
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 6, November-December 2003

Cite this article as follows:Birol Berkem: “How to increase your business reactivity with
UML/MDA”, in Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 117-
138. http://www.jot.fm/issues/issue_2003_11/article4

How to increase your business reactivity
with MDA / UML ?
Patterns and Frameworks for synchronizing IT with
the changing business environment

Birol Berkem, GOObiz / CNAM, Paris - France

Abstract
For the last few years, companies have tried to develop their software systems with use
case driven development processes. This practice brings many benefits by allowing you
to concentrate your analysis and design efforts on the usage dimension of a system.

However, modeling a system with only use-case driven UML specifications does not
allow good levels of business reactivity (= response time necessary for a business
system for implementing changes as required by its controlled process of adaptation to
its environment). Implementing requested changes as a reaction to new requirements
for time-to-market is still very much a challenge for organizations.

In this sense, we have experienced issues related to:

• Lacks of flexibility in specifications

• The Gap between business and application layers

that render the evolution of systems hazardous and in consequence the business very
slow to react to changes !

Indeed, without respect of patterns enabling flexible, executable and traceable
specifications, UML practitioners fall in some kind of "spaghetti oriented development"
that makes the evolution of their system difficult.

We explain below reasons of these weaknesses and their particular impact on the
business reactivity. In sections 2, 3 and 4 we introduce six Goal-Driven Development
Patterns for preventing these issues. These patterns assure platform independence,
portability and reusability of modeled specifications as required by the OMG's Model
Driven Architecture (MDA1) [Ref: http://www.omg.org/mda]. Finally, section 5 presents a
summary of the Goal-Driven Development Framework whose UML artifacts elaborated
using these patterns are traceably linked in order to ensure good levels of reactivity to
changes.

1 MDA and UML are trademarks of the OMG (Object Management Group)

http://www.jot.fm
http://www.omg.org/mda
http://www.jot.fm/issues/issue_2003_11/article4

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

1 INTRODUCTION: WHAT ARE REASONS AND IMPACTS OF
WEAKNESSES IN THE BUSINESS REACTIVITY WITH UML?

Factors that impact negatively the reactivity of systems to changes are mainly due to the
lacks that concern evolution of specifications, to their absence of traceability from
requirement analysis toward software implementation and also to the gap that persists
between the business and the application system layers. A brief insight for each one of
these development issues is given below :

• Lacks of Evolutivity in Specifications: Specifications are not rendered identifiable

in the UML diagrams. Indeed, in general, a given requirement references operations
implemented in more classes. As a consequence of this orthogonality between
requirements and classes, it is not easy for analysts to specify evolution of
requirements in face of changes and for designers to implement required
"corrections". In order to specify evolution of requirements within their kind of
nominal and alternate realization scenarios, specifications need to be designed as
identifiable classes and components like objects and their behaviors!

• Specifications are not rendered traceable from requirement analysis toward

implementation: Specifications are not rendered traceable toward lower abstraction
levels in the development. For example, behaviors defined at the analysis level of
business or application layers are not used at the design level with respect to their
original description. This inconvenience is essentially due to the assignment of
functional responsibilities to domain objects prematurely at the analysis level. Indeed,
at the design level, designers have to retouch these specifications with their
architectural choices. For example, in the case of a sale transaction, an object like
ticket that is specified to be created and printed at the end of the transaction at its
analysis description, may be suppressed and replaced at the design level by the sale
object that implements this function by a print() method. Similarly, in the context of
an application for project supervision, at the analysis level resources may be specified
as directly controled by the project object in their assignment scenario. At the design
level, another controller like resource-manager could be asked to manage
assignments for these resources instead of project. Finally, the dependence of the
design level specifications from constraints of a given technological target platform
presents another inconvenience for the business reactivity in face of the frequency of
technologic changes. To prevent this factor, analysis and design specifications need to
be rendered executable independently from any target platform (using PIM - Platform
Independent Model in MDA) and traced by transformation to any Platform Specific
Model (PSM) that focus on code generation for a specific platform [Ref: MDA].

INTRODUCTION: WHAT ARE REASONS AND IMPACTS OF WEAKNESSES IN THE BUSINESS
REACTIVITY WITH UML?

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 119

• Lacks in the Traceability between Abstraction Layers: Specifications are not
traceable between the business and the application layers. For example, targeted
behaviors that are defined for a requirement in the business process layer are not
usable in the application layer. As a direct impact of this lack of traceability, analysts
are not encouraged to formalize business reactions in separate models: both business
rules and their usage constraints are mixed inadvertently in application use cases. This
impacts negatively the validation process of use cases and the evolution of business
rules: use cases descriptions are often rendered very long, evolution of business rules
they utilize become difficult! The figure below shows requirements-gathering process
by use cases in the business and in the application system levels. It also highlights
needs for traceability between requirements captured in the business level toward the
application system level.

The GAP between business
and application layers

Sales From Order
To Billing

Pay Invoice

“BUSINESS LAYER”

Receive money

Accountant

Accounting Service

Buyer

Buyer

“APPLICATION LAYER”

<<trace>>

Send money

Send invoiceReceive invoice

Traceability is not ensured between these layers !

<<trace>> <<trace>>

Figure 1: Applications cannot efficiently react to changes specified in the business layer.
Because as business specifications are not sufficiently structured in the business layer,

they are not efficiently traced toward the application layer.

