
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

Cite this column as follows: Richard Wiener: “Remoting in C# and .NET”, in Journal of Object
Technology, vol. 3, no. 1, January-February 2004, pp. 83-100.
http://www.jot.fm/issues/issue_2004_01/column8

Remoting in C# and .NET
Dr. Richard Wiener, Editor-in-Chief, JOT, Associate Professor of Computer
Science, University of Colorado at Colorado Springs

This is the first in a series of tutorial columns that shall deal with specialized aspects of
C# programming and the .NET framework.

The .NET Remoting API is the equivalent of the Java Remote Method Invocation
(RMI) API. Both frameworks allow objects on a client machine to communicate with
remote objects on a server. To me, the infrastructure required in .NET appears simpler
than in Java’s RMI.

What makes Remoting (or equivalently RMI) so attractive is that the low-level
socket protocol that the programmer must normally manage is abstracted out. The
programmer is able to operate at a much higher and simpler level of abstraction. In both
languages there is some overhead in the form of boilerplate protocols that must be
observed in order to setup the handshaking between the client and server machines. Once
this is done, sending a message from a client machine to a server object uses the same
syntax as sending a message to a local object. The metaphor of object-oriented
programming remains central to this distributed programming.

My last column presented a distributed solution to the Traveling Salesperson
Problem (see this column in the Nov/Dec, 2003 issue of JOT) using Java’s RMI.

Although it is tempting to present a detailed and exhaustive presentation of .NET’s
distributed computing protocol, space does not permit this here. In this column, only an
introduction and several simple examples of .NET Remoting using C# are presented.

The namespaces that one typically uses in C# distributed object applications are the
following:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

When using one of the major IDE’s (Visual Studio or C# Builder), it is important to add
the reference system.remoting.dll to your build if it is not already present.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/column8

REMOTING IN C# AND .NET

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

In C#, using distributed objects does not require stubs or interfaces as in Java. The
CLR (common language runtime) provides full support for remote object calls. Using
distributed objects does not depend on the system registry for information about the
remote classes. This information is encapsulated in a .DLL file that must be added as a
reference when compiling the client code.

Classes derived from System.MarshalByRefObject cause the distributed object
system to generate proxy objects on the client that encapsulate the low-level socket
protocol. When the client sends a message to a remote object, it is the proxy that
processes this message and sends serialized information across the network. The same
works in reverse when proxy objects de-serialize information that is returned from the
server.

Channel objects are the mechanism used to transfer messages between client and
server. The .NET framework provides two bidirectional channels:

System.Runtime.Remoting.Channels.http.HttpChannel and
System.Runtime.Remoting.Channels.Tcp.TcpChannel.

The http channel uses SOAP (Simple Object Access Protocol) and the tcp channel uses a
binary stream. This latter method is more efficient because it avoids the need to encode
and decode SOAP messages.

A channel must be registered before it can be used. The ChannelServices class is
used to accomplish this as follows:

ChannelServices.RegisterChannel(someChannel);

The general steps involved in writing a distributed application are summarized below.

Writing the Server

1. Construct the server class.
2. Select a method for hosting the server object(s) on the server. Typically a short

application is created that launches the server and makes the server object
available to the client(s).

3. The server object typically waits for one or more client objects to communicate
with it.

Writing the Client

1. Identify the remote server object to the client.
2. Connect the server to the client through a channel.
3. The client must activate the remote object and create a reference to it.
4. Communication to the remote object(s), once activated, is similar to sending

messages to local objects.

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 85

Let us consider a simple client server application. The server uses a supporting
NameHolder class that encapsulates an ArrayList of String objects, names, each holding a
person’s name. The server has an AddName method that uses a String parameter to add
another object to the names field within the NameHolder object.

The client application takes Console input as it is invoked and passes the string
representing a person’s name to the server object serving as a proxy. It will be clear from
the code how this is all accomplished. Let us examine the details of Listing 1.

Listing 1 – Simple Client/Server application using Remoting

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Collections;

namespace Remoting {

 // Server class
 public class SaveNamesServer : MarshalByRefObject {

 // Fields
 private NameHolder holder; // Must be serializable

 // Constructor
 public SaveNamesServer() {
 holder = new NameHolder();
 }

 // Commands
 public void AddName(String name) {
 holder.AddName(name);
 }

 // Queries
 public ArrayList GetNames() {
 return holder.GetNames();
 }
 }
}

using System;
using System.Collections;

namespace Remoting {

 [Serializable]
 public class NameHolder {

 // Fields
 private ArrayList names = new ArrayList();

