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Abstract 
The paper presents Ontology Definition Metamodel (ODM) that enables using Model 
Driven Architecture (MDA) standards in ontological engineering. Other similar 
metamodels are based on ontology representation languages, such as RDF(S), 
DAML+OIL, etc. However, none of these other solutions uses the recent W3C effort – 
The Web Ontology Language (OWL). In our approach, we firstly define the ODM place 
in the context of the MDA four-layer architecture and identify the main OWL concepts. 
Then, we define ODM using Meta-Object Facility (MOF). The relations between similar 
MOF and OWL concepts are discussed in order to show their differences (e.g. MOF or 
UML Class and OWL Class). The proposed ODM is a good starting point for defining an 
OWL-based UML profile that will enable using the well-known UML notation in 
ontological engineering more extensively. 

1 INTRODUCTION 

The Semantic Web and its XML-based languages are main directions of the future Web 
development. Domain ontologies [Gruber93] are the most important part of the Semantic 
Web applications. They are formal organization of domain knowledge, and in that way 
enable knowledge sharing between different knowledge-base applications. Artificial 
intelligence (AI) techniques are used for ontology creation, but those techniques are more 
related to research laboratories, and they are unknown to wider software engineering 
population. 

In order to overcome the gap between software engineering practitioners and AI 
techniques, there are a few proposals for UML use in ontology development 
[Cranefield01]. But, UML itself does not satisfy needs for representation of ontology 
concepts that are borrowed from the Descriptive Logic, and that are included in Semantic 
Web ontology languages (e.g. RDF, RDF Schema, OWL, etc.). The OMG’s Model 
Driven Architecture (MDA) concept has ability to create (using metamodeling) a family 
of languages [Duddy02] that are defined in the similar way like the UML is. Accordingly, 
in this paper, the authors define metamodel for ontology modeling language. This 
metamodel is defined using Meta-Object Facility (MOF), and is based on the Web 
Ontology Language (OWL).  
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The overview of the Semantic Web languages and OWL is given in the next section, 
while the description of the MDA and MOF is in the section three. In the section four we 
give a framework for our approach of the ontology language metamodel in the MDA 
context. The ontology metamodel definition in detail is shown in the section five. Basing 
on the paper appendix, we give summary of the relations between OWL (as well as RDF 
and RDF Schema), ODM concepts, and Ontology UML Profile. The last section contains 
final conclusions. This work is a part of Good-Old-AI (http://goodoldai.org.yu) effort for 
developing AIR - a platform for intelligent information systems. 

2 AN OVERVIEW OF THE SEMANTIC WEB AND THE WEB 
ONTOLOGY LANGUAGE 

Before the expansion of the World Wide Web, there had been taken many different 
approaches to represent knowledge or create taxonomies. No matter how these 
approaches were good or bad, there was a significant problem – their interoperability. All 
these solutions were isolated, limited to single applications or to a homogenous group of 
applications, and oriented to a small domain. With the introduction of World Wide Web 
and, later, XML technologies, the infrastructure for sharing data in a common way 
emerged. However, current Web is only syntactically interoperable; it is designed for 
direct human processing of the meaning of data.  

The next step in Web evolution is the Semantic Web [Berners99], which will enable 
machine-understandable data to be shared across the Net. The Semantic Web will be 
powered by metadata, described by ontologies that will give machine-understandable 
meaning to its data. Ontology is one of the most important concepts in knowledge 
representation. It can be generally defined as shared formal conceptualization of 
particular domain [Gruber93]. Ontologies are essential in the knowledge management 
systems, agent systems, e-commerce… These ontologies must be interconnectable 
enough to enable each ontology to be merged with others, creating one big encyclopedia 
that will be understandable to software agents without direct human interference. Thus, 
The World Wide Web and XML will provide the ontologies with interoperability, and 
these interoperable ontologies will, in return, facilitate Web that can “know” something. 

Naturally, achieving such goal is a challenging task and path to Semantic Web will 
be longer than World Wide Web progress path was. The technology that has to enable 
such Web must be powerful enough and intelligent enough to accomplish inference about 
enormous quantities of data and yet be affordable and easy enough to use. That means 
that both powerful infrastructure and easy-to-use tools must be provided to potential 
users. 

