
Vol. 3, No. 11
Special issue: OOPS track at SAC 2004, Nicosia/Cyprus

SmartReflection: Efficient Introspection in Java

Walter Cazzola
DICo - Department of Informatics and Communication,
Università degli Studi di Milano
cazzola@dico.unimi.it

In the last few years the interest in reflection has grown and many modern programming
languages/environments (e.g., Java and .NET) have provided the programmer with
reflective mechanisms, i.e., with the ability of dynamically looking into (introspect) the
structure of the code from the code itself. In spite of its evident usefulness, reflection
has many detractors, who claim that it is too inefficient to be used with real profit. In
this work, we have investigated about the performance issue in the context of the Java
reflection library and presented a different approach to the introspection in Java that
improves its performances. The basic idea of the proposed approach consists of moving
most of the overhead due to the dynamic introspection from run-time to compile-
time. The efficiency improvement has been proved by providing a new reflection library
compliant – that is, it provides exactly the same services –, with the standard Java
reflection library based on the proposed approach. This paper is focused on speeding
up the reification and the invocation of methods, i.e., on the class SmartMethod that
replaces the class Method of the standard reflection library.
Keywords: Reflection, Introspection, Optimization, Java, Java Reflection Library.

1 INTRODUCTION

In the last few years many researchers (see for example [15,3]) stressed the relevance
of reflection, reflective behavior and meta-level architectures. This growing interest
in reflection is also testified by the fact that both Java [1] and .NET [8] architec-
tures, – that is, two of the most used programming architectures – are intrinsically
reflective [12] or provide the programmer with many reflective features (see the Java
core reflection library [13] and [6] for an overview of the reflective features of Java).

Reflection is defined as the activity performed by a program when doing com-
putations about itself [10]. The reflective activity is incarnated by several different
activities: the most relevant and used are introspection and intercession. They are
defined as the ability for a program to respectively observe and modify its own
structure, state and execution. The reflective activities are usually carried out on
representatives (called reifications) of the program itself constantly kept updated
with their referent, i.e., any variation in the program structure and behavior is
reified into its reifications and vice versa.

Modern programming languages/environments such as Java and .NET provide
the programmer with limited reflective capabilities as a mix of introspection and

Cite this article as follows: Walter Cazzola: "SmartReflection: Efficient Introspection in Java",
in Journal of Object Technology, vol. 3, no. 11, December 2004, Special issue: OOPS track at
SAC 2004, Nicosia/Cyprus, pp. 117–132, http://www.jot.fm/issues/issue_2004_12/article6.

mailto:cazzola@dico.unimi.it
http://www.jot.fm/issues/issue_2004_12/
http://www.jot.fm

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

partially of intercession (intercession is usually limited to method invocation and
attribute manipulation). Generally, the programmer can dynamically reify some
structural aspects of his program as methods, constructors, attributes, and classes
(i.e., (s)he can observe the program structure); then (s)he can discretionary use such
reifications for invoking methods and creating new objects (i.e., (s)he can modify the
program behavior). Unfortunately, coming into the limelight both merits and flaws
of reflection are more evident. The most raised issue against the use of a reflective
solution is related to its performance. Obviously, introspection and intercession are
expensive tasks when carried out during program execution. Many attempts have
been done to improve this situation, most of them are related to move reflection from
run-time to compile-time [4,11] or load-time [5]. But, there are still many situations
where the introspection and intercession must take place at run-time. e.g., in remote
communications where we are looking for unknown services.

In this work, we have investigated how to speed up the introspection and in-
tercession capability provided by the Java reflection library. In particular, we have
proposed a different approach to reification that moves most of the overheads due
to the reflective activity from run-time to compile-time. The approach consists of
demanding the reflective activities to a reification stub prepared at compile-time.
Such an approach also allows of speeding up the reflective method invocations whose
performance usually presents penalties due to the dynamic resolution of many de-
tails that could be statically solved, e.g., type checking. The whole paper focuses
on applying such an approach to the methods reification and on their invocation,
i.e., we will explore the implementation of the class SmartMethod that provides the
same functionality of the corresponding class Method of the Java reflection library
but improving the efficiency of method invocation. The work is based on the Java
language, and on the efficiency of its reflection library [13], but similar considerations
apply to the .NET reflective mechanism as well.