Goal-Driven Development Patterns presented in the next section permit to avoid
modeling issues introduced above.

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

2 PATTERNS FOR INCREASING BUSINESS REACTIVITY WITH
MDA AND UML

Business systems need to react swiftly and accurately to changes that occur in their
environment. In this adaptation process, in order to prevent issues that we have seen
above, specifications that constitute behaviors of such systems need to be rendered:
• identifiable like objects and components but with flexible behaviors (easy to change)

in order to confer maintenable evolution to specifications,
• traceable from the requirement analysis level toward their implementation,
• platform independent for avoiding to duplicate effort in design with choices related to

this level and to ensure validity of analysis specifications independently from
constraints of a given technological target platform,

• executable even at the analysis/design level independently from any technological
target platform for assuring early tests (to ensure correct understanding of
requirements) and completeness of specifications in order to transform them directly
in the language of any target platform (portability),

• traceable between business and application layers to allow applications (use cases)
invoke correct business behaviors as they are defined at the business process layer
where they evolve according to strategic decisions (reusability).

In order to build specifications with these properties, we have identified six patterns that
constitute the backbone for the development of such an agile business system. The
first group of three patterns presented in section 3 ensure flexibility in specifications.
The last three ones presented in section 4 are designed for closing the gap between
business and application layers.

3 PATTERNS FOR CONFERING FLEXIBILITY TO
SPECIFICATIONS

The first group of three patterns are intended to provide an easier maintenance to
specifications throughout evolution of the system. These patterns are: Identifiable
Specifications (PIS), Evolutive (flexible) Specifications (PES) and Executable
Specifications (PEX).

A summary of these patterns and dependencies between them are presented in the
schema below:

PATTERNS FOR CONFERING FLEXIBILITY TO SPECIFICATIONS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 121

Getting Flexibility Within Specifications
Specifications need to be modeled as identifiable, flexible

and traceable units ; they also need to be rendered
independent from lower abstraction levels

IDENTIFIABLE
SPECIFICATION-

(PIS)

EXECUTABLE
SPECIFICATION-

(PEX)EVOLUTIVE
SPECIFICATION-

(PES)

Makes identifiable
units of specifications
using Goals (Classes)
and Responsibilities

(Operations)

by allowing traceability of
specifications of a given
refinement level toward
lower-level specifications
using goal-oriented
refinement techniques

Confers easy evolution
to system behaviors

Allows early tests of units
of specifications at the
analysis / design level and
ensures their portability by
rendering them independent
 from lower-level platforms

<< Goal Case>>

A Goal-Case
contains a set of responsibilities

that belong to the same unit of intention
a.

b.
c.

Goal-Oriented Objects

GOObiz.com

®

Figure 2: Dependency relationships between patterns that assure easier evolution to system specifications

a) Pattern for Identifiable Specifications (PIS)

Intent: Making Identifiable Specifications

Solution: Make identifiable specifications by capturing requirements within goals and
responsibilities that are meaningful within these goals.

Explanation: Requirements that belong to the same functional context -or unit of
intention- are grouped in goal-cases. Reifying a goal-case as a Goal-Oriented Object
(GOO) and encapsulating responsibilities as operations of this GOO class allow related
behaviors to become identifiable within their corresponding goal structure.

A GOO may be modeled in UML using the notation of an object-in-state ; so it can
be described by the object name followed by the state of this object, in brackets. For
example, Visitor [Registration] represents a GOO class which deals with the registration
state of Visitor. The state of a GOO covers activities that must be executed within its
execution -functional- boundaries. In the case of Visitor [Registration], these execution
boundaries cover operations that are meaningful in the registration state of the Visitor.

So, a GOO can react to a request, only if this request can be kept inside its functional
boundaries as a responsibility (operation). For example, such a GOO like Visitor
[Registration] can react exclusively to requests related to the registration process of a

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

visitor, that are implemented inside its functional boundaries by the corresponding
operations.

Operations of a GOO class can also be discovered via an activity diagram elaborated
for the related goal case. Nominal and alternate sequences of actions that are encountered
during the realization of a goal-case become operations of the corresponding GOO class.
So, an operation specified in a GOO class may play a role of machinery, exception or
post-action depending on the sequence of actions it represents in the achievement of the
related goal-case. Such operations constitute contextual operations of a GOO class as
they are fired under the control of the controler operation of the corresponding GOO
which does supervise their execution. For example in the figure 3 below,
register_visitor() is the controler operation of Visitor [Registration].

Finally, constraints related to a goal represent values that must be guaranteed or
targetted by appropriate operations of the corresponding GOO. They can be appended to
the related class name as UML tag-values or constraints, or if necessary using a UML
note.

• G3 : Increase volume of transactions
(500 transactions a day)

• G3.1 : Increase rate of visits
– G3.1.1 :Links from other sites
– G3.1.2 :Site reviewed in medias
– G3.1.3 :Visible in search engines

• G3.2 : Motivate visitors to register
via a bonus system

– Make registration beneficial via a
bonus system (Goal-Value = 100
registrants a week)
 ...