Common data interoperability in present applications is best achieved by using 
XML. XML (eXtensible Markup Language) is a meta-language used to define other 
languages. It describes a class of data objects called XML documents and partially 
describes the behavior of computer programs which process them [Brickley00]. XML 
defines neither the tags nor grammar, which makes it completely extensible. It only 
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requires that document must be well-formed in a tree structure, so it could be parsed by 
standard XML tools. In addition, the document can be structured to be valid. A valid 
document is one that conforms to its XML Schema, which defines grammar and tag set 
for specific XML formatting. 

Semantic Web architecture is a functional, non-fixed architecture [Berners98]. 
Barnes-Lee defined three distinct levels that incrementally introduce expressive 
primitives: metadata layer, schema layer and logical layer [Harmelen03]. 

While XML with XML Schema enables common, well-defined and easy processable 
syntax, it tells nothing about semantics of data it describes. That means that some 
standard must be built on top of XML that will describe semantics of data. The first step 
in that direction is Resource Description Framework (RDF), a general model in metadata 
layer and Resource Description Framework Schema (RDFS), language at schema layer. 
The RDF data model defines a simple model for describing interrelationships among 
resources in terms of named properties and values. RDF properties may be thought of as 
attributes of resources and in this sense correspond to traditional attribute-value pairs. 
RDF properties also represent relationships between resources. As such, the RDF data 
model can therefore resemble an entity-relationship diagram [Berners98].  The RDF 
Schema declares these properties, and provides mechanisms for defining the relationships 
between these properties and other resources. 

To enable reasoning services for the Semantic Web, another layer is needed on top 
of RDF(S). That (logical) layer introduces ontology languages, that are based on meta-
modeling architecture defined in lower layer. It introduces a richer set of modeling 
primitives which can be mapped to Descriptive Logic. This enables using of tools with 
generic reasoning support, independent of specific problem domain. Common examples 
of such languages are OIL and DAML. The newest emerging standard is W3C’s OWL. 

The Web Ontology Language (OWL) is a semantic markup language for publishing 
and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary 
extension of RDF and is derived from the DAML+OIL Web ontology language 
[Miller03]. The place of OWL in described architecture is shown on Figure 1. 

 
Figure 1. OWL in the Semantic Web architecture 

 

Since World Wide Web is almost unconstrained, OWL must provide open world 
assumption and allow importing and mixing various ontologies. Some of them may be 
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even contradictory, but new information can never retract existing information, it can be 
only added to it. In order to provide such capabilities and, in the same time, to support 
calculations and reasoning in finite time with tools that can be built on existing or soon 
available technologies, OWL introduces three increasingly expressive sublanguages for 
various purposes: OWL Full, OWL DL and OWL Lite. 

OWL Full provides maximal expressiveness and the syntactic freedom of RDF, but 
doesn’t provide any computational guarantees. The main characteristic of OWL Full in 
comparison to OWL DL and OWL Lite is that one class, which is, by definition, a 
collection of individuals, can be the individual itself, like in RDF(S). It is obvious that 
this approach can lead to models that need infinite time to compute. 

OWL DL (Descriptive Logic) enables maximal expressiveness and guarantees 
computational completeness (all entailments are guaranteed to be computed) and 
decidability (all computations will finish in finite time). It includes all OWL Full 
constructs, and appends some constraints. The most significant constraints are that class 
cannot be an individual or property, or that property cannot be an individual or class. 
OWL DL has good formal background since it is contrived on descriptive logic. 

OWL Lite is intended mostly to support classification hierarchy and simple 
constraint features. It is good starting point for tool builders. OWL Lite can be useful in 
migrations of existing taxonomies to OWL. 

OWL Full is an extension of OWL DL, which is an extension of OWL Lite, thus 
every OWL Lite ontology is OWL DL and OWL Full ontology and every OWL DL 
ontology is OWL Full ontology. 

3 AN OVERVIEW OF MODEL DRIVEN ARCHITECTURE AND 
META-OBJECT FACILITY 

If we look back to the history of software development, we can see a notable increase of 
models abstraction. Modeling becomes more and more separated from underlying 
platform, making models of real world more reusable and easy to create by domain 
experts, requiring less knowledge of specific computer systems. This places software 
modeling closer to knowledge acquiring in knowledge engineering and vice versa. 
Current stage in that evolution is OMG’s Model Driven Architecture [MOF02].  

