
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this column as follows: Conrad Bock: “UML 2 Activity and Action Models Part 5: Partitions”,
in Journal of Object Technology, vol. 3, no. 7, pp. 37-56.
http://www.jot.fm/issues/issue_2004_07/column4

UML 2 Activity and Action Models

Part 5: Partitions

Conrad Bock, U.S. National Institute of Standards and Technology

This is the fifth in a series introducing the activity model in the Unified Modeling
Language, version 2 (UML 2), and how it integrates with the action model [1]. The first
article gives an overview of activities and actions [2], while the next three cover actions
generally, control nodes, and object nodes. This one describes partitions, which are a way
of grouping actions that have some characteristic in common. In particular, they can
relate actions to classes that are responsible for them, and highlight the abstraction that
activities provide for interaction diagrams and state machines.

1 PARTITIONS

Partitions are groups of actions that highlight information already in an activity, or that
will be, and present it in a more compact way. Partitions do not have execution semantics
themselves, but because they are redundant with the information in the executable part of
the model, tools can automatically update the executable model when the user modifies
partitions or their contents. To reduce clutter, tools can also omit the redundant portions
of the execution from the diagram, while still keeping them in the model repository for
system generation. Figure 1 shows the example used in this article, adapted from [1][3].1
Each of the areas between the parallel, vertical lines is a partition, and this particular way
of notating them is called a swimlane. An alternate notation is shown in Figure 2, where
partitions are labeled on nodes.

1 Forks and join are shown for clarity, as suggested by [3], but are not necessary in this example, due to
similar semantics for actions [4].

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column4

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 38

Figure 1: Partition Example, Swimlane Notation

Figure 2: Partition Example, Node-based Notation

Fulfillment Customer Service Finance

Receive
Order

Fill
Order

Deliver
Order

Process
Payment

Send
Invoice

Close
Order

Fulfillment Customer Service Finance

Receive
Order

Fill
Order

Deliver
Order

Process
Payment

Send
Invoice

Close
Order

(Customer Service)

Receive Order

(Fulfillment)

Fill Order

(Fulfillment)

Deliver Order

(Finance)
Process
Payment

(Customer Service)

Send Invoice

(Customer Service)

Close Order

(Customer Service)

Receive Order

(Fulfillment)

Fill Order

(Fulfillment)

Deliver Order

(Finance)
Process
Payment

(Customer Service)

Send Invoice

(Customer Service)

Close Order

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 39

Because there is so much information in an activity, and so many ways to highlight it and
make it more compact, partitions can be extended by modelers and tools to support
applications not explicitly defined in UML. This article describes the ways of using
partitions predefined in UML and gives an example of a modeler-defined application. It
also discusses the translation of activities to interaction diagrams and state machines in
sections 3 and 6.

2 CLASS PARTITIONS

Partitions are often used to indicate what or who is responsible for actions grouped by the
partition. The term “responsible” has a wide variety of meanings, but the one defined by
UML is that a class supports the behavior invoked by actions in the partition. For
CALLOPERATIONACTION, this means the class defines the invoked operation [4]. For
CALLBEHAVIORACTION, it means that the class owns the behavior.2 For example, Figure
3 shows partitions representing classes, as would be appropriate to model generic systems
that operate in whatever company installs them.3 If the action FILL ORDER is to invoke an
operation, then the operation must be declared on the FULFILLMENT class. This is shown
on action PROCESS PAYMENT with the notation for CALLOPERATIONACTION that indicates
the target class of the invocation [4]. When all the CALLOPERATIONACTIONs conform to
their containing partitions, the partitions only highlight information already in the
activity. The companion class model is shown in Figure 4.4 Each company will have
instances of these classes, which are targets of the operation calls. See second half of this
section, and Figure 7.