• Invent a bonus system
• Notify visitor

• G3.4 : Increase visitor reliability

• G1 : Enhance Production Process
– G1.1: Efficient Production
– G1.3 : Efficient Purchase

• G2 : Motivate staff (means :..)
– G2.0 : Develop a program for staff

motivation
– G2.1 :Communicate program
– G2.2 :Accompany program

• G6 :Increase profits for Sales
• G5 :Increase profit of the Internet Site
• G4 :Enhance productivity of the

Production and Delivery Chains
– G4.2 :Enhance efficiency of the

Production
– ...G4.2.2 : Respect delays for

production

List of High-Level Strategic Goals for the Process of
“Increasing Market Parts -V1”

 Visitor
Entry

Error Condition :
Winner Rate

reached

Questionnaire
Filling

Error Condition : Abandon
rate reached

Lottery

Review_
Questionnaire

Purchase

Bonus
Assignment

Review_Lottery
_Rules

Visitor
Registered

Notification

Visitor to
register

(a) PIS - Pattern for Identifiable Specifications

<< Goal Case>>
A Goal-Case is created in the system for a

set of requirements that belong to
 the same unit of intention

A
Goal-Oriented
Object (GOO)

1.

2.

3.

4.
Activities of a Goal-Case may be identified

via an Activity Diagram,..

+<<ctrl>> register_visitor()
-<<….>> cancel_register()
-<<….>> modify_register()
- <<….>> enter_visitor()
- <<….>> fill_questionnaire()
- <<….>> notify_visitor()
- <<….>> notify_rate_of_registrant()
- <<….>> abort_transaction()...

Visitor [Registration]
{Goal-value = 100 registrants a

week ,..}

entered_ok : boolean
questionnaire_filled :boolean
visitor_notified : boolean
bonus_affected : boolean

Goal-Oriented Objects

GOObiz.com

®

Figure 3: Visitor [Registration] is shown as a class of Goal-Oriented Object (GOO class) that specifies on its own

necessary collaborations to ensure requested behaviors

PATTERNS FOR CONFERING FLEXIBILITY TO SPECIFICATIONS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 123

b) Pattern for Evolutive (flexible) Specifications (PES)

Intent: Confering easy evolution to specifications by allowing refinement of complex
responsibilities of the system (operations of GOO classes) and by ensuring their
traceability.

Solution: Refine complex operations of a GOO class using nested GOO classes and their
operations. Traceability between a base operation and operations of its nested class is
automatically ensured by invocation.

Explanation: In order to make flexible specifications, we need specify nominal and
alternate actions in the achievement of complex responsibilities. Indeed, if a
responsibility is complex for an abstraction level and necessitates to be identified
separately for its evolution purpose, it then requires to be considered as a new GOO at
this level. For example, in the case of an ATM machine, for the sentence "eject the card
when the transaction is completed", eject card may be designed first as a responsibility in
the context of the transaction. So, it can be considered at the analysis level by the
operation eject_card() as part of the goal Transaction [Realization]. But at the design
level, this operation may require to be refined by other technical responsibilities ; for
instance, it can be refined by adding a new GOO class Card [Ejection] to the system that
incorporates technical operations related to the card ejection process.

Thus, the pattern confers evolution to complex operations of GOO classes by
refining them via other GOO classes and operations. Traceability between a base
operation and its corresponding refinements is automatically ensured by invocation. As a
result of this transformation process, GOO classes that emerge by refinement constitute
contextual classes of their parent class. They correspond to physical or referenced parts of
the corresponding base class and constitute with the latter a composite of GOO classes
(GOO_Comp).

A GOO_Comp may include physically and can import other GOO classes or
components (GOO_Comps) as its contextual parts.

Figure 4 illustrates a GOO_Comp with its nested GOOs that play same role as the
corresponding base operation they refine.

Figure 5 shows refinement of certain operations of the GOO class Visitor
[Registration] using nested GOO classes that become part of the emerging GOO_Comp.

Remark : Assigning durable names to goal structures according to the abstraction level
in which they are placed, constitutes a fundamental step for ensuring a coherent
evolution (pattern PCE presented next) to the system by the use of common
components. Such an hierarchical framework of goals permits the overall system to
evolve in harmony with the evolution of its environment.

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

<<Controller>>
: GOO

<<Machinery>>
:GOO

1: q:

<<Machinery>>
:GOO

[completion condition 1]

[completion condition n]

<<Exception>> :GOO

<<Post-Actions>>
:GOO

....

[exception 1’]

[exception n’]

[C1] [Cn]

<< MACHINERY>>

A Component of Goal-Oriented Objects
(GOO_Comp) :

Task oriented set of GOOs that collaborate to achieve a goal

<<Exception>> :GOO

<<Post-Actions>>
:GOO

<<POST_ACTIONS>>

<<EXCEPTIONS>>
OPTIONAL

Figure 4: GOOs act as Machinery, Exception or as Post-Actions in the achievement
of the responsibility of their controller

Goal-Oriented Objects

GOObiz.com

®

(b) PES - Pattern for Flexible and Traceable
Specifications

•Provides explicit description of complex behaviors and assures their traceability
Each complex operation may be identified as a separate GOO within a GOO_Comp

Visitor [Registration]
{Goal-value = 100 registrants a

week ,..}

entered_ok : boolean
bonus_affected : boolean
lottery_realized :boolean
visitor_notified : boolean
+register_visitor()
+cancel_register()
+modify_register()
-enter_visitor()
-fill_questionnaire() {Pre : v_entered}
-notify_visitor() {Pre : quest_filled}
-notify_rate_of_registrant()
-abort_transaction()
..