MDA defines three viewpoints (levels of abstraction) from which some system can 
be seen. From a chosen viewpoint, a representation of a given system (viewpoint model) 
can be defined. These models are (each corresponding to the viewpoint with the same 
name): Computation Independent Model (CIM), Platform Independent Model (PIM) and 
Platform Specific Model (PSM). CIM is a view of a system that does not show the details 
of a system structure. In software engineering it is also known as a domain model, which 
is concerned by domain experts. It is similar to a concept of ontology. PIM is model that 
is computation dependent, but it is not aware of specific computer platform details. In 
other words, it is targeted for technology-neutral virtual machine. Specification of 
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complete computer system is completed with PSM. The goal is to move human work 
from PSM towards CIM and PIM and let the specific platform detail implementations be 
generated as much as possible by automated tools which will do the transformation from 
PIM to PSM. 

MDA is based on the four-layer metamodeling architecture, and several OMG’s 
complementary standards; which is shown in figure 2. These standards are Meta-Object 
Facility (MOF) [Booch98], Unified Modeling Language (UML) [Booch98] and XML 
Metadata Interchange (XMI) [XMI02]. Layers are: meta-metamodel (M3) layer, 
metamodel (M2) layer, model (M1) layer and instance (M0) layer. 

 
Figure 2. MDA four-layer MOF-based metadata architecture 

 
On the top of this architecture is the meta-metamodel (MOF). It defines an abstract 
language and framework for specifying, constructing and managing technology neutral 
metamodels. It is the foundation for defining any modeling language; such as UML or 
even MOF itself. MOF also defines a framework for implementing repositories that hold 
metadata (e.g. models) described by metamodels [Booch98]. The main aim of having 
four layers with common meta-metamodel is to support multiple metamodels and models; 
to enable their extensibility, integration and generic model and metamodel management. 

All metamodels, standard or custom, defined by MOF are positioned on the M2 
layer. One of these is UML, a graphical modeling language for specifying, visualizing 
and documenting software systems. With UML profiles, basic UML concepts (Class, 
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Association, etc.) can be extended with new concepts (stereotypes) and adapted to 
specific modeling needs. The models of the real world, represented by concepts defined 
in the corresponding metamodel at M2 layer (e.g. UML metamodel) are on M1 layer. 
Finally, at M0 layer, are things from the real world. An example would be: MOF Class 
(at M3) is used to define UML Class (M2), which is used to define model: Person (UML 
Class) and Tom, Dick and Harry (UML Objects) (M1), which represents reality (M0). 

Another standard that is in base of this architecture is XMI, a standard that defines 
mapping from MOF-defined metamodels to XML documents and Schemas. XML, which 
has good software tools support, gives to XMI strength to enable solid shareability of 
meta-metamodel, metamodels and models.   

Present software tools support for MDA is concentrated primarily on UML as a 
graphical notation, with no concern to metamodeling layers [Gasevic03]. UML CASE 
tools (e.g. Rational Rose, Borland Together, Magic Draw, Poseidon for UML, etc.) have 
good support for modeling at M1 layer and for programming languages code generation. 
Using appropriate UML profile they can generate databases, XML Schemas, EJBs etc. 
But, they lack support for M2 and M3 layers as well as unified serialization to XMI. It is 
expected from future tools to support UML 2, which will enable common XMI 
representation of UML models, and MOF-compliant model repositories at M2 and M3 
layers, which will support metamodeling. 

4 THE ONTOLOGY MODELING ARCHITECTURE 

An overview 

To be widely adopted by users and to succeed in real-world applications, knowledge 
engineering and ontology modeling must catch up with mainstream software trends. It 
will provide a good support in software tools and ease the integration with existing or 
upcoming software tools and applications, which will add values to both sides. To be 
employed in common applications, software knowledge management must be taken out 
of laboratories and isolated high-tech applications and put closer to ordinary developers. 
This issue has been addressed in more details in Cranefield’s papers [Cranefield01]. 

MDA and its four-layer architecture provides a solid basis for defining metamodels 
of any modeling language, so it is the straight choice to define an ontology-modeling 
language in MOF. Such language can utilize MDA’s support in modeling tools, model 
management and interoperability with other MOF-defined metamodels. Present software 
tools do not implement many of the concepts that are the basis of MDA. However, most 
of these applications, which are mostly oriented to the UML and M1 layer, are expected 
to be enhanced in the next few years to support MDA.  

