
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 6, November-December 2003

Cite this column as follows: Conrad Bock: “UML 2 Activity and Action Models Part 3: Control
Nodes”, in Journal of Object Technology, vol. 2, no. 6, pp. 7-23.
http://www.jot.fm/issues/issue_2003_11/column1

UML 2 Activity and Action Models

Part 3: Control Nodes

Conrad Bock, U.S. National Institute of Standards and Technology

This is the third in a series introducing the activity model in the Unified Modeling
Language, version 2 (UML 2), and how it integrates with the action model [1]. The
previous article addressed the execution characteristics of actions in general, and
additional functionality of actions that invoke behaviors [2]. The first article gave an
overview of activities and actions that is assumed here [3]. The remainder of the series
elaborates other specific elements. This article covers control nodes, which route control
and data through the flow model. It also points out the differences in concurrency support
between UML 2 and UML 1.x activities.

1 CONTROL NODES

To recap, UML 2 activities contain nodes connected by edges to form a complete flow
graph. Control and data values flow along the edges and are operated on by the nodes,
routed to other nodes, or stored temporarily. More specifically, action nodes operate on
control and data they receive via edges of the graph, and provide control and data to other
actions; control nodes route control and data through the graph; and object nodes hold
data temporarily as they wait to move through the graph. Data and object are unified in
UML under the notion of classifier, so they are used interchangeably. The term "token" is
shorthand for control and data values that flow through an activity.

Figure 1: Control Nodes

Decision
and

Merge

Fork
and
Join

Final
nodes

Initial
node

Activity final

Flow final

Decision
and

Merge

Fork
and
Join

Final
nodes

Initial
node

Activity final

Flow final

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_11/column1

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 8

There are seven kinds of control node, with five notations, as shown in Figure 1. Contrary
to the name, control nodes route both control and data/object flow. Each of them is
described in the sections below.

2 INITIAL NODES

Flow in an activity starts at initial nodes. They receive control when an activity is started
and pass it immediately along their outgoing edges. No other behavior is associated with
initial nodes in UML. Initial nodes cannot have edges coming into them. For example, in
Figure 2, when the DELIVER MAIL activity is started, a control token is placed on the
initial node, notated as a filled circle, and immediately flows along to start the GET MAIL
action.

Figure 2: Initial Node

An activity can contain more than one initial node. A single control token is placed in
each one when the activity is started, initiating multiple flows. It might be clearer to use
one initial node connected to a fork node to initiate multiple flows simultaneously (see
section 5), but this is up to the modeler. Other ways to start flows in an activity will be
discussed later in the series.

If an initial node has more than one outgoing edge, only one of the edges will receive
control, because initial nodes cannot copy tokens as forks can (see section 5). In
principle, the edges coming out of initial nodes can have guards and the semantics will be
identical to a decision node (see next section). For convenience, initial nodes are excepted
from the general rule that control nodes cannot hold tokens waiting to move downstream,
if it happens that all the guards fail. In general, it is clearer to use explicit decision points
and object nodes than to depend on these fine points of initial nodes.

Deliver Mail

Get
Mail

Put Mail
In Boxes

Deliver Mail

Get
Mail

Put Mail
In Boxes

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 9

3 DECISION NODES

Decision nodes guide flow in one direction or another, but exactly which direction is
determined at runtime by edges coming out of the node. Usually edges from decision
nodes have guards, which are Boolean value specifications evaluated at runtime to
determine if control and data can pass along the edge. The guards are evaluated for each
individual control and data token arriving at the decision node to determine exactly one
edge the token will traverse. For example, Figure 3 shows a decision node, notated as a
diamond, choosing between flows depending on whether an order can be filled or not.
Value specifications in UML 2 are often just strings interpreted in an implementation-
dependent way1. In this example, the modeler's intention for the strings "accepted" and
"rejected" must already be understood by the implementation or defined by additional
modeling. Model refinement can introduce an additional explicit behavior, such as a
decision input behavior, explained below.