2 Same applies to behaviors on nodes other than actions, for example, decision input behaviors on decision
nodes [5].
3 The guillemet notation is used for metaclasses as well as stereotypes, which are both metalevel concepts.
Keywords refer specifically to an aspect of the UML metamodel, such as metaclasses or metaproperties.
4 An alternative approach use partitions representing order and invoice classes, with operations on them
instead. This conforms to the conventional object-oriented development style of translating objective nouns
to classes and verbs to operations on them. Figure 3 is more typical of web services or agent techniques,
which identify active entities that operate on passive ones. These approaches highlight the responsible
parties, but have the disadvantage of being more brittle under organizational or industrial change [6]. The
alternatives could be harmonized by class partitions representing the sender of the message/operation,
combined with other dimensions representing the targets (dimensions are covered in section 5). This will be
addressed in revision.

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 40

Figure 3: Partitions Representing Classes

 Figure 4: Class Model for Figure 3

Tools can add value to class partitions by automatically maintaining consistency between
partitions, actions, and classes as the diagrams are modified. For example, when a
CALLOPERATIONACTION action is moved into the FULFILLMENT partition, the tool can
automatically move the invoked operation to the corresponding class, from whatever
class it was on previously. For applications that are strictly object-oriented, if a class
partition is added, the CALLBEHAVIORACTIONs in it can be converted to
CALLOPERATIONACTIONs, and operations automatically defined on the class with the

Fulfillment

Fill Order()
Deliver Order()

Customer Service

Receive Order()
Send Invoice()
Close Order()

Finance

processPayment()

Fulfillment

Fill Order()
Deliver Order()

Fulfillment

Fill Order()
Deliver Order()

Customer Service

Receive Order()
Send Invoice()
Close Order()

Customer Service

Receive Order()
Send Invoice()
Close Order()

Finance

processPayment()

Finance

processPayment()

«class»
Fulfillment

«class»
Customer Service

«class»
Finance

Receive
Order

Fill
Order

Deliver
Order

Process Payment
(Finance::

processPayment)

Send
Invoice

Close
Order

«class»
Fulfillment

«class»
Customer Service

«class»
Finance

Receive
Order

Fill
Order

Deliver
Order

Process Payment
(Finance::

processPayment)

Send
Invoice

Close
Order

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 41

behaviors used as a methods. Tools can also add value by making the diagrams more
compact while keeping the full specification in the underlying model repository. For
example, the diagram can omit the full CALLOPERATIONACTION notation, which is
redundant with the partitions, while leaving the action completely specified in the
underlying model.5

Once partitions, actions, and classes are consistent, there is the question of which
particular instances are targets for the CALLOPERATIONACTIONs. There are a number of
ways to show this. One is to add object flows that provide the instance as input to
CALLOPERATIONACTION, as shown in Figure 5. This has the obvious disadvantage of
clutter, but is explicit about the necessary inputs to the actions. It also makes clear that
the customer service department sending the invoice should be the same one that closes
the order. An alternative is to use partitions that represent instances directly, but this is
only useful for individual scenarios, not for specifying a behavior that must operate on
many instances. And it would still require object flows from value pins to pass instances
to the CALLOPERATIONACTION [4].

Figure 5: Partitions Representing Classes, with Object Flows

5 An example repository model of CALLOPERATIONACTION is shown in Figure 8 of [4].

«class»
Fulfillment

«class»
Customer Service

«class»
Finance

Receive
Order

Fill
Order

Deliver
Order

Process
Payment

Send
Invoice

Close
Order

Fulfillment

Customer
Service

Finance

«class»
Fulfillment

«class»
Customer Service

«class»
Finance

Receive
Order

Fill
Order

Deliver
Order

Process
Payment

Send
Invoice

Close
Order

Fulfillment

Customer
Service

Finance

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 42

A more concise way to specify the target instances of CALLOPERATIONACTION is by
navigation along attributes or associations from the same root object. Figure 6 shows an
activity with partitions representing navigation from instances of class COMPANY, which
has its own superpartition above the others. The navigated associations are shown in the
subpartitions (in UML 2 association ends can be properties of the class from which they
navigate).6 The class model is shown in Figure 7. For each instance of COMPANY,
navigating along the links FULFILLMENT, CUSTOMERSERVICE, and FINANCE will give the
target instance for operation calls contained by the corresponding partition. This
technique assumes that the entire activity is executed in the context of a single instance,
for example as a method. Navigation proceeds from the context instance to the required
targets of CALLOPERATIONACTION.7 An alternate notation is shown in Figure 8.8