<< refined by >>

: Visitor
[registration]

: Visitor
[entry]

: Questionnaire
[filling]

Visitor [Registration] : A GOO_Comp

2:

:Transaction
[abort]

[delivery Ok]

[cancel]

<<MACHINERY>>

<<EXCEPTION>>

<<POST-ACTIONS>>

: Visitor
[notification]

<<MACHINERY>>

1:

<<CONTROLER>>

by allowing traceability of
specifications of a given
refinement level toward
lower-level specifications
using goal-oriented
refinement techniques

Confers easy evolutions
to system behaviors

A GOO_Comp regroups behaviors that act as Controler, Machinery,
Exception or Post-Actions in the achievement of operations of their controller

1. 2.

Figure 5: Visitor [Registration] is shown as a Component of Goal-Oriented Objects (GOO_Comp) where GOO classes

refine complex operations specified within their controller.

PATTERNS FOR CONFERING FLEXIBILITY TO SPECIFICATIONS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 125

c) Pattern for Executable Specifications (PEX)

Intent: Testing specifications at the early analysis/design level independently from
specificities of the target platforms and ensuring their portability "as is" on the target
platform (Specifications elaborated at the analysis level shouldn't be modified in the
design level, those of the design level shouldn't be modified at the implementation).

Solution Step 1: Render specifications independent from lower abstraction levels. To do
this, use appropriate goal structures that keep their validity from the analysis level
throughout lower abstraction levels.

Solution Step 2: Ensure completeness of analysis/design specifications in order to render
them executable "as is" on the target technological platform.

Explanation step 1:

To confer platform independence to analysis/design level specifications from the target
technological platform, we assign boundaries to these development levels as follows :

• System analysis/design levels at the technical platform (PIM in MDA)
focus on the technical what and how,

• Technological analysis/design levels focus on the technological what and
how at the target platform (PSM in MDA).

Figure 6 shows abstraction boundaries assigned to technical and technological platforms
and correspondances of these platforms with the PIM and PSM levels of the Model
Driven Architecture (MDA).

Within the technical platform, as we have talked about in the previous section,
responsibilities assigned to entity-objects at the analysis level are often altered by design
choices in the design level.

To prevent the invalidation of analysis specifications later by design choices, we
need designate controllers independently from entity-objects. Thus, by choosing business
and application goals structures as controllers respectively in collaborations of the
business and of the application layers, we keep validity of the related analysis
specifications "as is" toward design levels, and so on.. (i.e. without modifications of
originally specified behaviors at the lower abstraction levels).

The class diagram (figure 7) shows specifications of the technical what (at the
analysis level) and of the technical how (at the design level) on the technical platform
(PIM). This separation of concerns permits to test analysis specifications independently
from the technical how of the design level and does ensure validity of these specifications
at the design level.

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

Abstraction Boundaries for the Models of
the OMG’s MDA Infrastructure

Platform
Independent

Model

Platform
Specific
Model

Model Transformation

Executable
System

Code
Generation

Computation
Independent

Business Model
(CIM)

Functional What
and How

(PIM)
Technical

What and How
 (Platform Independent)

How technically
realize

specifications of the
CIM at the PIM

(PSM)
Technological
What and How

(Platform Dependent)

How technologically
realize

specifications of the
PIM at the PSM Goal-Oriented Objects

GOObiz.com

®

Figure 6: Assignment of abstraction boundaries to technical (PIM) and technological platforms

 (PSM) for assuring independence of related specifications

Visitor [Registration]
visitor_registered : boolean
questionnaire_filled : boolean
interests_attached : boolean
..
+register_visitor()
-cancel_register()
-modify_register()
-enter_visitor()
-fill_questionnaire()
-notify_visitor()
-notify_rate_of_registrant()
-attach_visitor_interests()
..

Visitor[Entry]

+visitor_entry (name,e-mail)
-cancel_entry()
-find_article(designation)

Visitor
Visitor_name : String
E-mail :String

create_visitor()
set_visitor_notif()
set_visitor_interests()
...

Notification
Send_status:Boolean
Sending_time: Time

create_notification()
set_status()
...

Article
Art_Id : String
Designation : String

get_designation()

I_Visitor
_Mngt

0..1

*

visitor
_interests

visitor_
notif

I_Art_Consult

Catalog

V-Item

*

visitor_entered : boolean

Visitor[Notification]

+visitor_notification()
-create_notif() {Pre : }

-transmit_notif(){Pre:notif_created..}

-cancel_transmit()

visitor_notified : boolean
notif_created : boolean
notif_attached: boolean

Detailed requirements at the
Design Level of the PIM

T
EC

H
N

IC
A

L
 W

H
A

T
T

EC
H

N
IC

A
L

 H
O

W

Figure 7: Abstraction boundaries for the analysis (the what) and design levels (the how) at the technical platform (PIM)

for assuring independence of related specifications

PATTERNS FOR CONFERING FLEXIBILITY TO SPECIFICATIONS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 127

Explanation Step 2:

In order to render analysis / design specifications executable "as is" on the target
technological platform (PSM), we need ensure completeness of these specifications at the
technical platform (PIM) by executing them independently from the target platform.

