
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

Cite this column as follows: Conrad Bock: “UML 2 Activity and Action Models Part 4: Object
Nodes”, in Journal of Object Technology, vol. 3, no. 1, pp. 27-41,
http://www.jot.fm/issues/issue_2004_01/column3

UML 2 Activity and Action Models

Part 4: Object Nodes

Conrad Bock, U.S. National Institute of Standards and Technology

This is the fourth in a series introducing the activity model in the Unified Modeling
Language, version 2 (UML 2), and how it integrates with the action model [1]. The first
article gives an overview of activities and actions [2], while the second two cover actions
generally and control nodes [3][4]. The remainder of the series elaborates other specific
elements. This article covers object nodes, which hold data and objects temporarily as
they wait to move through an activity.

1 OBJECT NODES

To recap, UML 2 activities contain nodes connected by edges to form a complete flow
graph. Control and data values flow along the edges and are operated on by the nodes,
routed to other nodes, or stored temporarily. More specifically, action nodes operate on
control and data they receive via edges of the graph, and provide control and data to other
actions; control nodes route control and data through the graph; and object nodes hold
data temporarily as it waits to move through the graph. Data and object are unified in
UML under the notion of classifier, so the terms are used interchangeably. The term
"token" is shorthand for control and data values that flow through an activity.

There are four kinds of object node, as shown in Figure 1 and described in the
sections below. The functionality of object nodes is introduced in stages:

1) Holding a single token (section 2).
2) Holding multiple tokens, buffering, and backup (section 3).
3) Competing for tokens, traverse-to-completion semantics, deadlock prevention,

and central buffers (section 4).
4) Data store nodes and a short history and future of data flow (section 5).

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/column3

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 28

Figure 1: Object Nodes

2 PARAMETER NODES AND PINS

Previous articles introduced two kinds of object node: activity parameter nodes and pins.
An example of parameter nodes is shown in the partial activity of Figure 2. It has two
output parameter nodes on the right, each with a separate flow going into it. Whichever
output value reaches a parameter node first is held there until the other arrives. When
both parameter nodes have a value, the activity is complete and returns those values to
the invoker of the activity.1 The input parameter nodes on the left get their values all at
once, when the activity is started. They may or may not be held there for some period,
depending on whether they can flow downstream, as explained later in this article.

Parameter nodes must correspond to parameters of the containing activity. Activities
are a kind of behavior in UML 2, and like all behaviors, they have parameters that specify
the types of values that are input to the activity and output from the activity. Parameters
on behaviors apply to all three kinds of behavior in UML, activities, state machines, and
interactions, so are modeled separately from activity parameter nodes. See Figure 8 of the
first article for a repository model showing the relation of behavior parameters and
activity parameter nodes [2].

1 The activity must also wait for all control and data to stop flowing in other parts of the graph before
terminating.

«datastore»

Activity Parameter
Nodes

Activity

Pins
(three notations for the
same repository model)

Data Store
Node

Central Buffer
Node

«centralbuffer» «datastore»

Activity Parameter
Nodes

Activity

Pins
(three notations for the
same repository model)

Data Store
Node

Central Buffer
Node

«centralbuffer»

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 29

Figure 2: Activity Parameter Nodes

All object nodes, including parameter nodes and pins, specify the type of value they can
hold. In Figure 2, the parameter nodes hold values of type COMPANY and SHARE. If no
type is specified, they can hold values of any type. Object nodes can also specify the state
that their objects must be in, as provided by a state machine for the type of object being
held. For example, in Figure 2 the objects held in the MERGED COMPANY parameter node
must be in the NEW state and the objects in the NEW SHARES parameter node must be in
the UNSOLD state. Objects must be in the required state before being put in the object
node.2 Multiple tokens in an object node can have the same value at the same time, for
example, there can be multiple tokens for the number 3 or for the same instance of a
class.

An example of input pins is shown in Figure 3, in two of the notational forms.3, 4
Whichever input value reaches a pin first is held there until the other arrives. When both
pins have a value, the values are passed into the action and it starts. If the action invokes
the ACQUISITION activity in Figure 3, the input values move from the pins to the
parameter nodes of the activity at the time of invocation. See section 4 of the second
article for more about behavior invocation [3], and Figure 8 in particular, which shows
the relation of pins to parameters.