Figure 6: Partitions Representing Properties

6 A completely class-based decomposition would show just the classes that are navigated through, for
example, COMPANY and FULFILLMENT, but this will not tell exactly which instances are the targets of
messages, unless the type of the properties are unique in the root class.
7 Identifying instances by navigating from the same object is the basis of UML 2 composite structure
model. This will be covered in a later article.
8 A tool vendor could hardly be blamed for replacing double colons with a dot notation for nested
navigation partitions.

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 43

Figure 7: Class Model for Partitions in Figure 6

Figure 8: Partitions Representing Properties, Node-based Notation

Tools can add value to property subpartitions by automatically keeping the partitions
consistent with the executable model. For example, they can generate the flows and
navigation needed to specify the inputs of CALLOPERATIONACTION, as shown in Figure
9, while still presenting Figure 6 as the modeler’s view. Figure 9 assumes the activity is a

Department

Fulfillment FinanceCustomer Service

Company

1..*

1

+fulfillment 1..*

1

1

1

+finance 1

1

1..*

1

+customerService 1..*

1

Department

Fulfillment FinanceCustomer Service

Company

1..*

1

+fulfillment 1..*

1

1

1

+finance 1

1

1..*

1

+customerService 1..*

1

(Company::customerService)

Receive Order

(Company::fulfillment)

Fill Order

(Company::fulfillment)

Deliver Order

(Company::finance)

Process Payment

(Company::customerService)

Send Invoice

(Company::customerService)

Close Order

(Company::customerService)

Receive Order

(Company::fulfillment)

Fill Order

(Company::fulfillment)

Deliver Order

(Company::finance)

Process Payment

(Company::customerService)

Send Invoice

(Company::customerService)

Close Order

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 44

method on the COMPANY class that has a parameter that is bound to the instance of
COMPANY on which the method is invoked. This is shown as the COMPANY activity
parameter node on the upper left. The various departments are retrieved from that
instance with GETSTRUCTURALFEATUREACTIONs and passed to the actions needing them.

Figure 9: Partitions Representing Properties with Flows

Figures 3 and 6 refine Figure 1, but they do not dictate when refinement happens or if it
happens at all. Figure 1 could be used for a long period even without the partitions before
details are worked out. This facilitates application of UML by modelers who do not use
object orientation (OO) routinely, such as system engineers and enterprise modelers, and
provides them a path to incrementally adopt OO as needed [2]. The flexibility to combine
OO with domain-specific approaches considerably widens and integrates the potential
applications of UML.

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

Fill
Order

Deliver
Order

Company

Get fulfillment

Get
customerService

Get
finance

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

Fill
Order

Deliver
Order

Company

Get fulfillment

Get
customerService

Get
finance

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 45

3 RELATION TO INTERACTION DIAGRAMS

Activities are an abstraction of the many ways that messages pass between objects, even
with class and property partitions. In particular, the edges in an activity diagram, notated
by arrows, can translate to one or many messages between objects, or none at all. This
makes activities useful at a stage of development where the primary concern is
dependency between tasks, rather than the protocols between objects. When messages are
the focus of development, UML interaction diagrams are more appropriate. These have a
very different semantics from activities, even though they use similar notations, such as
arrows and rectangles. Interactions also define a kind of activity notation that is overlaid
on the underlying interaction model, called the interaction overview diagram, which has
a different semantics from activities, too.

The most important difference between activities and interactions is that edges
connecting actions only indicate one action starts after another completes9, they are not
messages10. They can be translated to messages, but this involves more than the
connected actions. For example in Figure 3, the edge between SEND INVOICE and
PROCESS PAYMENT means that processing payment happens after sending an invoice. It
does not necessarily imply a message sent between CUSTOMER SERVICE and FINANCE, as
shown in Figure 10. In particular, the SEND INVOICE behavior cannot pass a PROCESS
PAYMENT message to FINANCE, because SEND INVOICE is complete before PROCESS
PAYMENT starts. This ensures that SEND INVOICE is reusable in other activities without
restricting what happens before and after it. For example, the customer service
department may be involved in other activities that send invoices but have different
actions before and after it.

