Resource’s attributes ID, comment and label.

A Classifier describes some general concept that has its Instances
(Individuals and DataValues). On the other hand, a Property describes some
generic characteristic that can describe that Classifier and possibly other
Classifiers. Through domain we state that a Property can be used to describe a
Classifier, and through range a characteristic's type. For example, a Property
nationality can be assigned to a Class Person (through domain) with possible
values which type is a Class Country (through range). In ODM, these relations are
modeled as associations, as shown in Figure 7.

It is obvious that an Individual cannot have a DataType as its type, or that a
DataValue cannot have an AbstractClass as its type. Looking at this class
diagram, we can not see this constraint. Such constraints are described in the Object
Constraint Language (OCL) [Booch98], a standard way of defining constraints in MOF

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 123

and UML. For example, to state that type of an Individual must be an
AbstractClass, we add the following OCL constraint:
 context: Individual

inv: self.type.oclIsTypeOf(AbstractClass)

Statement

A Statement is a Subject-Predicate-Object triple that expresses some fact in a way similar
to the way facts are expressed in English. A fact that some Individual, Bob for
example, has some nationality, Jamaican, is expressed through a Statement, which
links the Instance Bob as the subject, the Property nationality as the
predicate, and the Instance Jamaica as the object. Thus, Statement can be viewed
as some kind of Property’s instance. In ODM, Statement is an instance of MOF
Class that is linked with Instance by subject and object associations and with
Property by predicate association (Figure 7). ODM Statement slightly differs from
the Statement defined in RDF (rdf:subject and rdf:object link
rdf:Statement with rdfs:Resource). The difference arises from the fact that
ODM is not intended for metamodeling as RDF is, similarly to the case with rdf:type

Summary of Ontology Definition Metamodel

The summary of ODM concepts is given in Table 1 in the Appendix. The first column
represents original RDF, RDF(S) and OWL concepts, which are used as the starting point
for defining the ODM. The corresponding ODM concepts are listed in second column.
The third and fourth columns summarize the Ontology UML Profile, which will be
described in our future work, and is given here for a brief overview.

6 CONCLUSIONS

The metamodel defined in this paper is in accordance with the OMG’s RFP initiative for
ontology modeling. Accordingly, we borrowed the name ODM for our metamodel from
the OMG’s RFP. The proposed solution enables using ontologies in the way that is closer
to software engineering practitioners. Also, since the ODM is defined as a MOF-
compliant language it is possible to store ontologies in MOF-based repositories, as well
as to share and interchange ontologies using XMI.

The proposed ODM can be considered as a part of the effort to specify standard
ontology metamodel. Its important feature is that it is based on OWL.

Future developments based on the proposed ODM include defining the ontology
UML Profile. It should enable a wide use of UML notation in ontology modeling. This
way, the ODM concepts can be used as stereotypes in the UML models (similar to UML
CORBA Profile or other OMG’s UML Profiles). Further plans include using Java

ONTOLOGY MODELING AND MDA

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Metadata Interface (JMI) [Dirckze02] to enable creation, storage, access, discovery, and
exchange of ODM-defined ontologies using standard Java interfaces.

REFERENCES

[Gruber93] Gruber, T. R., “A translation approach to portable ontology specifications”,
Knowledge Acquisition, Vol. 5, No. 2, 1993.

[Cranefield01] Cranefield, S., “UML and the Semantic Web”, In Proceedings of the
International Semantic Web Working Symposium, Palo Alto, 2001,
www.semanticweb.org/SWWS/program/full/paper1.pdf.

[Duddy02] Duddy, K., “UML2 Must Enable A Family of Languages”, Communications
of the ACM, Vol. 45, No. 11, November 2002, pp 73-75.

[Berners99] Tim Berners-Lee, Weaving the Web, Orion Business Books, London, 1999.

[Bray00] Bray, T., et al (eds.), “Extensible Markup Language (XML) 1.0 (Second
Edition)”, W3C Recommendation, http://www.w3.org/TR/2000/REC-xml-
20001006, 2000.

[Brickley00] Brickley, D., Guha, R.V. (eds.), “Resource Description Framework (RDF)
Schema Specification 1.0”, W3C Candidate Recommendation,
http://www.w3.org/TR/2000/CR-rdf-schema-20000327, 2000.

[Berners98] Tim Berners-Lee, “Semantic Web Road Map”, W3C Design Issues,
http://www.w3.org/DesignIssues/Semantic.html, 1998.