The rest of the paper is organized as follows. Section 2 shows the basic idea
for optimizing the Java method invoke(), whereas section 3 goes deepen in the
realization. Section 4 gives a glance at the performance improvements. Finally in
section 5 we draw our conclusions and propose some future works.

2 UNFOLDING METHOD LOOKUP

The Java core reflection library [13] provides the programmer with classes (Field,
Method, and so on) whose instances reify specific aspects (that is, respectively, fields,
methods and so on) of a class. Such aspects are reified by invoking specific methods
(e.g., getFields() for reifying all the fields of a class) on a reification of a Java
class (that is, an instance of the class Class).

In this work, we focus our attention on the class Method. Each of its instances
reifies all data related to a given method (i.e., its name, its argument types, its return
type and so on) and it also allows the invocation of the reified method (through the

118 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

2 UNFOLDING METHOD LOOKUP

method invoke()). As an example, the reflective invocation of the method:

public void testMethod(float f);

defined by the class TestClass is carried out by the following snippet of code:

Class c = Class.forName("TestClass");
Method m = c.getMethod("testMethod", new Class[]{Float.TYPE});
m.invoke(c.newInstance(), new Object[]{new Float(7)});

This piece of code is quite familiar to Java programmers and it is deeply rooted
in the reflection terminology. Initially, the class TestClass must be reified, then
such a reification can be inspected (introspection) and the method testMethod()
can be reified, e.g., by invoking the method getMethod(). Finally, m is an instance
of the class Method that represents a reification of the requested method, m has
the reflective ability of activating the method it represents by invoking the method
invoke().

As explained in the API documentation, the method invoke() activates the
underlying method reified by this (an instance of Method), on the specified object
with the specified parameters. Individual parameters are automatically unwrapped
to match primitive formal parameters, and both primitive and reference parame-
ters are subjected to method invocation conversions as necessary. The underlying
method is invoked using dynamic method lookup (cf. [7] section 15.12.4.4); in par-
ticular, dynamic dispatching based on the run-time type of the target object will
occur.

The described approach implies that a lot of execution time is spent for sim-
ulating the method lookup, for checking the method compatibility and, above all,
for dispatching the method call to the referring object in accordance with the fact
that the method is inherited, invoked through an interface or invoked by exploiting
the late binding mechanism. This fact is fairly evident comparing the time spent in
invoking a method through a class with the time spent by using an interface (see
table 1).

Our idea for speeding up method invocation is quite simple and consists of letting
the compiler resolve method overloading for us and delegating the real invocation
to the standard invocation mechanism (not to the reflective one).

To realize this mechanism, we have stolen the stub idea from the Java RMI [14].
Each class, that we refer as referent class, is associated with another class, named
after the referent class name by adding the suffix "_InvokeStub", that plays the role
of a stub. The stub implements an ad hoc method invoke(), called smartInvoke(),
tailored on the referent class and implementing also some ancillary routines. The

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 119

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

method smartInvoke() has a per-class structure that renders the method dispatch
more efficient providing a binding for each method defined by the referent class to
its direct invocation.

At this point, the reflective method invoke(), when used to call a method of
the referent class, simply delegates the execution to the method smartInvoke() of
the associated stub and indirectly to the direct call of the method that we would
like to invoke. In this way, the reflective invocation exploits the standard invocation
mechanism taking benefit from static method lookup and dispatching.

Reconsidering our example, the class TestClass will be associated with the class
TestClass_InvokeStub. Such a class will implement the method smartInvoke()
providing a mapping to a direct call for each method defined or inherited by the
class TestClass itself; in particular it provides the following mapping for the method
testMethod():

public class TestClass_InvokeStub extends SmartInvokeStub {
public Object smartInvoke(Object o, int h, Object[] a){
switch (h) {
case -1822788606:
((TestClass)o).testMethod(((Float)a[0]).floatValue());
return null;

/* similarly, the omitted code would have shown the
case statements for invoking the other methods de-
fined or inherited by the class TestClass. */

} /* end switch */
}

}

The method smartInvoke() basically consists of a switch statement indexed on
the hashcode of the methods (static or not) that in somehow can be called through
the class (static methods), through an interface or through an instance of the class.
This means that it is indexed on all public, protected, default-access and private
methods both defined and inherited by the class. The fact that private methods are
included could sound weird but the Java core reflection library permits, thanks to the
method setAccessible(), a meta-programmer to circumvent the visibility modifier
declared by the programmer.