Platform independent specifications (PIM level in the MDA) can be executed by
goal, starting at the analysis level. Operations are triggered by their controler after
comparing their pre-conditions to the state of the system expressed by attribute values.

Visitor [Registration]

visitor_registered : boolean
visitor_entered : boolean
questionnaire_filled : boolean
visitor_abandoned : boolean
..+register_visitor() {Pre :v_connected}
-cancel_register()
-modify_register()
-enter_visitor()
-fill_questionnaire() {Pre :v_entered}
..
-notify_visitor() {Pre :quest_filled}
-notify_rate_of_registrant()
..

CONTRACT for Register_Visitor()

Pre-Conditions :
visitor_connected

Post-Conditions :
•visitor_registered =
(visitor_entered and questionnaire_filled
and visitor_notified);

Exceptions :
•[visitor_abandoned] : transaction_aborted;

CONTRACT for Notify_Visitor()

Pre-conditions :
questionnaire_filled

Post-conditions :
visitor_notified = (notif_created and
notif_transmit and
notif_linked_to_visitor);

...

Used to trigger operations

Used for refinement of operations

Figure 8: Pre-conditions specify conditions for triggering operations

Completeness related to the execution of an operation is supported by the refinement
(decomposition) process of its post-conditions. Post-conditions of operations are refined
there -if possible, assisted by a graphical tool- until CRUD (Create, Retrieve, Update,
Delete) functions that permit to handle entity objects, their attributes and links between
these objects are reached (see figure 9).

Post-conditions specified for an operation permit to discover at the immediate lower
refinement level operations and attributes of the nested GOO class that support these
post-conditions. These operations are used by the controler operation of this nested GOO
class in order to realize requested post-conditions.

The class diagram below shows refinement of the operation notify_visitor() of
Visitor [Registration] by operations of Visitor [Notification] that respect its post-
conditions. Operations like create_notification() and attach_visitor() that should belong

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

to this list have not been shown for their granularity reason. Instead, the code related to
these operations are implicitly incorporated within the body of visitor_notification().

The body of visitor_notification() shows actions that have to be executed to reach
specified post-conditions. Attributes that are derived from post-conditions act as triggers
for these operations.

Visitor [Registration]
visitor_registered : boolean
questionnaire_filled : boolean
interests_attached : boolean
..
+register_visitor()
-cancel_register()
-modify_register()
-enter_visitor()
-fill_questionnaire()
-notify_visitor()
-notify_rate_of_registrant()
-attach_visitor_interests()

..

Visitor
Visitor_name : String
E-mail :String

create_visitor()
set_visitor_notif()
set_visitor_interests()
...

Notification
Send_status:Boolean
Sending_time: Time

create_notification()
set_status()
...

I_Visitor
_Mngt

0..1

*

visitor
_interests

visitor_
notif

V-Item

Visitor[Notification]

+visitor_notification()
-transmit_notif(){Pre:notif_created}

-cancel_notification()

visitor_notified : boolean
notif_created : boolean
notif_transmit : boolean
notif_linked :boolean

Execution of Operations
at the Design Level of the PIM

//visitor_notified {pre-cond : “notify”}
if (frame = “notify”)
{
//notif_created {pre-cond :}
Notification notif = create Notification() ;
return (notif_created = true);

//notif_transmit {pre-cond : notif_created}
if (notif_created)
{transmit_notif(notif);
return (notif_transmit = true)};

//notif_linked {pre-cond : notif_transmit}
if (notif_transmit)
{visitor. set_visitor_notif(notif);
return (notif_linked = true)};
}

Figure 9: The body of visitor_notification() shows actions that have to be executed to reach specified post-conditions.
Attributes that are derived from post-conditions act as triggers for these operations.

As a conclusion for the pattern PEX, testing specifications at the early analysis and
design levels as well as rendering them executable "as is" on the target platform bring
flexibility to specifications. Indeed these factors ensure respectively:
• early understanding of requirements without waiting for the target platform to be

ready for testing them and without necessary technological knowledge,
• portability of specifications whatever changes arising on both functional and

technological sides.

PATTERNS FOR CLOSING THE GAP BETWEEN BUSINESS AND APPLICATION LAYERS
(WITH A COHERENT ADAPTATION TO CHANGES)…

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 129

4 PATTERNS FOR CLOSING THE GAP BETWEEN BUSINESS
AND APPLICATION LAYERS (WITH A COHERENT
ADAPTATION TO CHANGES)

The second group of three patterns aims to closing the gap between the business and
application layers as well as adapting system coherently to changes. Changes that are
captured in the business environment impact appropriate components of the system ; they
are propagated through the application layer to synchronize IT actors and applications
with the planned business behaviors.

These patterns are: Traceable Abstraction Levels (PTAL), Use Business Behaviors
(PUB-BAL) and Coherent Evolution (PCE).

A summary of these patterns and dependencies between them are presented in the
schema below:

Closing Coherently the Gap between Business and

Application Layers requires :
 (d) Communication of required behaviors to actors of the application layer

 (e) Allowing actors of the application layer use business behaviors
(f) Respect of high-level business goals and constraints in face of changes

EXECUTABLE
SPECIFICATION-

(PEX)
EVOLUTIVE

SPECIFICATION-
(PES)

COHERENT
EVOLUTION-(PCE)

TRACEABLE
ABSTRACTION
LAYERS-(PTAL) Assigns relevant

responsibilities to
actors of the
application system
layer

evolution to the system with its high-level goals
In face of changes, confers coherent

f.
d.