Figure 10: Interaction Diagram that is Inconsistent with Figure 6

9 Except when used with streaming or optional parameters [4].
10 This is a common misinterpretation of activities with class partitions, and has significant impact on
methodologies that use both diagram types [7].

fulfillment : customerService : finance :

Deliver Order

Receive Order

Send Invoice

Process Payment

Close Order

Fill Order

fulfillment : customerService : finance :

Deliver Order

Receive Order

Send Invoice

Process Payment

Close Order

Fill Order

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 46

There are many ways that ordering of action execution might be achieved in a message
passing implementation.11 Figure 11 shows one possibility for the activity of Figure 6.12 It
uses a coordinator object to enforce the execution sequence, for example, a customer
resource management system. The diagram says that the coordinator sends a RECEIVE
ORDER message to the fulfillment department and after that is done, it sends other
messages in parallel as shown, and when those are complete it sends the CLOSE ORDER
message.13 Alternative implementations could have one of the objects from the activity
partitions coordinate everything, such as CUSTOMER SERVICE. Or all three objects could
take on some portion of the process, such as FULFILLMENT coordinating FILL ORDER and
DELIVER ORDER, as shown in Figure 12.14,15,16

11 This is called choreography in web services [8].
12 UML 2 interactions only use the navigation style shown in Figure 11, that is, they assume the targets of
messages are found by navigating from a single instance. This is shown with a colon notation in the
rectangle at the top of each lifeline. The name before the colon is the property name, the name after is the
type of values the property holds, which is omitted in Figure 11.
13 Interaction diagrams usually omit non-message actions, such as getting and setting attribute values, so
there may be actions occurring between messages that are not shown on the diagram. Activities cannot omit
steps in a sequence.
14 In web service choreography, the processes inside interacting objects are private if the objects are
independent companies. Figure 12 would be more typical of these applications. For example, the process
internal to fulfillment might be hidden, and defined as its own activity diagram. Service-oriented
architectures are highly decentralized in this respect. However, participants still agree on the pattern of
public interactions between them, and must track where they are in these interactions in order to respond to
each other properly. This is called correlation.
15 The curved arrows in the interaction figures are a UML 1.x notation indicating an object that is sending a
message to itself. It is not clear from the specification whether this carries over to UML 2, and will be
addressed in finalization.
16 The UML 2 communication diagram, which was called the collaboration diagram in UML 1.x, augments
interaction diagrams with the connections between objects that are used to determine the targets of
messages. Messages are shown passing along these connections, with numbers to show ordering. The
relation between these diagrams is being clarified by the response to UML for Systems Engineering [9].

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 47

Figure 11: Possible Interaction Diagram for Figure 6

Figure 12: Another Interaction Diagram for Figure 6

fulfillment : customerService : finance :coordinator :

Fill Order
par

Receive Order

Send Invoice

Process Payment

Close Order

Deliver Order

fulfillment : customerService : finance :coordinator :

Fill Order
par

Receive Order

Send Invoice

Process Payment

Close Order

Deliver Order

fulfillment : customerService : finance :

Fill Order

:

par

Receive Order

Send Invoice

Process Payment

Close Order

Deliver Order

fulfill

fulfillment : customerService : finance :

Fill Order

:

par

Receive Order

Send Invoice

Process Payment

Close Order

Deliver Order

fulfill

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 48

The interaction overview diagram is an alternative notation for interactions that looks
similar to activities, as shown in Figure 13, but is stored as an interaction in the
repository. Each “action” can show a message or messages, or refer to an entire
interaction. It is a way to highlight the control aspects of an interaction, but has the
disadvantage of being large and hard to draw in some cases. The semantics is completely
defined by interactions, rather than activities. For example, the rectangles labeled ref
mean that the interaction named in the rectangle is copied in at that point, like a
programming macro, rather than invoking a behavior as an action would.