Currently, there is a RFP (Request for Proposal) within OMG that tries to define a 
suitable language for modeling Semantic Web ontology languages in the context of MDA 
[ODMRFP03]. According to this RFP the authors give their proposal of such 
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architecture. In our approach of ontology modeling in the scope of MDA, which is shown 
in Figure 3, several specifications should be defined: 

• Ontology Definition Metamodel (ODM) 
• Ontology UML Profile – a UML Profile that supports UML notation for ontology 

definition 
• Two-way mappings between OWL and ODM, ODM and Ontology UML Profile 

and from Ontology UML Profile to other UML profiles. 
 

 
Figure 3. – Ontology modeling in the context of MDA and Semantic Web 

 
Ontology Definition Metamodel (ODM) should be designed to comprehend common 
ontology concepts. A good starting point for ODM construction is OWL since it is the 
result of the evolution of existing ontology representation languages, and is going to be a 
W3C recommendation. It is at the Logical layer of the Semantic Web [Harmelen03], on 
top of RDF Schema (Schema layer). In order to make use of graphical modeling 
capabilities of UML, an ODM should have a corresponding UML Profile [Sigel01]. This 
profile enables graphical editing of ontologies using UML diagrams as well as other 
benefits of using mature UML CASE tools. Both UML models and ODM models are 
serialized in XMI format so the two-way transformation between them can be done using 
XSL Transformation. OWL also has representation in the XML format, so another pair of 
XSL Transformations should be provided for two-way mapping between ODM and 
OWL. For mapping from the Ontology UML Profile into another, technology-specific 
UML Profiles, additional transformations can be added to support usage of ontologies in 
design of other domains and vice versa. 
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Metamodeling: MDA vs. Functional Architecture 

Before we start with more detailed description of ODM, we must clarify differences 
between metamodeling based on MDA, and functional architecture which is used for 
Web ontology languages definition. RDFS, as a schema layer language, has a non-
standard and non-fixed-layer metamodeling architecture, which makes some elements in 
model have dual roles in the RDFS specification [Pan01]. Therefore, it is difficult to 
understand by modelers, lacks clear semantics (by assigning dual roles to some elements) 
and propagates “layer mistake” problem to languages it defines, in our case to OWL. 
MDA, on the other side, has fixed and well-defined four-layer architecture. It has 
separate metamodeling primitives on meta-metamodel and metamodel layer that are 
separated from ontology language (or some other MOF-defined language) primitives, 
which can have infinite layers, as in the case of OWL Full. 

In OWL DL, functional architecture’s problems are partially solved by introducing 
new modeling elements (owl:Class for example) that are used for defining ontologies. 
In this case, rdfs:Class is used only for defining owl:Class, 
owl:ObjectProperty and other ontology-modeling primitives. It is not used for 
modeling ontologies, which is done using ontology-modeling primitives. On the other 
hand, OWL Full allows unconstrained use of RDFS constructs, which means that it 
completely inherits RDFS’ problems. ODM that supports OWL Full cannot be modeled 
directly using MOF if we want to preserve fixed-layer architecture. 

Accordingly, ODM will be designed primarily to support OWL DL. Support for 
OWL Full will be included partially, for concepts that don’t introduce significant 
problems or break fixed-layer architecture. 

A brief comparative description of the most important metamodeling constructs in 
MOF and RDF(S), which will make reading the next sections easier, is shown in Table 1. 
Detailed description of MOF can be found in OMG’s MOF specification document 
[Booch98]. RDF, RDFS and their concepts are described in detail in W3C documents 
[Berners98]. 

 
Table 1. A brief description of basic MOF and RDF(S) metamodeling constructs 

 

MOF element Short description RDF(S) element Short description 

ModelElement 

ModelElement classifies 
the elementary, atomic 
constructs of models. It is 
the root element within the 
MOF Model. 

rdfs:Resource 

Represents all things 
described by RDF. Root 
construct of majority of 
RDF constructs. 

DataType Models primitive data, 
external types, etc. rdfs:Datatype Mechanism for grouping 

primitive data. 