2 In this sense, the state requirement is an extension of the object node’s type, which arguably should be
promoted to types in general. Then they can be used by parameters, attributes, and other typed elements in
UML. The same applies to constraints applied locally to a general type. This will be considered in
finalization.
3 All pin notations are stored in the repository the same way, which is analogous to the pin notation. See
Figure 6 of the first article [2].
4 A fourth notational form is defined for object nodes that have signals as their type. See Figure 275, page
350 of the UML 2 specification [1]. It will be discussed later in the series.

New Shares :
Share

[Unsold]

Merged Company :
Company

[New]

Acquisition

Acquiring Company :
Company

Acquired Company :
Company

New Shares :
Share

[Unsold]

Merged Company :
Company

[New]

Acquisition

Acquiring Company :
Company

Acquired Company :
Company

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 30

Figure 3: Input Pins

A special kind of input pin called a value pin is defined for providing constant values
such as numbers, or values calculated by vendor or user-dependent expressions. It uses
value specifications to model the value, described in the third article in connection with
decision node guards [4]. It is notated like a normal input pin with a value specification
written beside it. Unfortunately, value pins cannot be used to provide output values to
activity parameter nodes. This will be addressed in finalization of UML 2.

Pins can be notated with the effect that their actions have on objects that move
through the pin. Effect is one of the four values create, read, update, or delete. The
example in Figure 4 indicates that Take Order creates an instance of Order and Fill Order
reads it.5 The create effect is only possible on outputs, and the delete effect is only
possible on inputs. If a single rectangle pin notation is used, then pin annotations such as
effect still appear next to the action where the pin would have been shown.

Figure 4: Effect

5 The UML 2 specification inadvertently assigns effect to object flows, rather than to the parameters of
behaviors. This will be addressed in finalization.

Acquisition
Acquired
Company

Acquiring
Company

Acquisition

Acquiring
Company

Acquired
Company

Acquisition
Acquired
Company

Acquiring
Company

Acquisition

Acquiring
Company

Acquired
Company

Fill OrderTake Order
Order Order

{effect = create} {effect = read}

Fill OrderTake Order
Order Order

{effect = create} {effect = read}

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 31

3 MULTIPLE TOKENS

Object nodes can hold more than one value at a time, and some of these values can be the
same. Each object node specifies the maximum number of tokens it can hold, including
any duplicate values, which is called the upper bound. At runtime, when the number of
values in an object node reaches its upper bound, it cannot accept any more. Figure 5
shows an example using the buffering capabilities of pins between three manufacturing
actions operating on parts. If painting is delayed too much for some reason, the input pin
will reach its upper bound, and parts from polishing will not be able to move
downstream. If painting is delayed further, the output pin of polishing will fill up and the
polishing behavior will not be able to transfer out polished parts. Unless the polishing
behavior has an object node internal to it that buffers output parts, it will not be able to
take parts from its input pin, which will likewise fill up and propagate the backup. Only
when the input pin to PAINT goes below its upper bound will parts be able to flow again.

Figure 5: Upper Bound

Buffering capabilities are intentionally assigned to object nodes in activities, rather than
to parameters of behaviors. The parameters of a behavior or operation, also known as the
signature, only declare the kinds of things needed for input and output, and how many of
each. Buffering capabilities are assigned either to pins on actions that invoke behaviors,
or to the implementations of a behavior, such as parameter nodes in activities. The UML
2 metamodel separates pins and activity parameter nodes from parameters of behavior.
See example repository model in Figure 8 of the first article of the series [2].

Some applications have the advantage of executing the same behavior concurrently to
reduce backup restrictions. For example, a factory executing the process in Figure 5
might have more than one station to use for the PAINT step. This means that more than
one part arriving at the input pin of PAINT can start an invocation of PAINT at the same
time, or at staggered times. Likewise, the concurrent executions of PAINT can put more
than one part on the output pin at the same time, or at staggered times, and not necessarily
in the same order in which they were taken from the input pin. UML 2 calls this a
REENTRANT behavior.6,7,8 It is indicated with the keyword «reentrant» on the action, or
with a property list {reentrant}.