3 METHOD OPTIMIZATION

The described idea is embedded in a more pretentious project, called SmartReflec-
tion, consisting of optimizing the whole Java core reflection library. The optimization

120 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 METHOD OPTIMIZATION

of method invocation has been realized by: (i) writing a class, named SmartMethod,
which exploits the described mechanism and (ii) a generator which unfolds the
method invocation and builds the described stubs. Similarly, all the classes sup-
porting reflection in the standard Java reflection library (i.e., Class, Field, and
Constructor) have been replaced by compliant but more efficient classes (respec-
tively, SmartClass, SmartField, and SmartConstructor) based on the same idea
exposed in this work. In the rest of the section we describe the class SmartMethod
and its interface, how the generator works and how the methods are reified in in-
stances of the class SmartMethod.

Method vs SmartMethod

We have built a class, named SmartMethod which provides the programmer with
exactly all the functionality provided by the Method class. This means, as shown in
the code below, that the public interface of the class SmartMethod defines the same
methods, with the same signature as the class Method.

package cazzolaw.lang.reflect;

import java.lang.reflect.Member;
import java.lang.reflect.AccessibleObject;

public class SmartMethod extends AccessibleObject implements Member{
/* SmartMethod constructor */

public SmartMethod(String _methodName, Class[] _argClasses,
Class _declaringClass, SmartInvokeStub _stub) {...}

/* Methods inherited from class AccessibleObject */
public static void setAccessible(AccessibleObject[] a,

boolean flag) throws SecurityException {...}
public void setAccessible(boolean flag)

throws SecurityException {...}
public boolean isAccessible() {...}

/* Methods required by the interface Member */
public Class getDeclaringClass(){...}
public int getModifiers() {...}
public String getName() {...}

/* Methods defined as in the class Method */
public boolean equals(Object obj) {...}
public Class[] getExceptionTypes() {...}
public Class[] getParameterTypes() {...}

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 121

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

public Class getReturnType() {...}
public int hashCode() {...}
public toString() {...}

public Object invoke(Object obj, Object[] args)
throws InvocationTargetException,
IllegalArgumentException,IllegalAccessException {...}

}

The class SmartMethod, as well as the class Method, must provide a general
approach to method reification, therefore it cannot be statically bound to the stubs
and it cannot directly embed them. Thus, the class SmartMethod is associated to
the right stub by a dynamic clientship that is perfected when the method is reified,
that is, when an instance of the SmartMethod class is created.

On the contrary of the class Method, the class SmartMethod has a public con-
structor whose unique aim consists of associating the method reification with the cor-
responding stub. The constructor knows which is the declaring class of the method
to be reified (information passed to the constructor of the class Method as well) from
this information it is able to determine which is the stub tailored on such a class
and to get an instance of such a stub.

public SmartMethod(String _methodName, Class[] _argClasses,
Class _declaringClass, SmartInvokeStub _stub) {

methodName = _methodName;
parameterTypes = _argClasses;
declaringClass = _declaringClass;
this.stub = _stub;
code = stub.hashCode();
returnClass = stub.smartGetReturnType(code);
_modifiers = stub.smartGetModifiers(code);
_exceptions = stub.smartGetExceptionsType(code);
_accessible = true;
}

Notwithstanding that the class has a public constructor, instances of the class
should be got by inspecting the class reification itself, in fact, as visible in the code
of the constructor above, the stub is passed as an argument and it could be difficult
for the programmer to create the correct one without the API support.

The stub provides the method reification with a connection to the low-level
method invocation unfolding. This separation grants the flexibility of the approach
because free the implementation of the SmartMethod class from the knowledge of

122 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 METHOD OPTIMIZATION

the static type of the caller but it is also one of its flaws, because we invoke stub’s
methods by exploiting late binding and therefore by resolving method dispatch to
the stub at run-time.

public Object invoke(Object obj, Object[] args) {
return stub.smartInvoke(obj, code, args);

}

The method invoke(), whose code is reported above, is just a wrapper for an
invocation to the method smartInvoke() defined in the stub and connected at
construction-time. Similarly, all information about the method (return type, excep-
tion types, and so on) are encapsulated in the stub (thanks to the ancillary routines
abovementioned) and can be retrieved, when the method is reified, efficiently as
well.