USE BUSINESS
BEHAVIORS-

(PUB-BAL)

Allows actors of the application
system layer, to use behaviors
defined in the business layer
within their application
constraints

•What are existing and newly created
 system components that might be affected
by the changes ?
•How components should be impacted in order to
support behaviors as required by high-level goals?

e.

Goal-Oriented Objects

GOObiz.com

®

Figure 10: Dependency relationships between patterns for assuring traceability between business and application layers
and to contribute the system evolve coherently in face of changes.

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

d) Pattern for Traceable Abstraction Layers (PTAL)

Intent: Making traceable specifications between business and application layers

Solution: Consider actors of the application layer. Let appear them as role-controllers for
the business specification layer and indicate their responsibilities.

Explanation: This pattern aims to suppress the semantic gap between business and
application layers in the realization of a requirement. To do this, it suggests to look for
components of the system that necessitate at least one actor for their realization at the
application layer in a given chain of refinement and describe responsibilities of
corresponding role-controllers at the business layer. Such responsibilities can be precisely
described using the name of the role-controller component, its functional boundary and
its input and output behaviors (if necessary, using interaction and/or state diagrams for
more precision) in the achievement of these responsibilities.

However, a component diagram is, in general, sufficient for illustrating a high-level
description of the inputs for these role-controllers and for the description of targeted
component interfaces that they must conform to.

...PTAL - Pattern for Traceable Abstraction Layers

Visitor
[Entry]

<<Ctrl>>
Visitor

[Registration]
{with a Bonus System}

Company
[Presentation]

 {Promote
Registration..}

[end register]

WebSite_Mngt [Turn to Buyer] {Motivate Visitors to Register with a Bonus System}

Lottery [Realize]
{Goal-value <1

winner
 /100 }

Visitor
[Notification]

Visitor [Registration] {with a Bonus System
 Goal-value = 100 registrant per a week..}

[visitor entered]

[winner_rate > 1/ 100]

Material
[Purchase]

[Min. stocks
reached]

Lottery_Rules
[Review]

Bonus
[Assignment]

Bonus_Rules
[Review]

[bonus critical
rate]

Product_Info
[Presentation]

Visitor
[Turn to Buyer]

Product [Promotion] {Motivate Visitors to Register with a Bonus System..}

[notified]
[not winner]

[register]

I-Launch

I-Bonus_Review

Lottery [Realization]{..}

_Mktg
[lottery review]

_Purchase
[material purchase]

_Sales
[bonus review]

_Sales
[turn to buyer]

I-Purchase

I_Make_Buyer

Affects relevant
responsibilities to
actors of the
application system
layer

I_Register_Visitor

I_ Present
Product

Goal-Oriented Objects

GOObiz.com

®

Figure 11: The component diagram illustrates a high-level description of responsibilities for the components and the
role-controllers (stereotyped by actor icons) at the business level. Role-controllers are added as components to the

previous specification of the business system. They represent meta-roles for actors of the application level.

PATTERNS FOR CLOSING THE GAP BETWEEN BUSINESS AND APPLICATION LAYERS
(WITH A COHERENT ADAPTATION TO CHANGES)…

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 131

e) Pattern for Using Business Behaviors (PUB-BAL)

Intent: Allow actors of an application system to use business behaviors (rules) as defined
in the business layer with their application constraints

Solution:
• Consider instances of role-controllers that were stereotyped by <<actor>> icons in the

previous pattern PTAL as actors for the application layer.
• Define if necessary, application components and classes for implementing operations

that have to support usage constraints of actors.
• For allowing actors to use business and application behaviors, define use cases that

capture actor-system interactions.
Explanations: Actors of the application layer realize responsibilities that were affected to
them (via corresponding role-controllers in the business layer) directly by using behaviors
defined for target components (if any) or indirectly, by including their usage constraints.

A direct usage allows actors to use business goals exactly as they are defined in the
business layer. Actors need also invoke indirectly these behaviors by redefining some of
them respecting their pre-conditions and post-conditions. Thus, business goals may also
be specialized by other complementary sequences of actions that respond to the usage
constraints of the application layer.

In all of these cases, we need to isolate high-level business behaviors (like actions
related to the registration process of an internet visitor) from actor's application layer
behaviors (like offering a visitor a look-up on promoted items during his/her registration
process, ..) to allow the business layer evolve independently.

Finally, for supporting actor-system interactions, application use cases manage
actions related to actor events (like selection menu management, fields checking, ..) and
those related to communications with behaviors stored in the business GOO_Comps.

The diagram below shows different ways for using business and application
behaviors (illustrated respectively by Business Goal Case and Application Goal Case
stereotypes).