6 The term "reentrant" in computer science means a procedure that can have multiple executions occurring
at the same time without interfering with each other. This applies to UML 2 reentrant behaviors, but the
term is extended to have the particular execution semantics for activities described above.

PaintPolishMill

{upperBound = 100}

{upperBound = 200}

{upperBound = 50}

{upperBound = 100}

PaintPolishMill

{upperBound = 100}

{upperBound = 200}

{upperBound = 50}

{upperBound = 100}

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 32

Software applications can especially make use of reentrancy, for example, when
processing packets from a telephone switch to provide information for a billing system.
Multiple threads can be set up for each step in the processing so packets taking a short
time to handle do not need to wait for those taking longer. Upper bounds can be set very
high to temporarily buffer packets or intermediate results if the billing system goes down.

Object nodes holding multiple values can specify the order in which values move
downstream. The default is first-in, first-out (FIFO, a pipe), but users can change this to
last-in, first-out (LIFO, a queue), or specify their own behavior to select which value is
passed out first. For example, Figure 6 shows orders being filled using a priority ranking.
The user-specified selection behavior is passed all the values in the object node and
returns one to move downstream.9,10,11 Selection behaviors can also be used on object
flow edges coming out of object nodes. This is useful in situations where the selection
criteria varies with the path taken out of the object node, see sections 4 and 5.

Figure 6: Selection Behavior

A partial repository model for Figure 6 is shown in Figure 7. The selection behavior
accepts multiple orders from the object node and returns one that should be offered next
to an outgoing edge. Parameter multiplicities are described next and shown in Figure 7 as
the LOWERVALUE and UPPERVALUE of parameters.

7 UML 2 does not restrict the number of concurrent executions of a reentrant behavior that can exist at one
time. This will be addressed in finalization or a profile.
8 Reentrant behaviors cannot have streaming parameters [3], because it would be not be possible to
determine which execution of the behavior should receive a streaming value at runtime.
9 It currently is not specified what order values in an object node are passed to selection behaviors. It would
be most useful to pass them in the order they arrived at the object node, so the selection behavior can, for
example, use FIFO within order priority, or reverse it for LIFO. This will be addressed in finalization.
10 This way of ordering values has the benefit of dynamically responding to current conditions, because the
selection behavior can account for these conditions every time a value is chosen to move downstream.
However, for applications in which the selection criteria are fixed, it is more efficient to insert new values
into the object node according to the ranking. Then selecting a value to move downstream is just a matter of
taking the one at the top of the list, rather than reevaluating the order each time. A selection behavior can be
implemented as an insertion-time ordering, because the activity model only specifies the required runtime
effect. However, it is difficult for tool vendors to automatically translate a selection algorithm into a queue
insertion algorithm. This will be addressed in finalization.
11 The selection behavior could alternatively be on the input pin of FILLORDER. The action will consume
values in the order of selection.

Fill OrderTake Order
Order Order

«selection»
By Priority

Fill OrderTake Order
Order Order

«selection»
By Priority

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 33

Figure 7: Repository for Figure 6

Behavior and operation parameters can have multiplicities that specify the minimum and
maximum number of values each parameter accepts or provides at each invocation of the
behavior. Minimum multiplicity on an input parameter means a behavior or operation
cannot be invoked by an action until the number of values available at each of its input
pins reaches the minimum for the corresponding parameter, which might be zero (see the
second article on actions that invoke behaviors [3]).12 For example, Figure 8 shows an
action invoking a behavior for playing baseball, which might be delayed waiting for all
nine the players to arrive. The pin label reflects the information in the PLAYER parameter

12 An action invoking a behavior with one input parameter of zero minimum multiplicity could in theory
begin executing spontaneously and repeatedly because it has all the data inputs it requires. However, the
only reasonable interpretation here is that the action needs either a data input or a control input to start. This
will be clarified in finalization.