Figure 3: Decision Node

The order in which the above guards are evaluated is not constrained by UML, and can
even be evaluated concurrently. For this reason, guards should not have side effects, to
prevent implementation-dependent interactions between them. If guards are to be
evaluated in order, as is typical in conditional programming constructs, then decision
nodes can be chained together, one for each guard, combined with the predefined guard
"else". The else guard can be used with decision nodes for a single outgoing edge to
indicate that it should be traversed if all the other guards from the decision node fail.

1 UML 1.x more forthrightly called these "uninterpreted strings", but UML 2 value specifications can also
be instance specifications, and opaque or structured. Activities use value specifications in some places and
behaviors in others. Whether this is done by any consistent rationale will be addressed in finalization.

Close
Order

Receive
Order

[accepted]

[rejected]

Fill
Order

Close
Order

Receive
Order

[accepted]

[rejected]

Fill
Order

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 10

Figure 4 shows an example of chained decision nodes with else guards. The CLOSE
ORDER action is reached by failure of the non-else guards2.

Figure 4: Chained Decision Nodes

Since guard evaluation order is implementation-dependent, the modeler should also
arrange that only one guard succeed, otherwise there will be race conditions among them.
It is up to the implementation whether to finish evaluating guards after one is found that
succeeds. In theory, all the guards might succeed at one time, in which case the semantics
is not defined3. If all the guards fail, then the failing control or data token remains at the
object node it originally came from, since control nodes cannot hold tokens waiting to
move downstream, as object nodes can. Token queuing is discussed later in the series.

If the guards involve a repeated calculation of the same value, a behavior on the
decision node can determine this value once for each token arriving at the decision node,
and then provide it to the outgoing guards for testing. For example, Figure 5 shows a
decision input behavior IS ORDER ACCEPTABLE providing a Boolean result tested by the
outgoing guards4 (the curved arrow is not part of UML notation, see earlier articles on
inputs and outputs of actions and activities). Each order arriving at the decision node is
passed to IS ORDER ACCEPTABLE before guards are evaluated on the outgoing edges5. The

2 Conditional constructs can also be modeled with a CONDITIONALNODE. This is one of the aspects of
activities for modeling programming language constructs. These will be covered later in the series.
3 See discussion of undefined semantics in section 6 of the second article [2].
4 An alternate notation is { decisionInput = Is Order Acceptable } placed near the decision node.
5 Object flow edges are usually distinguished from control edges by rectangles representing the type of
object that is flowing, for example as pins on actions in Figure 5. It is a presentation option in UML to omit
these rectangles as in Figure 3, for example if they are obvious to the reader or confusing to subject matter
experts, while still storing the model for them in an underlying UML repository. Special views such as this
are a way activities support a wide range of the development cycle, from process sketching to executable
program specifications. Model refinement is another technique, which refers to multiple models for the
same process existing over time, linked in a progression as detail is added. For example, a subject matter
expert might draw a diagram like Figure 3 without pins, and a more UML-knowledgeable modeler might

Modify
Order

Receive
Order

Fill Order
[accepted]

[else]

Close
Order[else]

[repairable] Modify
Order

Receive
Order

Fill Order
[accepted]

[else]

Close
Order[else]

[repairable]

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 11

output of the behavior is available to the guards, in an implementation-dependent way, as
with all value specifications (see footnote 1). The value specifications in Figure 5 happen
to use the name of the output parameter of the decision behavior.

Figure 5: Decision Input Behavior

A repository model for part of Figure 5 is shown in Figure 6 (see first article for more
about the UML repository [3]). The two anonymous object flows are separate repository
elements for the two object flows coming out of the decision node. Each has an opaque
expression as a guard, which are the kind of value specification that are completely
implementation-interpreted. Each object flow targets its own separate anonymous input
pin, each of which provide input to their respective behaviors, one for each direction of
flow from the decision6.

add them later. A record of refinements can be kept using the upcoming Query, View, and Transformation
technology [4]. This is a simple example of the general problem of recording design evolution, to ensure
that the end product fulfills the original requirements, as in systems engineering for manufacturing [5].
6 The current UML specification implies that decision input behaviors only apply to data tokens, but does
not explicitly restrict them to that. This is to be clarified in finalization. A decision input behavior for
control flow can in principle have no parameters and return a value based on other data, such as available
from the host object of the entire activity. The host object is retrieved with the action READSELFACTION. In
general, if a behavior requires information that cannot be retrieved from values provided by its input
parameters, it can use READSELFACTION. This action is discussed later in the series.