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

PUB-BAL - Pattern for Using Business Behaviors

Actor_Appli2

Business_Rules
<<Business Goal Case>>

My_
Application2

<<Use Case>>

Application_Rules
<<Application Goal Case>>

<<invokes>>

BUSINESS PROCESSES

APPLICATION PROCESSES

<<invokes>>

Actor_Appli1 My_
Application1

<<Use Case>>

(e) PUB-BAL : « Let actors use assigned business
behaviors with their application constraints »

EXECUTABLE
SPECIFICATION-

(PEX)
EVOLUTIVE

SPECIFICATION-
(PES)

TRACEABLE
ABSTRACTION
LAYERS-(PTAL)

USE BUSINESS
BEHAVIORS-

(PUB-BAL)

Allows actors of the application
system layer, to use behaviors
defined in the business layer
within their application constraints

Goal-Oriented Objects

GOObiz.com

®

Figure 12: Behaviors stored in business goal-cases and application goal-cases are used via use cases. In the bottom part

of the diagram, an application goal-case inherits behaviors from the business layer and eventually redefines some of
them allowing actors use the system with their application constraints.

For example, use cases named Visit Company Presentation and Register Visitor use
respectively business behaviors stored inside the GOO_Comps Company [Presentation]
and Visitor [Registration].

Responsibilities of the use case controllers may be specified based on the actor-
system interactions. The description of the use case UC-Register-Visitor illustrates part of
responsibities in the usage of the system behaviors.

A static aspect of the high-level view on the usage of business components can be
illustrated by a component diagram.

The component diagram (figure 13) shows the static aspect of the usage of business
behaviors by the application use cases.

PATTERNS FOR CLOSING THE GAP BETWEEN BUSINESS AND APPLICATION LAYERS
(WITH A COHERENT ADAPTATION TO CHANGES)…

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 133

(e) PUB-BAL - Pattern for Using Business Behaviors

Purchase_Emp

<<invokes>>

<<Use Case>>
Visit Company

Presentation

Customer

Mktg_Emp <<Use Case>>
Review Lottery

<<Use Case>>
Purchase Material

<<uses>> <<uses>>

<<Use Case>>
Register Visitor

Customer

<<invokes>>

<<invokes>> <<invokes>>

Visitor
[Entry]

<<Ctrl>>
Visitor

[Registration]
{with a Bonus System}

Company
[Presentation]

 {Promote
Registration

 with a Bonus System..}

[end register]

WebSite_Mngt [Turn to Buyer] {Motivate Visitors to Register with a Bonus System}

Lottery [Real]
{.. < 1w/100}

Visitor
[Notification]

Visitor [Registration] {with a Bonus System
 Goal-value = 100 registrant per a week..}

[visitor entered]

[winner_rate > 1/
100]

Material
[Purchase]

[Min. stocks
reached]

Lottery_Rules
[Review]

Bonus
[Assignment]

Bonus_Rules
[Review]

[bonus critical
rate]

Product_Info
[Presentation]

Visitor
[Turn to Buyer]

Product [Promotion] {Motivate Visitors to Register with a Bonus System..}

[notified]

[not winner]

[register]

I-Launch

I-Bonus_Review

Lottery [Realization] {Goal-value ..}

_Mktg
[lottery review]

_Purchase
[material purchase]

_Sales
[bonus review]

_Sales
[turn to buyer]

I-Purchase

I_Make_Buyer

I_Register_Visitor

I_ Present
Product

BUSINESS SYSTEM

Goal-Oriented Objects

GOObiz.com

®

Figure 13: Components of Use Cases (on the border of the diagram) use behaviors from the business process
components via their interfaces. Details of the content of the Business System is provided in the figure 11

Summary Description of the Use Case: The use case begins when an internet visitor
asks the system for his/her registration. It is ended when the system confirms that a
notification will be sent to the visitor. A notification contains information on the
registration of the visitor and other relevant information about the bonus affectation and
the lottery results.

ACTOR SYSTEM

1-Visitor activates the UC for his/her
registration.

2-System displays the menu of choices to the user

3-User makes his/her selection for the
"Registration".

4-System returns the user the "Visitor Registration" form

5-User enters fields (name, surname, e-mail,)
and submits the form

6-System checks mandatory fields and displays the
questionnaire to the user.

7-User completes the questionnaire and submits,
or leaves by canceling

8-System checks the result [if abandoned : EXC1] If
OK, it stores fields in the database, affects bonus and
realizes lottery. Then it finishes the transaction with a
message of courtesy and informs the user by sending a
notification.

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

EXC1: If user leaves during the filling of the questionnaire, then system terminates the
transaction.

Based on application constraints described as part of actor-system interactions, new
behaviors can be added to or substracted from related business GOO_Comps.

Visitor [Registration]

entered_ok : boolean
bonus_affected : boolean
lottery_realized :boolean
visitor_notified : boolean

+register_visitor()
-cancel_register()
-modify_register()
-fill_questionnaire()
-run_lottery()
-attribute_bonus()
-set_entered_ok()
-set_notified()
-notify_rate_of_registrant()
..

Visitor[Entry] {with
selecting items of interest}

-browse_promotions()
-find_visitor(id)
-find_interests(name)

Visitor[Notification]

+visitor_notification()
-compose_notification()
-transmit_notification()
-cancel_transmit()

 [end transaction] Visitor[Entry]

+visitor_entry (name,e-mail)
-cancel_entry()
-find_article(designation)

Figure 14: The class diagram shows implementation of part of responsibilities of the GOO_Comp Visitor

[Registration] with new application constraints that concern Visitor [Entry] {..},
designed as sub-class of Visitor [Entry].