The class SmartMethod has been designed to provide the programmer with the
same functionality and the same constraints of the class Method. Therefore, this
means that we can reify the same category of methods both using Method and
SmartMethod and the reflective invocation carried out by an instance of SmartMethod
can be inhibited by revoking the ReflectPermission through a security manager
as well.

Stub Generation

The automatic generation of stubs represents the most important and also the most
delicate and time-consuming activity to carry out to grant the correct behavior of our
mechanism. In our idea, static generation, i.e., at compile-time, is the best choice in
term of performance to build the stubs but this solution has also some drawbacks: i)
at compile-time it is difficult to know how many classes need a stub and probably will
be generated too much stubs, but above all ii) there are situations in which neither
the bytecode nor the source code of the classes to reify are available at compile-
time, e.g., in the case of classes generated on-the-fly or dynamically downloaded
from remote (RMI stubs and applet classes).

We have chosen a compromise between static and dynamic stub generation: i)
providing a tool, named SmartInvokeC, for the automatic generation of the stub
from the class bytecode at compile-time, and ii) enabling the class SmartClass,
who is responsible of the method reification, of detecting the absence of the stub
bytecode and of generating it on-the-fly. This compromise permits of obviating to
the issues raised above rendering the approach applicable in every context.

The SmartInvokeC inspects the bytecode of a class looking for information
about, among the others, the methods that are invocable, that is, as said before,
all the methods, independently of their right accesses, declared by one of the classes

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 123

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

in the class hierarchy of the inspected class. Inspection takes place recursively
on each class c in the class hierarchy by collecting all its declared methods; this
raking of methods is carried out by exploiting the standard reflective mechanism
(i.e., the getDeclaredMethods() method) retrieving all the methods (both public,
protected, default-access and private) declared in the class (see the code of the
getMethodsList() method, reported below).

The Java method invocation mechanism establishes that a method matching the
signature of the invoked method whose visibility is not hidden by the definition of
another method with the same signature is activated. Therefore, it is activated the
method implemented by the dynamic type of the caller or by one of its ancestors
(the first occurrence encountered following the inheritance link) when a method is
invoked. This behavior is also granted with our reflective invocation by removing
the overridden methods from the list of the invocable methods and delegating their
activation to the dynamic lookup provided by the direct invocation of Java.

Methods collection and classification is realized by the following snippet of code:

protected Method[] getMethodsList() {
Class _class = Class.forName(ClassName);

/* ClassName is the name of the class we are introspecting. */
Package _package = _class.getPackage();
Package _spackage = _package;
Method[] _ms;
Vector _vm = new Vector(), _vmp = new Vector();
while (_class != null) {
_ms = _class.getDeclaredMethods();
for(int i=0;i<_ms.length; i++)
if !(_vm.contains(_ms[i]) || _vmp.contains(_ms[i]))
if Modifier.isPrivate(_ms[i].getModifiers()) ||
(Modifier.isProtected(_ms[i].getModifiers()) &&
(!isTheSamePackage(_package, _spackage)))

_vmp.add(_ms[i]);
else _vm.add(_ms[i]);

_class = _class.getSuperclass();
if (_class != null) _spackage = _class.getPackage();

}
Method[] _ml = new Method[_vm.size()+_vmp.size()];
_publicMembers = _vm.size();
for(int j=0; j<_vm.size(); j++)

_ml[j] = (Method)_vm.elementAt(j);
for(int j=0; j<_vmp.size();j++)
_ml[j+_publicMembers] = (Method)_vmp.elementAt(j);

return _ml;
}

124 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 METHOD OPTIMIZATION

SmartMethod

effective
call

expected
call

reflective
invocation

SmartInvokeC

Javac

.java

.java

.java

.class

.class

.class

.class
.class

.class.class

.class

.class

A

C

A

B

C

A_InvokeStub

B_InvokeStub

B

C_InvokeStub

m.invoke(b,null)

compile−time

run−time
m

b

stub

Figure 1: Compiling the stubs and reflective method invocation
through the stubs

Collected methods are classified in two groups after their access rights. The for-
mer group collects the public and default-access methods and the methods defined
as protected in the same package of the examined class; whereas the second col-
lects the remaining methods. We distinguish the methods in these two categories
because the methods in the first category can be invoked without restrictions. On
the contrary, the invocation of the methods in the second category must obey to
some restrictions due to their access qualification. We have gone round such restric-
tions by delegating their invocation to the Java Native Interface (JNI) [9]. C/C++
programs can invoke Java methods without undergoing to the access restrictions
defined by the Java class. Notwithstanding that to find an application for the re-
flective invocation of private methods is not trivial, we have implemented it for
compatibility with the standard reflective invocation mechanism.