REMOTING IN C# AND .NET

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

 // Commands
 public void AddName(String newName) {
 names.Add(newName);
 }

 // Queries
 public ArrayList GetNames() {
 return names;
 }
 }
}

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Collections;

namespace Remoting {

 public class Client {

 // Constructor
 public Client(String newName) {
 // Create and register the remoting channel
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 // Initialize the remoting system
 InitializeRemoteServer();

 this.AddName(new SaveNamesServer(), newName);
 }

 private void InitializeRemoteServer() {
 RemotingConfiguration.RegisterWellKnownClientType(
 typeof(SaveNamesServer),
 "http://localhost:12345/SaveNamesServer");
 }

 private void AddName(SaveNamesServer server, String newName) {
 server.AddName(newName);
 ArrayList names = server.GetNames();
 foreach (String name in names) {
 Console.WriteLine(name);
 }
 Console.WriteLine();
 }

 static void Main(String [] args) {
 Console.WriteLine("Adding " + args[0] + " to name list.");
 new Client(args[0]);

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

 }
 }
}

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace Remoting {

 public class StartServer {

 static void Main() {
 // Create and register the channel
 HttpChannel channel = new HttpChannel(12345);

 ChannelServices.RegisterChannel(channel);

 Console.WriteLine("Starting SaveNamesServer");

 // Register the SaveNamesServer for remoting
 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(SaveNamesServer),
 "SaveNamesServer",
 WellKnownObjectMode.Singleton);
 Console.WriteLine("Press return to exit SaveNamesServer.");
 Console.ReadLine();
 }
 }
}

Discussion and Analysis of Listing 1

The Client class uses the RemotingConfiguration.RegisterWellKnownClientType method
as follows to connect itself to the server.

RemotingConfiguration.RegisterWellKnownClientType(
 typeof(SaveNamesServer),
 "http://localhost:12345/SaveNamesServer");

Here one computer is being used as a client and server.

The Client constructor creates an instance of the SaveNamesServer and passes this
instance to its AddName method that uses the AddName method of the server (proxy)
object to increase the size of the ArrayList in the NameHolder field by one.

The StartServer is used to launch the server process. It uses the same localhost
socket as the Client. Using the Singleton mode ensures that the server object maintains
state between client calls to this single server object.

REMOTING IN C# AND .NET

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

It is essential that the NameHolder class be tagged as [Serializable] in order for the
SaveNamesServer to be able to marshal its information properly.

Deployment

To deploy this distributed application, the following sequence of steps must be followed:

1. Compile the server classes into a DLL as follows:

csc /target:library SaveNamesServer.cs NameHolder.cs SaveNamesServer.dll

2. Compile the StartServer application as follows:

csc StartServer.cs /reference:SaveNamesServer.dll -> StartServer.exe

3. Compile the Client application as follows:

csc Client.cs /reference:SaveNamesServer.dll -> Client.exe

4. Launch the StartServer application.

5. Launch the Client application.

Each time the client is launched and a new name is specified on the command line, the
previous names that were entered will be output.

Two GUI Clients and a Server Application

The next application of Remoting involves two client GUI’s running in separate
processes that communicate with each other through a server object.

One of the GUI applications, Client2, periodically takes the coordinates of a square
of size 50 from the server and moves a rectangle to this position (upper-left corner of the
rectangle). The server changes this coordinate every two seconds so the square jumps
from one location to another every two seconds.

The other GUI application, Client1, waits for the user to click the mouse button in a
panel. A blue “X” marks the spot of the mouse click. Simultaneously, the spot at which
the user clicked the mouse is marked with a small red “x” in Client2. The communication
is done through the server. If the Client1 user clicks within the boundaries of the square
that is slowing dancing around in Client2, a red “H” is shown in the panel of Client1. The
cumulative hits and misses are also updated after each mouse click in Client1.

A screenshot of both client applications running and the server providing the
communication channel as well as coordinates for the moving square in Client2 is shown
below.

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

Listing 2 contains the C# classes that implement this Remoting application.

REMOTING IN C# AND .NET

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

Listing 2 - Remoting application with a server and two GUI clients

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Threading;

namespace Remoting {

 public class TargetServer: MarshalByRefObject {

 // Fields
 private int xPos, yPos; // position of moving rectangle
 private int x, y; // position of shot
 private Thread thrd;
 private Random rnd;

 // Constructor
 public TargetServer() {
 rnd = new Random();
 for (int i = 0; i < 50000; i++) {
 rnd.Next(100000);
 }
 thrd = new Thread(new ThreadStart(MovePosition));
 thrd.Start();
 }