Figure 13: Interaction Overview Diagram

Deliver
Order

Interaction

Send
Invoice

Interaction

Close
Order

Interaction

Process
Payment

Interaction

customerService :coordinator :

Receive Order

fulfillment :coordinator :

Fill Order
ref

ref

ref

ref Deliver
Order

Interaction

Send
Invoice

Interaction

Close
Order

Interaction

Process
Payment

Interaction

customerService :coordinator :

Receive Order

customerService :coordinator :

Receive Order

fulfillment :coordinator :

Fill Order

fulfillment :coordinator :

Fill Order
refref

refref

refref

refref

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 49

4 BEHAVIOR PROPERTY PARTITIONS

Behaviors in UML 2 are also classes, and their instances are running executions of the
behaviors [2]. Behavior instances can carry information about executions, such as how
long they have been running, what resources they have locked, as well as operations, such
as suspend and resume. Partitions can specify values for executing behaviors. For
example, Figure 14 shows the location where each behavior is performed (turned
sideways for example in the next section). The property PERFORMINGLOCATION is a
modeler-defined property, and can have values defined for its type, LOCATION, as shown
by the class model in Figure 15. The COMPANYBEHAVIOR class defines a property to
inherit to the various methods implementing the operations in Figure 4. The partitions of
Figure 14 indicate the values of PERFORMINGLOCATION of the executing methods. The
values are not assigned in the class model, because the methods may be used in other
activities requiring different locations for the behavior executions.

Figure 14: Partition as Attribute Value

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«i
ns

ta
nc

e»
R

en
o

«i
ns

ta
nc

e»
Ba

ng
al

or
e

«i
ns

ta
nc

e»
To

ul
ou

se

«p
ro

pe
rty

»
pe

rfo
rm

in
gL

oc
at

io
n

Process
Payment

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«i
ns

ta
nc

e»
R

en
o

«i
ns

ta
nc

e»
Ba

ng
al

or
e

«i
ns

ta
nc

e»
To

ul
ou

se

«p
ro

pe
rty

»
pe

rfo
rm

in
gL

oc
at

io
n

Process
Payment

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 50

Figure 15: Class Model for Figure 14

5 STRUCTURED PARTITIONS

One way to structure partitions is to nest them, as already shown in Figure 6.17 Another
mechanism is to use more than one dimension, as shown in Figure 16, which combines
Figures 6 and 14. Tools can add value to multidimensional partitions by allowing some to
be hidden, and supporting different node positions for each dimension, if the application
does not require showing them all at once. The node-based notation is shown in Figure
17.