[Harmelen03] van Harmelen, F., et al, “OWL Web Ontology Language Reference”, W3C
Working Draft, http://www.w3.org/TR/2003/WD-owl-ref-20030331/, 2003.

[Miller03] Miller, J., Mukerji, J. (eds.), “MDA Guide Version 1.0”, OMG Document:
omg/2003-05-01,
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf, May
2003.

[MOF02] “Meta Object Facility (MOF) Specification v1.4”, OMG Document
formal/02-04-03, http://www.omg.org/cgi-bin/apps/doc?formal/02-04-
03.pdf, April 2002.

[Booch98] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language
User Guide, Addison-Wesley, Massachusetts, 1998.

[XMI02] “OMG XMI Specification, v1.2”, OMGDocument formal/02-01-01,
http://www.omg.org/cgi-bin/doc?formal/2002-01-01, 2002.

[Gasevic03] Gasevic, D., Damjanovic, V., Devedzic, V., “Analysis of the MDA
Standards in Ontological Engineering”, submitted for publication to the

http://www.semanticweb.org/SWWS/program/full/paper1.pdf
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/CR-rdf-schema-20000327
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/TR/2003/WD-owl-ref-20030331/
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf
http://www.omg.org/cgi-bin/doc?formal/2002-01-01

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 125

Sixth International Conference of Information Technology, Bhubaneswar,
India, December 22-25, 2003.

[ODMRFP03] “Ontology Definition Metamodel Request for Proposal”, OMG
Document: ad/2003-03-40, http://www.omg.org/cgi-bin/doc?ad/2003-03-40,
2003.

[Sigel01] Sigel, J., “Developing in OMG’s Model-Driven Architecture”, Revision 2.6,
Object Management Group White Paper, ftp://ftp.omg.org/pub/docs/
omg/01-12-01.pdf, 2001.

[Pan01] Pan, J., Horrocks, I., “Metamodeling Architecture of Web Ontology
Languages”, In Proceedings of the First Semantic Web Working Symposium
(SWWS'01), Stanford, July 2001, pp 131-149
http://img.cs.man.ac.uk/jpan/Zhilin/download/Paper/Pan-Horrocks-rdfsfa-
2001.pdf.

[Gamma95] Gamma, E., et al, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[Dirckze02] Dirckze, R. (spec. leader), “Java Metadata Interface (JMI) Specification
Version 1.0”,
http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html, 07 June
2002.

About the authors
Dragan Djurić is a PhD candidate at FON – School of Business
Administration, University of Belgrade, and also a member of
Good-Old-AI research group. His interests mostly include
Enterprise software architecture, Object-Oriented development,
Java platform and Intelligent Information Systems. He can be
reached at dragandj@gmail.com.

Dragan Gašević is a lecturer of Computer Science with the
Military academy, Belgrade Serbia and Montenegro, as well as a
researcher with the GOOD OLD AI research group, University of
Belgrade. He has received his BS, MS, and PhD degrees in
computer science from the University of Belgrade in 2000, 2002,
and 2004, respectively. His research interests mostly include
Semantic Web, ontologies, MDA, and applications of artificial
intelligence techniques to education. Email: gasevic@yahoo.com.

http://www.omg.org/cgi-bin/doc?ad/2003-03-40
ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf
ftp://ftp.omg.org/pub/docs/omg/01-12-01.pdf
http://img.cs.man.ac.uk/jpan/Zhilin/download/Paper/Pan-Horrocks-rdfsfa-2001.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html
mailto:dragandj@gmail.com
mailto:gasevic@yahoo.com

ONTOLOGY MODELING AND MDA

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Vladan Devedžić is an associate professor of computer science at
the Department of Information Systems, FON - School of Business
Administration, University of Belgrade, Serbia and Montenegro.
His main research interests include software engineering,
intelligent systems, knowledge representation, ontologies,
Semantic Web, intelligent reasoning, and applications of artificial
intelligence techniques to education and medicine. He can be
reached at devedzic@fon.bg.ac.yu.