[result = true]

[result = false]

«decisionInput»
Is Order Acceptable

Check
Consistency

Is Order Acceptable

Check
CompletenessOrder result :

Boolean

Receive
Order

Fill Order

Modify
Order

Order

Order

Order

[result = true]

[result = false]

«decisionInput»
Is Order Acceptable

Check
Consistency

Is Order Acceptable

Check
CompletenessOrder result :

Boolean
Check

Consistency

Is Order Acceptable

Check
CompletenessOrder result :

Boolean

Receive
Order

Fill Order

Modify
Order

Order

Order

Order

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 12

Figure 6: Repository for Part of Figure 5

Other factors besides guards can determine whether control and data can pass along an
edge, and consequently which edge will be traversed out nodes, including decision nodes.
Future articles will address edges and token queuing in more detail. Whatever factors are
involved, the purpose of a decision node is to ensure that each control and data token
arriving at the decision node traverses no more than one of the outgoing edges.

Is Order Acceptable : Activity

: DecisionNode

+decisionInput

: OpaqueExpression
body = "result = true"

: OpaqueExpression
body = "result = false"

: ObjectFlow+source +guard

: ObjectFlow+source +guard

Fill Order :
CallBehaviorAction

: InputPin

+target
+argument

ModifyOrder :
CallBehaviorAction

: InputPin

+target
+argument

: Parameter
direction = in

+parameter Order : Class+type

result : Parameter
direction = out

+parameter Boolean :
PrimitiveType

+type

Is Order Acceptable : Activity

: DecisionNode

+decisionInput

: OpaqueExpression
body = "result = true"

: OpaqueExpression
body = "result = false"

: ObjectFlow+source +guard

: ObjectFlow+source +guard

Fill Order :
CallBehaviorAction

: InputPin

+target
+argument

ModifyOrder :
CallBehaviorAction

: InputPin

+target
+argument

: Parameter
direction = in

+parameter Order : Class+type

result : Parameter
direction = out

+parameter Boolean :
PrimitiveType

+type

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 13

4 MERGE NODES

Merge nodes bring together multiple flows. All control and data arriving at a merge node
are immediately passed to the edge coming out of the merge. No other behavior is
associated with merge nodes in UML7. Merge nodes have the same notation as decision
nodes, but merges have multiple edges coming in and one going out, whereas it is the
opposite for decision nodes. Flows coming into a merge are usually alternatives from an
upstream decision node. For example, Figure 7 shows a merge node bringing two flows
together to close an order. The merge is required, because if the two flows went directly
into CLOSE ORDER, both flows would need to arrive before closing the order, which
would never happen [2]8 . Merge can be used with concurrent flows also, see Figure 16 in
section 6.

Figure 7: Merge Node with Alternate Flows

Flows from chained decision nodes can be merged more flexibly than with conditional
constructs in structured programming languages. For example, Figure 8 shows two of
three flows from a decision node being merged separately from the third. Flows coming
out of a decision node do not need to be brought together by a merge at all. See Figure 20
in section 7.

7 Use join nodes for more complex semantics, see section 6.
8 UML 1.x activities would require only one of the transitions to arrive to start the action, as do all state
machines. With UML 2 the example in the UML User Guide, Figure 19-9, is correct, whereas it was
incorrect in UML 1.x [6][7].

Receive
Order

Fill Order

Close
Order

[accepted]

[rejected]

Ship Order

Notify
Customer

Receive
Order

Fill Order

Close
Order

[accepted]

[rejected]

Ship Order

Notify
Customer

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 14

Figure 8: Merge Nodes without Nesting

Figure 9 on the left shows a shorthand notation for a merge immediately followed by a
decision. It has the same effect as the separate merge and decision shown on the right.
Both have the same repository model, which contains separate merge and decision nodes.