Class 

Defines a classification over 
a set of object instances by 
defining the state and 
behavior they exhibit. 

rdfs:Class 

Provides an abstraction 
mechanism for grouping 
similar resources. 
In RDF(S), 



 
 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117 

Classifier 

Abstract concept that 
defines classification. It is 
specialized by Class, 
DataType, etc. 

rdfs:Class also 
have function that is 
similar to a MOF concept 
of Classifier. 

Association 

Expresses relationships in 
the metamodel between 
pairs of instances of  
Classes 

Attribute 
Defines a notional slot or 
value holder, typically in 
each instance of its Class. 

rdf:Property 
Defines relation between 
subject resources and 
object resources. 

TypedElement 

The TypedElement is an 
element that requires a type 
as part of its definition. A 
TypedElement does not 
itself define a type, but is 
associated with a 
Classifier. Examples 
are object instances, data 
values etc. 

 

In RDF(S), any 
rdfs:Resource can 
be typed (via the 
rdf:type property) by 
some rdfs:Class 

5 ESSENTIAL ODM CONCEPTS 

Resource 

OWL is built on top of RDF; thus it inherits its concepts, such as Resource, Property, 
metamodeling capabilities etc. Resource is one of the basic RDF concepts; it represents 
all things described by RDFS and OWL. It may represent anything on the Web: a Web 
site, a Web page, a part of a Web page, or some other object named by URI. Compared to 
ontology concepts, it can be viewed as a root concept, the Thing. In RDFS, Resource is 
defined as an instance of rdfs:Class; since we use MOF as a meta-metamodeling 
language, Resource will be defined as an instance of MOF Class. It is the root class of 
most other basic ODM concepts that will be described: Ontology, Classifier, Property, 
Instance etc. The root of this hierarchy is shown on Class Diagram in Figure 4. Other 
class diagrams (shown in figures 5, 6 and 7) will depict these concepts in more detail. 
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Figure 4. The hierarchy of basic ontology concepts 

 

Ontology is a concept that aggregates other concepts (Classes, Properties, 
etc.). It groups instances of other concepts that represent similar or related knowledge. 
Classifier is the base class of concepts that are used for classification – 
AbstractClass and DataType. Instance is the base class of concepts that are 
classified by Classifiers – concrete Individuals and concrete DataValues. 
Property is used to represent relationships between other concepts.  
For example, Person is an AbstractClass (more precise - a Class) that 
classifies many Individuals: Tom, Dick, Harry etc. All Persons have 
some characteristics – name and occupation, which are represented by Properties – 
name and occupation. These Properties can have values that are of certain 
type; name can be a String (an example of DataType), occupation can be 
Profession (another example of AbstractClass). Then, Profession classifies 
concrete professions (its instances): Musician, Writer, Mechanic, 
Astronaut… 

Classifier 

In RDFS and OWL, Class (rdfs:Class and owl:Class) represents a concept for 
grouping resources with similar characteristics. This concept of Class (we can also call it 
Ontology Class) is not completely identical as a concept of Class that is defined in UML 
and object oriented programming languages. Every owl:Class is a set of individuals, 
called class extension. These individuals are instances of that class. Two classes can have 
the same class extension but still be different classes. Ontology classes are set-theoretic, 
while traditional classes are more behavioral. Unlike a traditional class, an OWL class 
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does not directly define any attributes or relations with other resources, and there is no 
any concept similar to methods. Attributes and relations are defined as Properties. In 
ODM, a Class concept corresponding to rdfs:Class is defined as Classifier - an 
instance of MOF Class that inherits Resource. A concept that complies with 
owl:Class is ODM’s AbstractClass. 

OWL further introduces six ways of defining a Class – class descriptions:  
• A class can be defined by a class identifier (an URI reference) – For example, a 

Class Person. 
• As an exhaustive enumeration of individuals that form the instances of a Class. 

For example, individuals Mick, Keith, Ron, Bill and Charlie form 
an Enumeration – TheRollingStones. Note that they are also 
members of a Class Person. 

• As a property restriction – Class of all individuals that have the same restriction 
on some of their characteristics. 

• As an intersection – A Class of all individuals that are members of all 
Classes that form an intersection. An intersection of Classes TheWailers 
and TheRollingStones is a Class that does not have any member, since no 
musician has played in both bands. 