 // Read-only properties
 public int XPOS {
 get {
 return xPos;
 }
 }

 public int YPOS {
 get {
 return yPos;
 }
 }

 public int X {
 get {
 return x;
 }
 }

 public int Y {
 get {
 return y;
 }
 }

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

 // Commands
 public void Record(int x, int y) {
 this.x = x;
 this.y = y;
 }

 // Queries
 public bool IsTargetHit(int x, int y) {
 return (x >= XPOS && x <= XPOS + 50) &&
 (y >= YPOS && y <= YPOS + 50);
 }

 private void MovePosition() {
 for (;;) {
 Thread.Sleep(2000);
 xPos = rnd.Next(225);
 yPos = rnd.Next(150);
 }
 }
 }
}

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace Remoting {

 public class Client1 : Form {
 private System.ComponentModel.Container components = null;
 private Panel panel;
 private Label hitsLbl;
 private Label missesLbl;

 // Fields
 private TargetServer server;
 private int hits, misses;

 public Client1() {
 InitializeComponent();
 // Center form on the user's screen
 this.SetBounds((Screen.GetBounds(this).Width / 2) -
 (this.Width / 2),
 (Screen.GetBounds(this).Height / 2) –
 (this.Height / 2),
 this.Width, this.Height,
 BoundsSpecified.Location);

REMOTING IN C# AND .NET

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

 panel.MouseDown += new MouseEventHandler(HandleMouseClick);
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);
 InitializeRemoteServer();
 server = new TargetServer();
 }

 protected override void Dispose (bool disposing) {
 if (disposing) {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeRemoteServer() {
 RemotingConfiguration.RegisterWellKnownClientType(
 typeof(TargetServer),
 "http://localhost:12345/TargetServer");
 }

 private void HandleMouseClick(Object sender, MouseEventArgs e) {
 Graphics g = panel.CreateGraphics();
 g.DrawString("X", Font, new SolidBrush(Color.Blue), e.X, e.Y);
 server.Record(e.X, e.Y);
 if (server.IsTargetHit(e.X, e.Y)) {
 g.DrawString("H", Font, new SolidBrush(Color.Red),
 e.X, e.Y);
 hits++;
 } else {
 misses++;
 }
 hitsLbl.Text = "Hits: " + hits;
 missesLbl.Text = "Misses: " + misses;
 }

 private void InitializeComponent() {
 // Details not shown
 }

 [STAThread]
 static void Main() {
 Application.Run(new Client1());
 }
 }
}

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Threading;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace Remoting {

 public class Client2 : Form {

 // Controls
 private Container components = null;
 private Panel panel;

 // Fields
 private TargetServer server;
 private Thread thrd;

 // Constructor
 public Client2() {
 InitializeComponent();

 // Set position on screen
 this.SetBounds(0, 0, this.Width, this.Height);

 panel.Paint += new PaintEventHandler(OnPaint);
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);
 InitializeRemoteServer();

 server = new TargetServer();
 thrd = new Thread(new ThreadStart(Pulse));
 thrd.Start();
 }

 private void Pulse() {
 for (;;) {
 Thread.Sleep(500);
 panel.Invalidate();
 }
 }

 private void InitializeRemoteServer() {
 RemotingConfiguration.RegisterWellKnownClientType(
 typeof(TargetServer),
 "http://localhost:12345/TargetServer");
 }

 protected override void Dispose (bool disposing) {

REMOTING IN C# AND .NET

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

 if (disposing) {
 if (components != null) {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void OnPaint(Object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 g.DrawRectangle(new Pen(new SolidBrush(Color.Blue)),
 server.XPOS, server.YPOS, 50, 50);
 if (server.X != 0 && server.Y != 0) {
 g.DrawString("x", Font,
 new SolidBrush(Color.Red), server.X, server.Y);
 }
 }

 private void InitializeComponent() {
 // Details not shown
 }

 [STAThread]
 static void Main() {
 Application.Run(new Client2());
 }
 }
}

Discussion and Analysis of Listing 2
The TargetServer spawns a thread and starts creating xPos and yPos values every two
seconds. The Client1 application communicates with this server through the Record
method. Because the TargetServer is declared a subclass of MarshalByRefObject,
communication through proxy objects is accomplished for both Client1 and Client2. Each
of these GUI applications holds a reference to this proxy object as a server field.

Chat Session Application

The final application is a simple chat client/server application.
Any number of client applications, each containing a GUI that allows text to be

added to the existing session, should permit communication among all clients that have
logged in. All clients are updated on all communications every second.

The application is designed so that each client must know about the server, but the
server does not know about any of the clients. The server’s responsibility is to maintain a
centralized store of the clients that are logged in as well as the text for the entire chat
session by adding text to it whenever a client posts a new message by clicking the “Send
Text” button.

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

Each client, through a thread, polls the server every second to update the list of
clients and to update the overall session text. Therefore the server does not need to know
about any of the clients.

Two screen shots that depict a session between two clients before and after one has
logged off are shown below.

REMOTING IN C# AND .NET

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

The C# code for this application is given in Listing 3.