Figure 9: Merge/Decision Combination

Modify
Order

Receive
Order

Fill Order
[accepted]

[else]

[repairable]

Close Order

Ship OrderModify
Order

Receive
Order

Fill Order
[accepted]

[else]

[repairable]

Close Order

Ship Order

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 15

5 FORK NODES

Fork nodes split flows into multiple concurrent flows. Control and data arriving at a fork
are duplicated across the outgoing edges. No other behavior is associated with fork nodes
in UML. For example, in Figure 10 control or data tokens leaving RECEIVE ORDER are
copied by the fork, notated as a line segment, and passed to FILL ORDER and SEND
INVOICE simultaneously. Since object tokens are only references to objects, copying them
does not duplicate the objects themselves, only the references to them. There is no
synchronization of the behaviors on concurrent flows in UML 2 activities, as there are in
UML 1.x activities, which are a kind of state machines. In Figure 10, the flow to SHIP
ORDER can complete long before SEND INVOICE is even finished, or vice versa9,10.

Figure 10: Fork Node

The default semantics for flows coming out of an action is that they are all initiated when
the action completes. This creates concurrent flows, but data outputs from actions are not
copied. The action outputs a separate value for each flow. Action outputs are also placed
on pins, which are a kind of object node, and consequently hold values as they wait to
move downstream. See the second article for more information on action outputs [2]. In
UML 1.x, data flows are based on state transitions, so only one flow is initiated when the
state (action) is exited [8]. See section 6 for analogous points about action inputs.

9 Concurrent or orthogonal regions in state machines are synchronized through the run-to-completion
semantics, which requires that behaviors invoked by the state machine complete before a new event is
pulled from the input queue. This forces actions in concurrent regions to proceed in lockstep with each
other. The “do” activity on states allows events to be processed while the activity is executing, but it also
allows events to interrupt the do activity, which is not usually the desired effect in flow modeling.
10 The current UML specification requires control and data tokens to either traverse all outgoing edges from
a fork or none of them. This means if the outgoing edges have guards or other characteristics that prevent
tokens from moving, that none of the concurrent flows will be initiated. The intention is for outgoing edges
to start concurrent flows that are not otherwise prevented. This will be addressed in finalization.

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 16

6 JOIN NODES

Join nodes synchronize multiple flows. In the common case, control or data must be
available on every incoming edge in order to be passed to the outgoing edge. Join nodes
have the same notation as fork nodes, but joins have multiple edges coming in and one
going out, whereas it is the opposite for fork nodes. Flows coming into a join are usually
concurrent flows from an upstream fork. For example, Figure 11 shows a join node
synchronizing two flows to CLOSE ORDER. Both SHIP ORDER and ADD ACCOUNT
PAYABLE must complete before CLOSE ORDER can start.

Figure 11: Join Node

Join nodes take one token from each of the incoming edges and combine them according
to these rules:

1. If all the incoming tokens are control, then these are combined into a single
control token for the outgoing edge.

2. If some of the incoming tokens are control and others are data, then these are

combined to provide only the data tokens to the outgoing edge. The control tokens
are destroyed.

For example, in Figure 11 the join combines control tokens from SHIP ORDER and ADD
ACCOUNT PAYABLE into one, so that CLOSE ORDER is executed once instead of twice11, 12.

11 This requires one of the control tokens to be held somewhere while the other flow arrives, which is not
technically possible, since control is output without pins. This will be addressed in finalization.
12 It would be useful to have the option to combine object tokens for identical objects, especially in cases
that two tokens are duplicate because they were copied by an upstream join.

Close
Order

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Close
Order

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 17

The effect is the same if the join is omitted and the two flows go directly into CLOSE
ORDER, because the action would wait for both of them anyway. It might be clearer to use
the join, especially since UML 1.x activities would have needed only one flow to arrive,
as with all state machines [8]. However, if the flows were carrying data, two tokens will
be passed along the outgoing edge after synchronization, and go to a single pin in CLOSE
ORDER. This would have the undesirable effect of CLOSE ORDER executing twice13, and
would not even be executable if the data is of incompatible types, because they would
both be directed at the same input pin (see earlier articles for explanation of pins). For
example, SHIP ORDER might output a tracking record, and ADD ACCOUNT PAYABLE the
new account payable, both of which are needed as input to CLOSE ORDER. In this case,
the data flows should be directed to two pins on CLOSE ORDER, without the join, as
shown in Figure 12. This is another example of model refinement. Figure 11 might be
taken as a process sketch and refined later into Figure 12, when it is clear what inputs are
needed to close an order.