FillOrder : Behavior

: CallBehaviorAction

+behavior

Take Order : Behavior

: InputPin

+argument

: CallBehaviorAction

+behavior

: ObjectFlow
+target

2 : LiteralUnlimitedNatural
value = 2

* : LiteralUnlimitedNatural
value = unlimited

: OutputPin
+result

+source

order : Parameter
direction = in

+lowerValue

+upperValue

1 : LiteralUnlimitedNatural
value = 1

1 : LiteralUnlimitedNatural
value = 1

By Priority : Behavior

+selection

+parameter

Order : Class

+type

selected : Parameter
direction = return

+lowerValue

+upperValue

+parameter

+type

FillOrder : Behavior

: CallBehaviorAction

+behavior

Take Order : Behavior

: InputPin

+argument

: CallBehaviorAction

+behavior

: ObjectFlow
+target

2 : LiteralUnlimitedNatural
value = 2

* : LiteralUnlimitedNatural
value = unlimited

: OutputPin
+result

+source

order : Parameter
direction = in

+lowerValue

+upperValue

1 : LiteralUnlimitedNatural
value = 1

1 : LiteralUnlimitedNatural
value = 1

By Priority : Behavior

+selection

+parameter

Order : Class

+type

selected : Parameter
direction = return

+lowerValue

+upperValue

+parameter

+type

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 34

of the PLAY BALL! behavior, including its type and multiplicity. On the other hand, if
play is delayed waiting for the equipment, and meanwhile more than nine people collect
at the input pin, then only the maximum number, nine, are taken to start the
action.13,14,15,16

Figure 8: Parameter Multiplicity

Similar to minimum multiplicity on parameters is weight on object flow edges, which
specifies the minimum number of values that can traverse an object flow edge at one
time. For example, in Figure 9 the MAKE PART action must output 100 parts before they
can move to the input of SHIP PART. SHIP PART can take from 1 to 1000 parts, because it
is a general purpose behavior, but in this particular usage of it, parts are shipped in
batches of 100. If for some reason shipping is delayed, multiples of 100 parts will collect
at the input of SHIP PART, whereupon more than 100 parts will be shipped at the next
invocation, unless there is an upper bound on the input pin. A weight of "all" means that
all values in the source object node are moved at once. The default weight is 1.

Figure 9: Object Flow Weight

13 UML does not define a default parameter multiplicity to apply to the EQUIPMENT input above, but
modelers would probably expect it to be exactly one. This will be addressed in finalization.
14 Parameters with maximum multiplicity greater than one can be marked as ordered. This means that each
invocation of a behavior using the parameter can input or output multiple, ordered, runtime values. For pins
corresponding to those parameters, it is not currently specified that the values in an input pin will be passed
in the same order to the parameter on invocation, or from parameter to output pin on termination. This is a
reasonable expectation, however, and will be addressed in finalization.
15 Parameters with maximum multiplicity greater than one can be marked as allowing multiple occurrences
of the same value. This means that a single invocation of a behavior using the parameter can input or output
multiple runtime values where some of the values are the same. Since object nodes with upper bound
greater than one always allow multiple tokens to have the same value, it is a good idea to make this
indication on parameters also, unless the modeler knows in advance that it will never happen.
16 The interaction of multiplicity and streaming [3] is not currently specified. One option is that the
minimum and maximum give restrictions on size of "batches" that can stream in or out at one time.

Equipment

Play Ball!

player : Person [9..9]

Equipment

Play Ball!

player : Person [9..9]

Ship PartMake Part
Part

p : Part
[1..1000]

{weight = 100}
Ship PartMake Part

Part
p : Part
[1..1000]

{weight = 100}

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 35

4 TOKEN COMPETITION

A parameter node or pin may have multiple edges coming out of it, whereupon there will
be competition for its tokens, because object nodes cannot duplicate tokens like forks can
[4]. Modelers should use this pattern only if they want indeterminacy in the movement of
data in the graph. For example, Figure 10 shows parts being made, then painted at one of
two stations, but not both.