Listing 3 – Chat Session Client/Server Application Using Remoting

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Collections;

namespace Remoting {

 public class ChatServer : MarshalByRefObject {

 // Fields
 private ArrayList clients = new ArrayList(); // Names of clients

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

 private String chatSession = ""; // Holds text for chat session

 // Commands
 public void AddClient(String name) {
 if (name != null) {
 lock (clients) {
 clients.Add(name);
 }
 }
 }

 public void RemoveClient(String name) {
 lock (clients) {
 clients.Remove(name);
 }
 }

 public void AddText(String newText) {
 if (newText != null) {
 lock (chatSession) {
 chatSession += newText;
 }
 }
 }

 // Queries
 public ArrayList Clients() {
 return clients;
 }

 public String ChatSession() {
 return chatSession;
 }
 }
}

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Threading;

namespace Remoting {

 public class ChatClient: Form {
 // Controls
 private Button sendBtn;
 private Button logoutBtn;
 private Button loginBtn;

REMOTING IN C# AND .NET

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

 private ListBox listBox;
 private Container components = null;
 private RichTextBox sendTextBox;
 private RichTextBox sessionTextBox;
 private Button clearTextBtn;
 private Label label1;
 private Label label2;

 // Fields
 private ChatServer server;
 private String name;
 private Thread thrd; // Used to poll the server for client names

 // Constructor
 public ChatClient(String name) {
 InitializeComponent();
 this.name = name;
 }

 protected override void Dispose(bool disposing) {
 if(disposing) {
 if (components != null) {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeComponent() {
 // Details not shown
 }

 private void InitializeRemoteServer() {
 RemotingConfiguration.RegisterWellKnownClientType(
 typeof(ChatServer), "http://localhost:12345/ChatServer");
 }

 [STAThread]
 static void Main(String [] args) {
 if (args.Length != 1) {
 MessageBox.Show("Must supply name in command line.");
 return;
 }
 Application.EnableVisualStyles();
 Application.Run(new ChatClient(args[0]));
 }

 private void loginBtn_Click(object sender, System.EventArgs e) {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);
 InitializeRemoteServer();
 server = new ChatServer();
 server.AddClient(this.name);

REMOTING IN C# AND .NET

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 99

 thrd = new Thread(new ThreadStart(PollServer));
 thrd.Start();
 }

 private void logoutBtn_Click(object sender, System.EventArgs e) {
 server.RemoveClient(this.name);
 listBox.Items.Clear();
 listBox.Items.Add("No longer logged in.");
 thrd.Abort();
 }

 private void PollServer() {
 for (; ;) {
 Thread.Sleep(1000);
 ArrayList clients = server.Clients();
 listBox.Items.Clear();
 foreach (String clientName in clients) {
 listBox.Items.Add(clientName);
 }
 String sessionText = server.ChatSession();
 sessionTextBox.Clear();
 sessionTextBox.Text = sessionText;
 }
 }

 private void clearTextBtn_Click(object sender,
 System.EventArgs e) {
 sendTextBox.Clear();
 }

 private void sendBtn_Click(object sender, System.EventArgs e) {
 String toSend = name + ": ";
 server.AddText(name + ":\n" + sendTextBox.Text + "\n\n");
 }
 }
}

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace Remoting {

 public class StartServer {

 static void Main() {
 // Create and register the channel
 HttpChannel channel = new HttpChannel(12345);
 ChannelServices.RegisterChannel(channel);
 Console.WriteLine("Starting ChatServer");

 // Register the ChatServer for remoting

REMOTING IN C# AND .NET

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(ChatServer),
 "ChatServer",
 WellKnownObjectMode.Singleton);
 Console.WriteLine("Press return to exit ChatServer.");
 Console.ReadLine();
 }
 }
}

Discussion and Analysis of Listing 3

The ChatServer class holds two serializable fields, clients, an ArrayList, and chatSession,
a String.

The ChatClient class is more complex because of the GUI. It contains a server field
of type ChatServer. When each client application is launched, a command-line argument
(string) that contains the name of the client (Richard and Erik in the example above) must
be supplied to the program. This important identification is the only means that clients
have to know who is logged-on and who they can “talk” to.

When the user clicks the “Login” button, code that enables the client to be connected
to the server and the server object activated is executed. Since the server object is a
singleton, its state is maintained between calls from various clients.

All calls to the remote server object are shown in blue. MarshalByRefObject is used
to ensure that information is transmitted to the server through a proxy through
serialization and not by value. If marshal by value were used (by removing the
inheritance from class MarshalByRefObject), each client would have its own independent
copy of the server object and would not be updated when another client added text or
removed itself from the system.

About the author

Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant
and software contractor whenever the possibility arises.