The whole mechanism for fast retrieving and invoking a method is based on
hashcoding the information necessary to discriminate such a method from the others.
The method signature (that is, its name and the classes of its arguments) contains
all the necessary information for discriminating methods. We do not consider the
method return type because it does not contribute to the overloading resolution
(that is Java does not allow the definition of two methods with the same name and
arguments but different return type). The hashcodes associated with each method
are calculated by the SmartInvokeC tool during the bytecode analysis. All the
hashcodes are calculated from the method signature and embedded in the stub
(in particular, in the method hashCode() of the stub). Conflicts are managed
by associating a manually incremented sub-hashcode with the calculated one. At
method reification the corresponding hashcode is retrieved from the stub. This
mechanism guarantees the unicity of the hashcode, its fast retrieving and therefore
a perfect and fast mechanism for discriminating the invocable methods in the stub.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 125

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

Figure 1 summarizes how compilation takes place and how the reflective method
invocation exploits the stub. As usual, bytecodes are generated from the classes by
the Java compiler (e.g., javac). From the bytecode of the classes, the SmartInvokeC
creates and compiles the corresponding stub classes. At run-time, method reifica-
tion associates the reified method with the stub of the class declaring the reified
method. The reflective invocation of a method through the invoke() method of
the SmartMethod class is hijacked to the stub and after that to the class declaring
such a method rather than directly to declaring class. The intermediate step permits
to transform the reflective call in a direct call as explained in the previous sections.

Method Reification: SmartClass

In the standard Java core reflection library, method reification is the result of
class inspection – that is, the class Class provides some methods (getMethod(),
getMethods(), getDeclaredMethod(), and getDeclaredMethods()) which look
at a class reification for declared and inherited methods –, hence no explicit Method
creation is neither necessary nor allowed.

Since we want to supply a complete substitution of the java.lang.reflect
library with exactly the same functionality (both in terms of API interface and use
and in terms of methods behavior) we have also provided a replacement for the class
Class (named SmartClass) that takes care, among the other duties, of method
reification.

The class SmartClass provides exactly the same interface and functionality of
the class Class. From the point of view of the method introspection, i.e., the main
topic of this work, the class SmartClass provides two couple of methods: the first
couple (getDeclaredMethod(), and getDeclaredMethods()) takes care of reify-
ing the methods declared by the class independently of their visibility constraints;
whereas the second couple (getMethod(), and getMethods()) takes care of reifying
the public methods declared or inherited by the class. Notwithstanding that the
behavior of these methods is quite different, their implementation is very similar:
they check if the called method can reify the requested method, in the positive case
they create the reification (that is, the instance of SmartMethod for the requested
method) otherwise an exception is raised.

package cazzolaw.lang;

import cazzolaw.lang.reflect.*;
import cazzolaw.generator.*;
import java.util.*;

public class SmartClass {
private Hashtable _pool;
private SmartClass(String cn) throws ClassNotFoundException {...};

126 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

java.lang.reflect

3 METHOD OPTIMIZATION

static public SmartClass forName(String classname) ... {...}
public SmartMethod getDeclaredMethod(String name, Class[] args)

throws NoSuchMethodException, SecurityException {
Class stubClass = null; SmartInvokeStub stub = null;
try {

stub = _pool.get(_class.getName()+"_InvokeStub");1

if (stub == null)
stubClass = Class.forName(_class.getName()+"_InvokeStub");

} catch(ClassNotFoundException cnfe) {
SmartInvokeGenerator SIG =

new SmartInvokeGenerator(_class.getName());
SIG.generating(); stubClass = SIG.jit();