Figure 10: Token Competition

Figure 10 is also an example of how edges cannot hold tokens, as object nodes and
actions can. If the input pin of PAINT AT STATION 1 is full, the object flow edge going into
it cannot claim a value from the output of MAKE PART and hold it until PAINT AT STATION
1 is able to take it. The token remains at the output of MAKE PART until the traversal can
be completed to one of the input pins. The terminology of the UML 2 specification is that
the output pin "offers" the token to the outgoing edges, which in turn offer it to their
respective targets. The traversal of the edge cannot take effect until all the elements
between source and destination object node accept the offer, including the destination.
This article calls the principle traverse-to-completion.

Control nodes cannot hold tokens, either. For example, Figure 11 shows a decision
node routing some parts for testing and others for painting (see the previous article on
decision nodes and guards [4]). If a part output from MAKE PART fails the testing guard
and the input pin at PAINT is full, then the part cannot reside at the decision node waiting
to be painted. It remains at the output pin and will be routed either to testing when that
guard succeeds or to painting when the input pin of PAINT is no longer full. If multiple
edges were coming out of the output pin of MAKE PART, then the part would be subject to
competition, and may not ever be painted or tested at all.17

17 Figure 11 would have the same effect if the decision node were removed, and the edges with guards
came directly from the output pin of MAKE PART. The purpose of decision nodes is to ensure values move
along exactly one of its outgoing edges, which is also the semantics of object nodes. The ELSE guard is
currently specified only for edges coming from decision nodes, but is equally applicable to edges from
object nodes. This will be addressed in finalization.

Paint at
Station 2

Make Part

Paint at
Station 1

Paint at
Station 2
Paint at

Station 2

Make Part

Paint at
Station 1
Paint at

Station 1

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 36

Figure 11: Decision Node

Preventing control nodes and edges from holding tokens ensures that values do not get
"stuck" when alternative paths are open. In any particular direction of flow it may take a
long time to select tokens, decide how to route them, for backups to clear, and so on.
Traverse-to-completion means that tokens move along the path of least resistance by
going to the first available object node. Data and object values are always residing in
object nodes or being operated on by actions, moving instantly between them when all
the criteria along the path between source and destination are satisfied. The decision of
where to route tokens may take time, but no tokens move until the decision process is
complete. For this reason, behaviors associated with traversal, such as decision input and
selection should not have side-effects or be overly complicated, because they might be
executed many times before a value succeeds in being moved.18,19

Another behavior that falls under traverse-to-completion is the transformation of
tokens as they move across an object flow edge. Figure 12 shows customers being
retrieved from orders. Each order is passed to the transformation behavior and replaced
with the result. The result is offered to the input pin of SEND NOTICE and must be
accepted there before the order can be removed from the output pin of CLOSE ORDER.
The repository stores a complete behavior, but the notation can just show the contents or
an abbreviation of the behavior, as in Figure 12.

18 Traverse-to-completion enables implementations to optimize the execution of traversal behaviors. For
example, if the destination object node is full, a selection behavior at the source object node need not be
executed until the destination is ready to accept values.
19 The division of activity nodes in this manner is similar to the distinction between states and pseudo states
in UML state machines. A state machine cannot pull events from its event buffer while it is transitioning
between states, including while in pseudostates. Informally speaking, a UML state machine can only "rest"
in real states, which is called the run-to-completion requirement. The purpose is to handle each event
completely before taking another event. This ensures every state completes its actions without interruption
from incoming events.

Make Part

Paint

Test
[perform test]

[else]

Make Part

PaintPaint

TestTest
[perform test]

[else]

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 37

Figure 12: Object Flow Transformation

Central buffers are for situations where tokens under competition arrive from multiple
sources. For example, Figure 13 shows parts arriving at a central buffer from two
factories, which are then painted at two other factories. Pins can be omitted from the
notation, but they are still recorded in the repository. Pins cannot be used as central
buffers, because pins have flows coming or going out, but not both.

Figure 13: Central Buffer

Another aspect of traverse-to-completion is that an input pin of an action cannot accept
tokens until all the input pins of the action can accept them. This is to prevent deadlock,
where the input pins of two actions each have some of the tokens required for the other to
start. For example, Figure 14 shows two drilling behaviors requiring a drill and an
extension cord to start, as might happen when two carpenters are working together (pins
for material being drilled are omitted). One action's input pin cannot accept the drill when
the other input pin on that action cannot get the extension cord at the same time. This
prevents one action from holding the drill while the other takes the extension cord, and
neither can start. The example is adapted from the well-known dining philosopher's
problem in models of concurrency [5]. Input pins can still buffer up multiple tokens, but
they can only accept tokens in unison with the other input pins on the same action.20

20 Input pins of invocation actions must take enough tokens to meet the minimum multiplicity of the
corresponding parameter.