17 Nested partitions can also represent nested classes.

CompanyBehavior
<<class>>

performingLocation : Location

ReceiveOrderMethod
<<activity>>

FillOrderMethod
<<activity>>

DeliverOrderMethod
<<activity>>

ProcessPaymentMethod
<<activity>>

SendInvoiceMethod
<<activity>>

CloseOrderMethod
<<activity>>

Location
<<enumeration>>

Bangalore
Reno
Toulouse

CompanyBehavior
<<class>>

performingLocation : Location

ReceiveOrderMethod
<<activity>>

FillOrderMethod
<<activity>>

DeliverOrderMethod
<<activity>>

ProcessPaymentMethod
<<activity>>

SendInvoiceMethod
<<activity>>

CloseOrderMethod
<<activity>>

Location
<<enumeration>>

Bangalore
Reno
Toulouse

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 51

Figure 16: Multi-dimensional Partitions

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

«i
ns

ta
nc

e»
R

en
o

«i
ns

ta
nc

e»
Ba

ng
al

or
e

«i
ns

ta
nc

e»
To

ul
ou

se

«p
ro

pe
rty

»
pe

rfo
rm

in
gL

oc
at

io
n

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Process
Payment

«i
ns

ta
nc

e»
R

en
o

«i
ns

ta
nc

e»
Ba

ng
al

or
e

«i
ns

ta
nc

e»
To

ul
ou

se

«p
ro

pe
rty

»
pe

rfo
rm

in
gL

oc
at

io
n

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 52

Figure 17: Multi-dimensional Partitions, Node-based Notation

A partial repository model for Figures 3, 15, and 16 is shown in Figure 18.18 The top-
level partitions are marked as dimensions, otherwise the repository cannot tell they are
drawn at different angles. The model shows a CALLOPERATIONACTION for FILL ORDER
and the partitions containing the action. The partitions at the bottom of the figure for
COMPANY and FULFILLMENT indicate that the operation FILL ORDER must be owned by
the type of the FULFILLMENT property, namely the FULFILLMENT class. The partitions at
the top of the figure for PERFORMINGLOCATION and BANGALORE indicate that the
execution of the method dispatched by FILL ORDER must be performed in Bangalore. The
location property is inherited from COMPANYBEHAVIOR.

18 The GENERAL association is derived from an additional metaclass for generalization that is not shown.
The SUBGROUP association from partition to the partitions it contains should be named SUBPARTITION for
consistency. This will be addressed in finalization.

(Company::customerService,
performingLocation::Toulouse)

Receive Order

(Company::fulfillment,
performingLocation::Bangalore)

Fill Order

(Company::fulfillment,
performingLocation::Bangalore)

Deliver Order

(Company::finance,
performingLocation::Bangalore)

Process Payment

(Company:: customerService,
performingLocation::Bangalore)

Send Invoice

(Company::customerService,
performingLocation::Reno)

Close Order

(Company::customerService,
performingLocation::Toulouse)

Receive Order

(Company::fulfillment,
performingLocation::Bangalore)

Fill Order

(Company::fulfillment,
performingLocation::Bangalore)

Deliver Order

(Company::finance,
performingLocation::Bangalore)

Process Payment

(Company:: customerService,
performingLocation::Bangalore)

Send Invoice

(Company::customerService,
performingLocation::Reno)

Close Order

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 53

Figure 18: Partial Repository Model for Figures 3, 15, and 16

Partitions can be marked as external to the pattern set by the others in the same
dimension, as shown in Figure 19. In this example, the external partition for CUSTOMER
is not a part of the company, though presumably there is some navigation from the
company to the customer. When using external partitions with multiple dimensions, the
repository stores a hidden dimension partition over the external partition and its sibling,
which is not shown in the diagram. For example, the COMPANY and CUSTOMER partition
will be in a larger partition that is marked as a dimension. Otherwise, the repository
cannot tell which dimension the external partition belongs to.

Company : Class
: Partition

isDImension = true

+represents

fulfillment : Property

+ownedAttribute

: Partition
isDimension = false

+subgroup

+represents

Location : Enumeration: Partition
isDImension = true

Bangalore : EnumerationLiteral

+enumeration

: Partition
isDimension = false

+subgroup

+represents

FulFillment : Class+type

: CallOperationAction

+inPartition

+inPartition

performingLocation : Property
+represents +type

Fill Order : Operation

+ownedOperation

+operation

CompanyBehavior : Class

+ownedAttribute

FillOrderMethod : Activity

+method

+/general

Company : Class
: Partition

isDImension = true

+represents

fulfillment : Property

+ownedAttribute

: Partition
isDimension = false

+subgroup

+represents

Location : Enumeration: Partition
isDImension = true

Bangalore : EnumerationLiteral

+enumeration

: Partition
isDimension = false

+subgroup

+represents

FulFillment : Class+type

: CallOperationAction

+inPartition

+inPartition

performingLocation : Property
+represents +type

Fill Order : Operation

+ownedOperation

+operation

CompanyBehavior : Class

+ownedAttribute

FillOrderMethod : Activity

+method

+/general

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 54

Figure 19: External Partition

6 MODELER-DEFINED PARTITION PATTERNS

The uses of partitions so far are defined in UML, but modelers can also define their own.
Figure 20 shows an example of partitions representing states. An instance of ORDER
moves through various states based on progress through the activity. There are many state
machines corresponding to the activity, partly due to the many possible messaging
implementations, as explained in section 3. The state machine for ORDER contains the
states given in Figure 20, but the transition triggers between them would depend on
whether the order or some other object is coordinating the actions, or both. For those
actions coordinated by the order, there are more variations depending on whether this is
done by an activity or a state machine. Assuming states coordinate the actions, as in the
UML 1.x version of activities, the translation from the activity Figure 20 must account
for differences in concurrency semantics between activities and state machines [5]. The
one-to-many relation of activities to state machines is another example of the abstraction
that activities provide for object implementations.