} catch(Exception e) {e.printStackTrace();}
try {

stub = (SmartInvokeStub)stubClass.newInstance();
} catch(Exception e) {e.printStackTrace();}
_pool.put(_class.getName()+"_InvokeStub", stub);
return new SmartMethod(name, args, _class, stub);

}
public SmartMethod[] getDeclaredMethods() ... {...}
public SmartMethod getMethod(String name, Class[] args) ... {...}
public SmartMethod getMethods() ... {...}

...
}

The method applicability does not revest any particular relevance whereas the
method reification is more interesting. The method reification consists of creating
an instance of the class SmartMethod and in associating the reification with the
correct stub. It is important to note that the association of the stub with the
reification implies the loading of its bytecode from the disk, this one is a very time
consuming operation, fortunately another consideration permits of cushioning such
an overhead: methods reified from the same class share the same stub. To take
advantage of this last consideration, the class SmartClass keeps a pool of stubs
that provides the required stub when already created/loaded. The above reported
piece of code shows the structure of the class SmartClass and the implementation
of the method getDeclaredMethod() neglecting to report the details related to the
checking of the method applicability.

Summarizing, the quest for the correct stub takes three steps: i) to look for the
stub in the pool (this could save an access to the disk), if the necessary stub has
not be used before ii) to try loading the bytecode from the disk, if also this fails

1Please note that, the name of the class of the stub is built from the name of its referent class
by appending the string "_InvokeStub". At the moment, the management of the possible name
clashing associated with this solution is out of our scope.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 127

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

iii) to generate the code for the stub and the related bytecode on-the-fly (methods
generating() and jit()). As described in the previous section, we have decided to
generate the stub code and related bytecode on-the-fly when the corresponding class
file is not available. The role of deus ex-machina played by the class SmartClass
during the method reification enables it also to detecting the absence of the class file
and therefore it is the perfect actor for generating the stub on-the-fly. As shown in
the code above, the code generation is carried out by the same routine used by the
tool SmartInvokeC and the bytecode creation is entrusted to the instantj library2.

4 PERFORMANCE EVALUATION

We have quantified the overall performance of the method invoke() of the class
SmartMethod with respect to standard Java method invocation and the method
invoke() of the Java core reflection library. The aim of our experiments consists
of measuring how long standard Java method invocation and both kind of reflective
invocations take to invoke a method. All the experiments were performed on an
Intel r© P4@2.2 GHz with 512Mb RAM running Linux (kernel version 2.4.21), and
jdk v1.4.2 (last stable and official release at the time of writing).

The scenario of our experiments is composed of a class which implements a
simple interface. This class defines some dummy methods; these methods are dis-
tinguishable for their access rights (public, protected, default-access or private).
Methods taken in consideration for the experiments – following the hints given by
the Sun’s FAQ on Java HotSpot VM benchmarking3 –, have an argument, compute
some values by using such an argument and return the computed value. In this
way, we avoid the optimizations carried out by HotSpot as short method inlining
and the removal of dead code that will not render germane the comparison with the
direct method call. Basically, the benchmarking has been carried out by repeatedly
invoking on a class (or on an interface) these methods and then by calculating the
average of the achieved time.

Table 1 summarizes the results of our experiments. The second column repre-
sents how long the standard method invocation takes to invoke a public method.
Similarly, the third and the forth columns show how long takes the same invocation
carried out by using, respectively, the standard method invoke() and our method
invoke(). The experiments have been done by invoking the methods through a
class (second and third rows) and through an interface (fifth and sixth rows) and
both enabling and disabling the HotSpot just-in-time compiler.

Calling a method on a class results nearly 25% faster by using our approach
than by using the standard method invoke(). Notwithstanding this improvement,
as expected (see section 2), we got the best by invoking methods on an interface.
In this case, our approach is nearly 60% faster than standard method invoke().

2See. http://instantj.sourceforge.net.
3See. http://java.sun.com/docs/hotspot/PerformanceFAQ.html.

128 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

http://instantj.sourceforge.net
http://java.sun.com/docs/hotspot/PerformanceFAQ.html.

4 PERFORMANCE EVALUATION

call via a class direct call invoke smart-invoke
HotSpot 0.0000867 0.000204 0.000154
HotSpot (disabled) 0.0006602 0.0017125 0.0012946
call via an interface direct call invoke smart-invoke
HotSpot 0.0001213 0.0027938 0.0002116
HotSpot (disabled) 0.000606 0.0039545 0.0012208

? all the reported time are expressed in milliseconds.