Figure 12: Joining Data Flows with Pins

Modelers should ensure that joins do not depend on control or data flows that may never
arrive. For example, in Figure 13 when the problem report is not a high priority, the top
flow is directed to a flow final (see next section), so control will never reach the join.
This is corrected in Figure 14. See equivalent diagram in Figure 1714.

13 This actually depends on the multiplicity of the input parameter. If the input parameter multiplicity on
CLOSE ORDER has a lower bound of two, it will consume both tokens coming from the join in one
execution of the action. Multi-token flows are discussed later in the series.
14 This is a good situation to use edge connectors, which are a notational technique for shortening the length
of activity edge arrows, by breaking them up into a beginning and ending segment. See Figure 211 of the
UML 2 specification [1].

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Close
Order

Tracking
record

Account
Payable

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Close
Order

Tracking
record

Account
Payable

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 18

Figure 13: Join Node Anti-pattern

Figure 14: Join Node Pattern

It is not required that flows coming out of a fork be synchronized. For example, Figure 15
shows only some of the flows from a fork going to a join. The order is closed after it is
shipped and invoiced, but the account payable might be monitored for a long period after
that, so is not synchronized with closing the order. Concurrent flows can also be merged
rather than joined, as shown in Figure 16. In this example, part inspection is serialized,
while two parts can be made in parallel. The INSPECT PART action will be executed twice,
once for each part arriving on concurrent flows15. This requires more than one token
moving on the same flow line at one time. Multi-token flows are discussed later in the
series. These are more examples of the expressiveness introduced in UML 2 activities
over UML 1.x activities.

15 It is also not required for flows coming into a join to be concurrent. For example, if a loop upstream
generates alternate flows to a join, the synchronized flows will occur at completely different times.

Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else] Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else]

Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else]

Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else]

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 19

Figure 15: Fork with Partial Join

Figure 16: Fork with Merge

Modelers can specify the conditions under which a join accepts incoming control and
data using a join specification, which is a Boolean value specification associated with
join nodes. The default inherited from UML is "and", with the semantics described so far.
Other join specifications can be given, using the name of the incoming edges to refer to
the control or data arriving at the join. For example, Figure 17 shows an alternative to
Figure 14 that substitutes a join specification for the merge node. The edges are named
with single letters in this example, but can be any string.

Design
Part

Make
Part

Make
Part

Inspect
Part

Design

Design

Design

Part

Part

Part

Close
Order

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Monitor Account
Until Paid

Close
Order

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Monitor Account
Until Paid

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 20

Figure 17: Join Specification

Figure 18 on the left shows a shorthand notation for a join immediately followed by a
fork. It has the same effect as a separate join and fork, as shown on the right. Both have
the same repository model, which contains separate join and fork nodes.

Figure 18: Join/Fork Combination

7 FINAL NODES

Flow in an activity ends at final nodes. The most innocuous form is the flow final, which
takes any control or data that comes into it and does nothing. Flow final nodes cannot
have outgoing edges so there is no downstream effect of tokens going into a flow final,
which are simply destroyed. Since object tokens are just references to objects, destroying
an object token does not destroy the object. Figure 19 extends Figure 10 with flow finals
at the end. Each flow could have its own flow final and the effect would be the same.
Activities terminate when all tokens in the graph are destroyed, so this one will terminate
when both flows reach the flow final.

Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else] Release
Fix

Fix Problem

File
Problem
Report

Evaluate
Impact

Revise
Schedule

Test Fix

[priority = 1]

[else]

A

B

C

{ joinSpec = (A or B)
and C

}

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 21

Figure 19: Flow Final Node

Activity final nodes are like flow final nodes, except that control or data arriving at them
immediately terminates the entire activity. This makes a difference if more than one
control or data token might be flowing in the graph at the time the activity final is
reached, as in Figure 19. An activity final cannot be used instead of a flow final there
because the completion of one concurrent flow would terminate the other16. In Figure 20
on the other hand, it does not matter whether a flow final or activity final is used, the
execution traces are the same. Also each flow could have its own activity final on the end
and the effect would be the same.