Paint at
Factory 4

Paint at
Factory 3

«centralbuffer»

Part

Make Parts
at Factory 2

Make Parts
at Factory 1

Paint at
Factory 4
Paint at

Factory 4

Paint at
Factory 3
Paint at

Factory 3

«centralbuffer»

Part

Make Parts
at Factory 2

Make Parts
at Factory 1

Send NoticeClose Order
Order Customer

«transformation»
order.customer

Send NoticeClose Order
Order Customer

«transformation»
order.customer

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 38

Figure 14: Avoiding Deadlock

5 DATA STORE NODES

Earlier forms of data flow and storage have the following characteristics [6][7]:
• Passive: the presence of data in the store does not initiate actions. Actions take

data as needed.
• Non-depleting: the use of data in the store does not remove it from the store.
• Persistent: data in the store remains there after the activity containing it

terminates.
This might be informally called the "pull" form of data flow and storage. Later forms of
data flow and storage, including UML 2 object nodes, have exactly the opposite
characteristics, which might be called "push":

• Active: the presence of values in an object node initiates downstream actions by
sending inputs to them.

• Depleting: values in an object node used by an outgoing edge are not available to
other outgoing edges. This is token competition.

• Transient: values do not remain in object nodes after the activity containing the
object node terminates.21

21 Tokens are only references to objects, so the objects themselves are not deleted, even if the activity is
terminated, for example with an activity final [4].

Drilling
by Carpenter 1

Drilling
by Carpenter 2

«centralbuffer»

Drill

«centralbuffer»

Extension
Cord

Drilling
by Carpenter 1

Drilling
by Carpenter 2

«centralbuffer»

Drill

«centralbuffer»

Extension
Cord

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 39

UML 2 data store nodes are an attempt to support the earlier form of data flow and
storage by providing a non-depleting specialization of object node. Tokens flowing out of
data store nodes are copies of tokens that remain in the data store node, so the values
seem as if they are being read from the store. Tokens in a data store node cannot be
removed, though values do not remain in the store after the containing activity is
terminated, and a token arriving at a store that already has another token for the same
object replaces that token.

Selection and transformation behaviors can be applied on edges coming out of data
store nodes to retrieve information from the store, as if a query were being performed.
For example, a selection behavior can identify an object to retrieve and the
transformation behavior can get the value of an attribute on that object. Figure 15 shows a
personnel data store being populated by a HIRE EMPLOYEE behavior, and read by other
behaviors. Employees not assigned to projects are selected for input to the ASSIGN
EMPLOYEE behavior. Once a year, all employees are reviewed, using the
ACCEPTEVENTACTION as a timer, described later in the series. This pattern uses traverse-
to-completion to ensure that the employee list is read only once a year, since the stored
objects are only retrieved when the join succeeds.

Figure 15: Data Store Node

UML data store nodes are still active and transient, however, and do not completely
capture pull semantics.22 Since the earlier and later forms of data flow and storage are so
different, the most accurate way to model the earlier forms in the later is to use actions
instead of flows. The functionality of earlier data storage can be achieved with UML 2
actions for modifying persistent objects, such as ADDSTRUCTUREFEATUREVALUEACTION,
described later in the series. A data flow going into an earlier form of data store is
equivalent to assigning that data as a value of an attribute of a persistent object.

22 Implementation-dependent extensions can support selection behaviors that succeed only when a
downstream action has control passed to it, partially capturing pull semantics. This still does not model the
fact that earlier forms of data store could be read anytime during an action, not just at start-up of actions. In
UML this would require extensions to streaming [3].