Table 1: Direct call, invoke() and our smart invoke() in com-
parison.

However, we are still far from getting the same performance as by using direct
invocation.

Table 1, for sake of clarity, summarizes the results only related to the invocation
of public methods. We have achieved quite similar figures invoking protected and
default-access methods. On the contrary, less good results have been achieved by
invoking private methods. This fact can be ascribed to the use of JNI for working
around the access protection, a further improvement should be achieved by writing
pure Java code which directly accesses to the JVM for invoking this kind of methods.

Method reification represents another aspect of the reflective method invocation
whose performance has to be investigated. In the Java reflection library, it is im-
possible to reflectively invoke a method before reifying it. Therefore the method
reification contributes to the overall performance of the reflective invocation. It is
fairly evident that the method reification with our approach cannot take less than
the approach provided by the standard reflection library because it requires the
loading or the generation on-the-fly of the bytecode for the stub. We have carried
out a very simple experiment that involves a class implementing an interface with a
single method, in the experiment such a method has been repeatedly reified by using
both approaches and by inspecting both the class and the interface. The average of
the achieved times is reported in table 2. From this experiment we have discovered
that the bytecode loading affects the method reification performance approximately
of the 10% whereas the stub generation is more expensive (around the 25% more
than the standard approach).

standard on disk on-the-fly
reification via class inspection 0.005418 0.006055 0.006806
reification via interface inspection 0.005405 0.006561 0.007724

? all the reported time are expressed in milliseconds.

Table 2: Method reifications in comparison.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 129

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

As expected our approach is slower than standard one with respect to the method
reification but to verify the usefulness of the mechanism we have to evaluate how
long it takes to become advantageous, that is, how many invocations are necessary
to amortize method reification overhead and take advantage from the method invo-
cation speed up. To evaluate this aspect we have to consider two factors: i) the time
needed to reify the method, and ii) the time necessary to invoke it. The former is
an overhead that we have to pay once whereas the latter is paid at each invocation,
after these considerations and from the figures reported in tables 1 and 2 it is easy
to conclude that to absorb the initial overhead due to the method reification we
have to invoke it few times through an interface and around twelve times through
an instance. We can consider such an amortize factor as acceptable because the
same stub is shared by all the methods (by all the fields and constructors as well)
of a class and it is reasonable that, in a real program, we have to reflectively access
many times to the attributes (methods, constructors and fields) of the same class.

5 CONCLUSIONS

In this paper we have exposed our idea for optimizing the performances of the reflec-
tive Java reflection library focusing our efforts on the reflective method invocation.
Basically the idea consists in delegating the method lookup and the late binding to
the standard invocation mechanism provided by Java. We have also proved the effec-
tiveness of our solution by implementing it as a library – named SmartReflection –
that provide the same functionality as the Java core reflection library. In particular,
we have presented the replacement for the class Method – named SmartMethod –
which provides method introspection and invocation and the replacement for the
class Class – named SmartClass – which provides the mechanism for transparent
method reification. Moreover, we have presented the achieved results and the gen-
erator used to unfold the method lookup mechanism and to provide the run-time
support to the direct call of each method through the instances of SmartMethod.

A different approach to render more efficient the method invoke() consists
of having a pure object-oriented implementation of the class Method. Basically,
the class Method maintains the same interface but it is an abstract class and its
subclasses will embed, in the implementation of their method invoke(), the direct
call to the method they are reifying. Therefore, instances of Method are never
created, instances of its subclasses are created and used instead.

Surely a similar approach could be more elegant and flexible than the one pro-
posed in this paper and probably it gives the same benefits or better in terms of
performance but it has two major problems that have pressed us to not further
consider this approach. First, this approach presupposes to directly instantiate the
class reifying the method to invoke rather than instantiate the class Method with
the right parameters (it does not provide the programmer with a uniform approach
to method reification). Second, the first in importance, we have to pay what we gain
in terms of performance with an elevate proliferation of classes (a new class for each

130 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

5 CONCLUSIONS

method). Besides, we would need a tool which examines the classes and generates
all the concrete sub-classes of the class Method.