• As a union – A Class of all individuals that are members of any Class that forms 
a union. A union of TheWailers and TheRollingStones, has twelve 
individuals, all musicians from both bands. 

• As a complement – A Class of all individuals that are not members of other, 
complement class. A complement of TheRollingStones is a Class that 
has about six billion members – all Persons that are not members of 
TheRollingStones. 

• AllDifferent is a helper class, which states that all of its instances are have 
different identity. 

The first concept, named class is modeled as ODM Class. Other five species are 
defined in OWL as subclasses of owl:Class, and are shown in Figure 5. 

If we define class descriptions as simple subclasses of Class, like it is defined in 
OWL, we will have some problems related to the differences between RDFS and MOF 
concept of a class and the open-world assumption of the Semantic Web. While in RDFS 
some class instance can be easily defined to be a member of many class extensions in the 
same time, in MOF it can be instance of exactly one class. The open-world assumption 
might demand some flexibility, i.e. that class which was a Union becomes an 
Intersection, which is not possible to model in MOF, since each instance can be the 
instance of only one Class, i.e. dynamic classifiers are not allowed. 

To solve this problem, we used the idea captured in the Decorator design pattern 
[Gamma95]. In Figure 5, we define ClassDescription as a subclass of Class 
which can encapsulate a Class. In that way, we can have a chain of additions to the 
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starting definition of Class (i.e., speaking in software engineering terms, we can add 
further responsibilities to the original concept of Class). For example, if we have some 
simple Class, we can define union by decorating that class with Union, and change it 
later to intersection, by removing the union decorator and decorating the class with 
Intersection. 

 
Figure 5. The hierarchy of Ontology Classes in ODM 

Property 

Ontology Class attributes or associations are represented through properties. A property 
is a relation between a subject resource and an object resource. Therefore, it might look 
similar to a concept of attribute and association in traditional, object oriented sense. 
However, the important difference is that Property is stand-alone; it does not depend of 
any Class (or resource) as associations or attributes are in UML. In ontology languages, a 
property can be defined even with no classes associated to it. In ODM, Property is an 
instance of MOF Class that inherits Resource. 

In addition to the concept of rdf:Property, which is defined in RDF, OWL 
distinguishes two types of properties: owl:ObjectProperty, whose range can be 
only an Individual, and owl:DatatypeProperty, whose range can be only 
DataValue. In ODM, these concepts are instances of MOF Class that inherit 
Property. OWL also defines additional concepts, global cardinality constraints on a 
Property that can further refine the Property. These concepts are also represented 
as instances of MOF Class. 
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In OWL, various types of global property constraints are defined as subclasses of 
Property. Here we have the same problem we had with OWL classes, since some 
property might have multiple global constraints, for example symmetric and transitive. In 
this case we also apply the Decorator design pattern, just like we did with Class 
Descriptions. The resulting class diagram is shown in Figure 6. If we want to define, for 
example, symmetric property, we will decorate ObjectProperty with 
SymmetricProperty, and if we later decide that this property also should be 
transitive, we can simply decorate it again with TransitiveProperty. 

 
Figure 6. The hierarchy of Ontology Properties in ODM 

Properties predefined in RDFS and OWL 

We have seen how predefined concepts, which are defined in OWL as instances of 
rdf:Class, are defined in ODM as instances of MOF Class with some changes in 
the hierarchy. RDF(S) and OWL have some predefined concepts that are instances of 
rdf:Property. These predefined properties are used to make relationships between 
concepts in OWL metamodel. In ODM, they are modeled as MOF Associations or 
as MOF Attributes. 

Predefined properties of RDF(S) and OWL and their ODM counterparts are not 
completely identical. For example, the predefined property rdf:type states that a 
rdfs:Resource is an instance of a rdfs:Class. In ODM, it is represented as an 
Association between Classifier and Instance, as shown in Figure 7, which is 
obviously a narrower usage than is defined in RDF. Recall that Classifier is further 
specialized in AbstractClass and DataType, and that Instance is specialized 
in Individual and DataValue. Such differences are caused by differences 
between MDA and Functional architecture. In RDF, rdf:type property is used as both 
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metamodeling and modeling concept while in MDA, MOF is used for metamodeling, and 
ODM for modeling. Since ODM type association is not used for metamodeling, it is a 
narrower concept than rdf:type, thereby they are not equal. 