APPENDIX

RDFS Concept Ontology Definition
Metamodel Concept

Base UML
Class

UML Stereotype
(inside « ») or
Tag

rdfs:Resource abstract class Resource
rdfs:Datatype class Datatype DataType
rdfs:range association range Association or

Attribute
«range»

rdfs:domain association domain Association or
Attribute

«domain»

rdfs:type association type Dependency «instanceOf»
rdfs:subClassOf association subclassOf Generalization «subClassOf»
rdfs:subPropertyOf association subPropertyOf Generalization «subPropertyOf»
rdfs:label attribute label
rdfs:seeAlso association seeAlso Association «seeAlso»
RDF Concept Ontology Definition

Metamodel Concept
Base UML
Class

UML Stereotype
(inside «») or
Tag

rdf:Property abstract class Property
rdf:Statement class Statement Object «ObjectProperty

» or
«DatatypeProper
ty»

rdf:subject association subject Link or
AttributeLink

«subject»

rdf:object association object Link or
AttributeLink

«object»

rdf:predicate association predicate Dependency «instanceOf»
rdf:ID attribute ID Element Name
OWL Ontology Concept Ontology Definition

Metamodel Concept
Base UML
Class

UML Stereotype
(inside «») or
Tag

owl:Ontology class Ontology Package «ontology»
owl:Class class Class Class «OntClass»
Enumeration class Enumeration Class «Enumeration»

mailto:devedzic@fon.bg.ac.yu

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

or enumeration
owl:Restriction abstract class Restriction
owl:onProperty association onProperty Association «onProperty»
ValueConstraint abstract class

ValueConstraint

owl:allValuesFrom association allValuesFrom
and class AllValuesFrom

Association
and Class

«allValuesFrom»
(Assoc.) and
«AllValuesFrom»

owl:someValuesFrom association
someValuesFrom and class
SomeValuesFrom

Association
and Class

«someValuesFro
m» (Assoc.) and
«SomeValuesFro
m»

owl:hasValue association hasValue and
class HasValue

Dependency
and Class

«hasValue»
(Assoc.) and
«HasValue»

CardinalityConstraint abstract class
CardinalityConstraint

owl:minCardinality class MinCardinality AssociationEnd
multiplicity

owl:maxCardinality class MaxCardinality AssociationEnd
multiplicity

owl:cardinality class Cardinality AssociationEnd
multiplicity

owl:intersectionOf association intersectionOf
and
class Intersection

Dependency
and
TaggedValue

«intersectionOf»
(Dep.),
intersection tag
or «Intersection»
for Class

owl:unionOf association unionOf and
class Union

Dependency
and
TaggedValue

«unionOf»
(Dep.), union tag
or «Union» for
Class

owl:complementOf association complementOf
andClass ComplementOf

Dependency
and
TaggedValue

«complementOf»
(for
Dependency),
complement tag
or
«Complement»
for Class

owl:equivalentClass association equivalentClass Dependency «equivalentClass
»

owl:disjointWith association disjointWith Dependency «disjointWith»
owl:ObjectProperty class Objectproperty Class «ObjectProperty

»
owl:DatatypeProperty class DatatypeProperty Class «DatatypeProper

ty»
owl:equivalentProperty association

equivalentProperty
Dependency «equivalentProp

erty»
owl:inverseOf association inverseOf Dependency «inverseOf»
owl:FunctionalProperty class FunctionalProperty TaggedValue functional
owl:InverseFunctionalProper
ty

class
InverseFunctionalProperty

TaggedValue inverseFunctiona
l

ONTOLOGY MODELING AND MDA

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

owl:TransitiveProperty class TransitiveProperty TaggedValue transitive
owl:SymmetricProperty class SymmetricProperty TaggedValue symmetric
Individual class Individual Object «ontClass»
owl:Thing instance of class Individual
owl:sameAs and
owl:sameIndividualAs

association sameAs Dependency «sameAs»

owl:differentFrom association differentFrom Dependency «differentFrom»
owl:allDifferent association allDifferent Dependency «allDifferent»
owl:oneOf association type Dependency «instanceOf»
owl:AllDiferent class AllDifferent Class «AllDifferent»
owl:distinctMembers association distinctMembers Dependency «distinctMember

s»
owl:equivalentProperty association

equivalentProperty
Association «equivalentProp

erty»
owl:backwardCompatibleWit
h

owl.backwardCompatibleWit
h

Dependency «backwardComp
atibleWith»

owl:imports owl.imports Dependency «imports»
owl:incompatibleWith owl.incompatibleWith Dependency «incompatibleWit

h»
owl:inverseOf owl.inverseOf Dependency «inverseOf»
owl:priorVersion owl.priorVersion Dependency «priorVersion»