Figure 20: Activity Final Node

Figure 21 is an example where the termination functionality of activity finals is used in an
intentional race between flows. This is a process for buying movie tickets by having
people stand in separate lines until one gets the tickets for the group. The fastest line will
produce a token to the activity final and terminate the other flow.

16 This can be resolved by inserting a join after SHIP ORDER and ADD ACCOUNT PAYABLE that leads to an
activity final. Then the activity would only terminate after both flows are done.

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Send
Invoice

Receive
Order

Fill
Order

Ship
Order

Add Account
Payable

Notify
Customer

Receive
Order

[accepted]

[rejected]

Fill
Order

Ship
Order

Notify
Customer

Receive
Order

[accepted]

[rejected]

Fill
Order

Ship
Order

UML 2 ACTIVITY AND ACTION MODELS, PART 3: CONTROL NODES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6 22

Figure 21: Activity Final Node, Racing Example

8 CONCLUSION

This is the third in a series on the UML 2 activity and action models. This article focuses
on control nodes, which route control and data through an activity. The execution
semantics of each kind of control node is described, along with the differences in
concurrency from UML 1.x activities. UML 2 activities do not have the restrictions on
concurrent flow that UML 1.x activities inherited from state machines. In particular,
UML 2 concurrent flows are fully distributed in execution, not synchronized action-by-
action as UML 1.x activities are. UML 2 forks and joins can be more flexibly paired with
each other and other control nodes, rather than one-for-one as in UML 1.x activities.
UML 2 action outputs and inputs also have concurrency and synchronization semantics,
whereas they did not in UML 1.x.

ACKNOWLEDGEMENTS

Thanks to Evan Wallace and James Odell for their input to this article.

REFERENCES

[1] Object Management Group, “UML 2.0 Superstructure Specification,”
http://www.omg.org/cgi-bin/doc?ptc/03-08-02, August 2003.

[2] Bock, C., “UML 2 Activity and Action Models, Part 2: Actions,” in Journal of

Object Technology, vol. 2, no. 5, September-October 2003, pp. 41-56.
http://www.jot.fm/issues/issue_2003_09/column4

Choose
Movie

Wait in
Line 1

Buy
Tickets

Wait in
Line 2

Buy
Tickets

Choose
Movie

Wait in
Line 1

Buy
Tickets

Wait in
Line 2

Buy
Tickets

http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.jot.fm/issues/issue_2003_09/column4

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 23

[3] Bock, C., "UML 2 Activity and Action Models," in Journal of Object Technology,
vol. 2, no. 4, July-August 2003, pp. 43-53.
http://www.jot.fm/issues/issue_2003_07/column3

[4] Object Management Group, “MOF 2.0 Query/Views/Transformations RFP,”

http://www.omg.org/cgi-bin/doc?ad/02-04-10, April 2002.

[5] Shooter, S.B., Keirouz, W.T., Szykman, S., Fenves, S. J., "A Model for the Flow of

Design Information in Product Development," Journal of Engineering with
Computers, vol. 16, 2000, pp. 178-194.

[6] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User

Guide, Addison-Wesley, 1999.

[7] Bock, C., “Unified Behavior Models,” Journal of Object-Oriented Programming,

vol. 12, no. 5, September 1999.

[8] Object Management Group, “OMG Unified Modeling Language, version 1.5,”

http://www.omg.org/cgi-bin/doc?formal/03-03-01, March 2003.

About the author
Conrad Bock is a Computer Scientist at the U.S. National Institute of
Standards and Technology, specializing in process models and
ontologies. He is one of the authors of UML 2 activities and actions,
and can be reached at conrad.bock at nist.gov.

http://www.jot.fm/issues/issue_2003_07/column3
http://www.omg.org/cgi-bin/doc?ad/02-04-10
http://www.omg.org/cgi-bin/doc?formal/03-03-01