 
Figure 7. Key relationships among Ontology concepts 

 
Example of predefined property that is modeled as a MOF Attribute is shown in Figure 4, 
as each of Resource’s attributes ID, comment and label.  

A Classifier describes some general concept that has its Instances 
(Individuals and DataValues). On the other hand, a Property describes some 
generic characteristic that can describe that Classifier and possibly other 
Classifiers. Through domain we state that a Property can be used to describe a 
Classifier, and through range a characteristic's type. For example, a Property 
nationality can be assigned to a Class Person (through domain) with possible 
values which type is a Class Country (through range). In ODM, these relations are 
modeled as associations, as shown in Figure 7. 

It is obvious that an Individual cannot have a DataType as its type, or that a 
DataValue cannot have an AbstractClass as its type. Looking at this class 
diagram, we can not see this constraint. Such constraints are described in the Object 
Constraint Language (OCL) [Booch98], a standard way of defining constraints in MOF 
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and UML. For example, to state that type of an Individual must be an 
AbstractClass, we add the following OCL constraint: 
  context: Individual 

inv: self.type.oclIsTypeOf(AbstractClass) 

Statement 

A Statement is a Subject-Predicate-Object triple that expresses some fact in a way similar 
to the way facts are expressed in English. A fact that some Individual, Bob for 
example, has some nationality, Jamaican, is expressed through a Statement, which 
links the Instance Bob as the  subject, the Property nationality as the 
predicate, and the Instance Jamaica as the  object. Thus, Statement can be viewed 
as some kind of Property’s instance. In ODM, Statement is an instance of MOF 
Class that is linked with Instance by subject and object associations and with 
Property by predicate association (Figure 7). ODM Statement slightly differs from 
the Statement defined in RDF (rdf:subject and rdf:object link 
rdf:Statement with rdfs:Resource). The difference arises from the fact that 
ODM is not intended for metamodeling as RDF is, similarly to the case with rdf:type 

Summary of Ontology Definition Metamodel 

The summary of ODM concepts is given in Table 1 in the Appendix. The first column 
represents original RDF, RDF(S) and OWL concepts, which are used as the starting point 
for defining the ODM. The corresponding ODM concepts are listed in second column. 
The third and fourth columns summarize the Ontology UML Profile, which will be 
described in our future work, and is given here for a brief overview. 

6 CONCLUSIONS 

The metamodel defined in this paper is in accordance with the OMG’s RFP initiative for 
ontology modeling. Accordingly, we borrowed the name ODM for our metamodel from 
the OMG’s RFP. The proposed solution enables using ontologies in the way that is closer 
to software engineering practitioners. Also, since the ODM is defined as a MOF-
compliant language it is possible to store ontologies in MOF-based repositories, as well 
as to share and interchange ontologies using XMI.  

The proposed ODM can be considered as a part of  the effort to specify standard 
ontology metamodel. Its important feature is that it is based on OWL. 

Future developments based on the proposed ODM include defining the ontology 
UML Profile. It should enable a wide use of UML notation in ontology modeling. This 
way, the ODM concepts can be used as stereotypes in the UML models (similar to UML 
CORBA Profile or other OMG’s UML Profiles). Further plans include using Java 
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Metadata Interface (JMI) [Dirckze02] to enable creation, storage, access, discovery, and 
exchange of ODM-defined ontologies using standard Java interfaces. 
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APPENDIX 

RDFS Concept Ontology Definition 
Metamodel Concept 

Base UML 
Class 

UML Stereotype 
(inside « ») or 
Tag 

rdfs:Resource abstract class Resource   
rdfs:Datatype class Datatype DataType  
rdfs:range association range Association or 

Attribute 
«range» 

rdfs:domain association domain Association or 
Attribute 

«domain» 

rdfs:type association type Dependency «instanceOf» 
rdfs:subClassOf association subclassOf Generalization «subClassOf» 
rdfs:subPropertyOf association subPropertyOf Generalization «subPropertyOf» 
rdfs:label attribute label   
rdfs:seeAlso association seeAlso Association «seeAlso» 
RDF Concept Ontology Definition 