Assign
Employee

Hire
Employee

«selection»
employee.
assignment = null

«datastore»

Personnel

Review
Employee

once
a year

{weight = all}

Assign
Employee

Hire
Employee

«selection»
employee.
assignment = null

«datastore»

Personnel

Review
Employee

once
a year

{weight = all}

UML 2 ACTIVITY AND ACTION MODELS, PART 4: OBJECT NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1 40

Conversely, a data flow coming out from a traditional data store is equivalent to
retrieving a value from an attribute in a persistent object using UML 2 actions for that.
One could imagine extending UML with a concise graphical or textual notation for these
patterns of using read and write actions on persistent objects.23

The transition from earlier to later forms of data flow and storage indicates a trend of
unifying control and data flow. The characteristics of later data flow are more like control
(active, depleting, transient). Conversely, recent work in UML for Systems Engineering
treats control as a form of data by providing additional control values for terminating
actions, as well as control queuing, and control operators [8][9]. The trend in unification
of control and data functionality forms a cycle, because new capabilities for one suggest
new capabilities for the other. For example, if control has terminating values, why should
data be limited to being a form of enabling control? If data arrives at an action that is
already executing, it might mean the old data is incorrect, and the action should be
terminated, and start over. Further unification of control and data is an area for future
work.

6 CONCLUSION

This is the fourth in a series on the UML 2 activity and action models. It focuses on
object nodes, which hold data and objects as they wait to move through a flow graph. The
four kinds of object node are covered: parameter nodes, pins, central buffers, and data
stores. Functionality is addressed in stages, starting with single and multiple token flow,
then token competition, traverse-to-completion semantics, and deadlock prevention. The
article ends with a short history and future of data flow models.

ACKNOWLEDGEMENTS

Thanks to Evan Wallace and James Odell for their input to this article.

23 A hybrid approach would be to extend data store nodes with the capability of modifying persistent
objects. For example, a data store node could be assigned an object and attribute in which to store values
received by the node. The object could be represented by a partition. Partitions will be discussed later in the
series. It is being considered in a submission to UML for Systems Engineering [8].

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 41

REFERENCES

[1] Object Management Group, “UML 2.0 Superstructure Specification,”
http://www.omg.org/cgi-bin/doc?ptc/03-08-02, August 2003.

[2] Bock, C., “UML 2 Activity and Action Models,” in Journal of Object Technology,

vol. 2, no. 4, July-August 2003, pp. 43-53, http://www.jot.fm/
issues/issue_2003_07/column3.

[3] Bock, C., “UML 2 Activity and Action Models, Part 2: Actions,” in Journal of

Object Technology, vol. 2, no. 5, September-October 2003, pp. 41-56,
http://www.jot.fm/issues/issue_2003_09/column4

[4] Bock, C., “UML 2 Activity and Action Models, Part 3: Control Nodes,” in Journal

of Object Technology, vol. 2, no. 6, November-December 2003, pp. 7-23,
http://www.jot.fm/issues/issue_2003_11/column1.

[5] Filman, R., Friedman, D., Coordinated Computing: Tools and Techniques for

Distributed Computing, McGraw-Hill, 1984.

[6] Rumbaugh, J., et al., Object-oriented Modeling and Design, Prentice Hall, 1991.

[7] Shlaer, S., Mellor S., Object-oriented Systems Analysis: Modeling the World in

Data, Yourdon Press, 1988.

[8] OMG Systems Engineering DSIG, “UML for Systems Engineering RFP,”

http://www.omg.org/cgi-bin/doc?ad/03-03-41, March 2003.

[9] Bock, C., “UML 2 Activity Model Support for Systems Engineering Functional

Flow Diagrams,” Journal of the International Council on Systems Engineering, vol.
6, no. 4, October 2003.

About the author
Conrad Bock is a Computer Scientist at the U.S. National Institute of
Standards and Technology, specializing in process models and
ontologies. He is one of the authors of UML 2 activities and actions,
and can be reached at conrad.bock at nist.gov.

http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.jot.fm/issues/issue_2003_07/column3
http://www.jot.fm/issues/issue_2003_07/column3
http://www.jot.fm/issues/issue_2003_09/column4
http://www.jot.fm/issues/issue_2003_11/column1
http://www.omg.org/cgi-bin/doc?ad/03-03-41