Our approach is still far from being perfect. Most of the time which separates
a direct invocation from our reflective invocation is lost in type conversions (we
must cast the arguments from Object to the type expected by the method), in
binding the SmartMethod with the stub of the right class (late binding) and in
mangling Java code with C++ code through the JNI interface (C++ permits to work
around invocation restrictions, e.g., it permits to invoke private methods). We
are studying a way to overcome these flaws and render more and more efficient our
reflection library and our invocation mechanism.

ACKNOWLEDGMENTS

This work is based on preliminary results published in [2], the idea that allowed us
to get such results has come out from a lively and cleaver discussion about Java
reflection with Angelika Langer that the author wishes to thank.

References

[1] Ken Arnold and James Gosling. The Java Programming Language. The Java
Series ... from the Source. Addison-Wesley, Reading, Massachusetts, second
edition, December 1997.

[2] Walter Cazzola. SmartMethod: an Efficient Replacement for Method. In Pro-
ceedings of the 9th Annual ACM Symposium on Applied Computing (SAC’04),
pages 1305–1309, Nicosia, Cyprus, on 14th-17th of March 2004. ACM Press.

[3] Walter Cazzola, Shigeru Chiba, and Thomas Ledoux. Reflection and Meta-
Level Architectures: State of the Art, and Future Trends. In Jacques Malen-
fant, Sabine Moisan, and Ana Moreira, editors, ECOOP’2000 Workshop Reader,
LNCS 1964, pages 1–15. Springer, December 2000.

[4] Shigeru Chiba. A Meta-Object Protocol for C++. In Proceedings of the 10th
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’95), pages 285–299, Austin, Texas, USA, October 1995.
ACM.

[5] Shigeru Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino,
editor, Proceedings of the 14th European Conference on Object-Oriented Pro-
gramming (ECOOP’2000), LNCS 1850, pages 313–336, Cannes, France, June
2000. Springer-Verlag.

[6] Ira R. Forman and Nate B. Forman. Java Reflection. Manning Publications,
November 2004.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 131

SMARTREFLECTION: EFFICIENT INTROSPECTION IN JAVA

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. The Java Series ... from the Source. Addison-Wesley, Reading,
Massachusetts, second edition, 2000.

[8] Kevin Hoffman, Jeff Gabriel, Denise Gosnell, Jeff Hasan, Christian Holm,
Ed Musters, Jan Narkiewickz, John Schenken, Thiru Thangarathinam, Scott
Wylie, and Jonothon Ortiz. Professional .NET Framework. Wrox Press., 2001.

[9] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
The Java Series ... from the Source. Addison-Wesley, Reading, Massachusetts,
June 1999.

[10] Pattie Maes. Concepts and Experiments in Computational Reflection. In
Norman K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’87),
pages 147–156, Orlando, Florida, USA, October 1987. ACM.

[11] Hidehiko Masuhara and Akinori Yonezawa. Design and Partial Evaluation
of Meta-objects for a Concurrent Reflective Language. In Eric Jul, editor,
Proceedings of the 12th European Conference on Object-Oriented Programming
(ECOOP’98), LNCS 1445, pages 418–439. Springer-Verlag, July 1998.

[12] Microsoft Corporation. .NET Framework Developer’s Guide: Reflec-
tion Overview. Technical report, Microsoft Developer Network (MSDN),
2003. http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpguide/html/cpconreflectionoverview.asp.

[13] SUN Microsystems. JavaTM Core Reflection API and Specification. Technical
report, SUN Microsystems, February 1997.

[14] SUN Microsystems. JavaTM Remote Method Invocation - Distributed Comput-
ing for Java. White paper, SUN Microsystems, 1998. Internet Publication -
http://www.sun.com.

[15] Akinori Yonezawa and Satoshi Matsuoka, editors. Proceedings of 3rd Inter-
national Conference on Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection’2001), LNCS 2192. Springer, September 2001.

ABOUT THE AUTHORS

Walter Cazzola (Ph.D.) is currently an assistant professor at the
Department of Informatics and Communication (DICo) of the Uni-
versità degli Studi di Milano, Italy. His research interests include re-
flection, aspect-oriented programming, programming methodologies
and languages. He has written and has served as reviewer of several
technical papers about reflection and aspect-oriented programming.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://www.sun.com