Metamodel Concept 
Base UML 
Class 

UML Stereotype 
(inside «») or 
Tag 

rdf:Property abstract class Property   
rdf:Statement class Statement Object  «ObjectProperty

» or 
«DatatypeProper
ty» 

rdf:subject association subject Link or 
AttributeLink 

«subject» 

rdf:object association object Link or 
AttributeLink 

«object» 

rdf:predicate association predicate Dependency «instanceOf» 
rdf:ID attribute ID Element Name  
OWL Ontology Concept Ontology Definition 

Metamodel Concept 
Base UML 
Class 

UML Stereotype 
(inside «») or 
Tag 

owl:Ontology class Ontology Package «ontology» 
owl:Class class Class Class «OntClass» 
Enumeration class Enumeration Class «Enumeration» 

mailto:devedzic@fon.bg.ac.yu
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or enumeration 
owl:Restriction abstract class Restriction   
owl:onProperty association onProperty Association «onProperty» 
ValueConstraint abstract class 

ValueConstraint 
  

owl:allValuesFrom association allValuesFrom 
and class AllValuesFrom 

Association 
and Class 

«allValuesFrom» 
(Assoc.) and 
«AllValuesFrom» 

owl:someValuesFrom association 
someValuesFrom and class 
SomeValuesFrom 

Association 
and Class 

«someValuesFro
m» (Assoc.) and 
«SomeValuesFro
m» 

owl:hasValue association hasValue and 
class HasValue 

Dependency 
and Class 

«hasValue» 
(Assoc.) and 
«HasValue» 

CardinalityConstraint abstract class 
CardinalityConstraint 

  

owl:minCardinality class MinCardinality AssociationEnd 
multiplicity 

 

owl:maxCardinality class MaxCardinality AssociationEnd 
multiplicity 

 

owl:cardinality class Cardinality AssociationEnd 
multiplicity 

 

owl:intersectionOf association intersectionOf 
and 
class Intersection 

Dependency 
and 
TaggedValue 

«intersectionOf» 
(Dep.), 
intersection tag 
or «Intersection»  
for Class 

owl:unionOf association unionOf and 
class Union 

Dependency 
and 
TaggedValue 

«unionOf» 
(Dep.), union tag 
or «Union» for 
Class 

owl:complementOf association complementOf 
andClass ComplementOf 

Dependency 
and 
TaggedValue 

«complementOf» 
(for 
Dependency), 
complement tag 
or 
«Complement» 
for Class 

owl:equivalentClass association equivalentClass Dependency «equivalentClass
» 

owl:disjointWith association disjointWith Dependency «disjointWith» 
owl:ObjectProperty class Objectproperty Class «ObjectProperty

» 
owl:DatatypeProperty class DatatypeProperty Class «DatatypeProper

ty» 
owl:equivalentProperty association 

equivalentProperty 
Dependency «equivalentProp

erty» 
owl:inverseOf association inverseOf Dependency «inverseOf» 
owl:FunctionalProperty class FunctionalProperty TaggedValue functional 
owl:InverseFunctionalProper
ty 

class 
InverseFunctionalProperty 

TaggedValue inverseFunctiona
l 
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owl:TransitiveProperty class TransitiveProperty TaggedValue transitive 
owl:SymmetricProperty class SymmetricProperty TaggedValue symmetric 
Individual class Individual Object «ontClass» 
owl:Thing instance of class Individual   
owl:sameAs and 
owl:sameIndividualAs 

association sameAs Dependency «sameAs» 

owl:differentFrom association differentFrom Dependency «differentFrom» 
owl:allDifferent association allDifferent Dependency «allDifferent» 
owl:oneOf association type Dependency «instanceOf» 
owl:AllDiferent class AllDifferent Class «AllDifferent» 
owl:distinctMembers association distinctMembers Dependency «distinctMember

s» 
owl:equivalentProperty association 

equivalentProperty 
Association «equivalentProp

erty» 
owl:backwardCompatibleWit
h 

owl.backwardCompatibleWit
h 

Dependency «backwardComp
atibleWith» 

owl:imports owl.imports Dependency «imports» 
owl:incompatibleWith owl.incompatibleWith Dependency «incompatibleWit

h» 
owl:inverseOf owl.inverseOf Dependency «inverseOf» 
owl:priorVersion owl.priorVersion Dependency «priorVersion» 

 