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Receive
Payment

«external»
Customer

Send
Payment

Send
Order

«property»
fulfillment

«property»
customerService

«property»
finance

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Company

Receive
Payment

«external»
Customer

Send
Payment

Send
Order

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 55

Figure 20: Modeler-defined Partition Pattern

7 CONCLUSION

This is the fifth in a series on the UML 2 activity and action models. It covers partitions,
which are a way of grouping actions that have some characteristic in common. Typical
usage patterns are described based on the element a partition represents: classes,
properties of classes, and properties of behaviors. These patterns are combined using
partition nesting and multiple dimensions. Various degrees of refinement are presented,
to illustrate partitions used early in development for sketching, and the transition to later
stages concerned with the details of execution. Partitions usually identify the entities
responsible for actions, which is an abstraction of message passing as supported by
interaction diagrams. A modeler-defined usage of partitions is presented to show an
activity abstraction of state machines. These examples show how activities focus on task
dependency, rather than object or state dependency.

«state»
Fulfilling

«state»
Processing

«state»
Financing

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Order

Process
Payment

«state»
Fulfilling

«state»
Processing

«state»
Financing

Receive
Order

Fill
Order

Deliver
Order

Send
Invoice

Close
Order

«class»
Order

Process
Payment

UML 2 ACTIVITY AND ACTION MODELS, PART 5: PARTITIONS

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7 56

ACKNOWLEDGEMENTS

Thanks to Evan Wallace and James Odell for their input to this article.

REFERENCES

[1] Object Management Group, “UML 2.0 Superstructure Specification,”
http://www.omg.org/cgi-bin/doc?ptc/03-08-02, August 2003.

[2] Bock, C., “UML 2 Activity and Action Models,” in Journal of Object Technology,
vol. 2, no. 4, July-August 2003, pp. 43-53,
http://www.jot.fm/issues/issue_2003_07/column3.

[3] Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Addison-Wesley, September 2003.

[4] Bock, C., “UML 2 Activity and Action Models, Part 2: Actions,” in Journal of
Object Technology, vol. 2, no. 5, September-October 2003, pp. 41-56,
http://www.jot.fm/issues/issue_2003_09/column4.

[5] Bock, C., “UML 2 Activity and Action Models, Part 3: Control Nodes,” in Journal
of Object Technology, vol. 2, no. 6, November-December 2003, pp. 7-23,
http://www.jot.fm/issues/issue_2003_11/column1.

[6] Odell, James, personal communication, 2004.

[7] Wagenhals, L., Haider, S., Levis A., “Synthesizing executable models of object
oriented architectures,” in Journal of the International Council on Systems
Engineering, vol. 6, no. 4, pp. 266-300, October 2003.

[8] W3C Web Services Choreography Working Group, “WS Choreography Model
Overview,”
http://www.w3.org/2002/ws/chor/edcopies/model/ModelOverview.html, December
2003.

[9] OMG Systems Engineering DSIG, “UML for Systems Engineering RFP,”
http://www.omg.org/cgi-bin/doc?ad/03-03-41, March 2003.

About the author
Conrad Bock is a Computer Scientist at the U.S. National Institute of
Standards and Technology, specializing in process models and
ontologies. He is one of the authors of UML 2 activities and actions,
and can be reached at conrad.bock at nist.gov.

http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.jot.fm/issues/issue_2003_07/column3
http://www.jot.fm/issues/issue_2003_09/column4
http://www.jot.fm/issues/issue_2003_11/column1
http://www.w3.org/2002/ws/chor/edcopies/model/ModelOverview.html
http://www.omg.org/cgi-bin/doc?ad/03-03-41
mailto:conrad.bock@nist.gov