As a conclusion for the pattern PUB-BAL, actors of the application layer invoke business
behaviors with their application constraints, according to business responsibilities that are
communicated to them via the pattern PTAL. Separation of business goal-cases from the
application ones allows business behaviors evolve independently from constraints of the
application layer. Thanks to this distribution of responsibilities, use case descriptions
become easy to validate and system components easy to maintain.

f) Pattern for Coherent Evolution (PCE)

Intent: Allow coherent evolution to the system with its existing goals when changes arise
on its behaviors.

Explanation about this pattern is accessible on the Goal Driven Development
Patterns at http://www.goobiz.com/GOObizWP/GOObizWP.htm#Patterns.

As a conclusion for patterns summarized above:

PATTERNS FOR CLOSING THE GAP BETWEEN BUSINESS AND APPLICATION LAYERS
(WITH A COHERENT ADAPTATION TO CHANGES)…

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 135

Goal-Oriented Objects constitute basic elements for getting flexibility within
specifications. By applying patterns described in section 3, the resulting system is built on
evolutive (flexible), executable and traceable specifications. Patterns presented in this
section are based on these services for closing the gap between the business and
application layers and for adapting system to changes with respect to its existing goals.

The next section presents a summary of the Goal-Driven Development Framework
that illustrates how to bridge these goal-based UML artifacts to ensure good levels of
reactivity for the resulting system.

5 GOAL-DRIVEN FRAMEWORK FOR ADAPTING INFORMATION
SYSTEMS TO THEIR CHANGING BUSINESS ENVIRONMENT

Patterns described above do help analysts and designers in rendering specifications
identifiable, evolutive, executable and traceable, based on requirements of non-technical
business experts.

A methodological framework is then necessary to assist people in this process by
suggesting necessary artifacts (textual specifications, UML diagrams, prototypes, ..) and
patterns to use at each step of the process.

In this context, the Goal-Driven Development Framework offers a good level of
traceability between related artifacts in the system lifecycle. It does necessitate two main
parts:

1. A business specification part that allows non-technical people to specify their

business needs and business analysts formalize them using components of
goal-oriented objects. The figure below shows main steps and artifacts of this
Goal-Driven Development Process :

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

Lottery_Rules
[Review]

Visitor
[Notification]

Bonus
[Assignment]

Visitor
[Entry]

Visitor
[Registration]

{Bonus System}

Company
[Presentation]

WebSite_Mngt [Turn to Buyer] {Motivate Visitors to Register with a Bonus System}

Lottery
[Realize]

Visitor [Registration] {Bonus System..}

[visitor
entered]

Bonus_Rules
[Review]

[bonus
critical
rate]

Product_Info
[Presentation]

Visitor
[Turn

to Buyer]

Product [Promotion] {Motivate Visitors to Register with a Bonus System.

[notified]

I-Launch Lottery [Realization]

_Mktg
[lottery review]

_Sales
[bonus review]

_Sales
[turn to buyer]

I_Register_
Visitor

I_ Present
Product

0.

•

:SITE
[MARKETING]

:SITE
[MANAGEMENT]

G3.1 : Increase Nb. Of Visitors
G3.1.1 :Links from other sites
G3.1.2 :...
G3.1.3 :Visible in Engines
G3.3 : Increase Nb. Of Customers
G3.3.1 : Bonus system
G3.3.2 : Attractive Pricing

HLG3
:TRANSACT-VOLUME

[INCREASING]

:MARKET SHARES
[INCREASING]

{..} G3 :Increase
TransactionsG2 :Motivate

Human Resources

G3.2 : Motivate internet registration
G3.2.1 : Render Registration Beneficial
G3.2.2 : Notify Visitor

:HUMAN-RESSOURCES
[MANAGEMENT]

Increase
Shares
(values) 5. INTEGRATE BEHAVIORS

IN THE BUSINESS
ARCHITECTURE using PES

and PTAL

 Visitor
Entry

Error Condition :
Winner Rate

reached

Questionnaire
Filling

Error Condition : Abandon
rate reached

Lottery

Review_
Purchase

Bonus
Assignment

Visitor
Registered

Notification

Visitor to
register

Goal-Driven Development with MDA / UML

4. FORMALIZE BEHAVIORS
INSIDE GOAL-CASES

3. MONITOR
ACHIEVEMENT

OF GOALS
(OPTIONAL)

UC1

UC2
:GOO:GOO

6. INTEGRATE USE CASES
using PUB-BAL and TEST

using PEX

1. LIST REQUIREMENTS GROUPED BY GOALS

2. IMPACT
APPROPRIATE

SYSTEM
COMPONENTS

 using PCE

Goal-Oriented Objects
GOObiz.com

®

transactions (500 trans / day)
G3.1 : Increase rate of visits

G3.1.1 :Links from other sites

–
•

G3.2 : Motivate visitors to
register via a bonus system

–
Make registration beneficial via
a bonus system (Goal-Value =
100 registrants a week)

 ...•Invent a bonus system

–G1.1: Efficient Production
–G1.3 : Efficient Purchase

•G2 : Motivate staff (means :..)

staff motivation

of Delivery Chains

G6 :Increase profits for Sales
G5 :Increase profit of the Int.Site
G4 :Enhance productivity of the

G1 : Enhance Production Process

G2.0 : Develop a program for

G2.1 :Communicate program
G2.2 :Accompany program

G3.1.2 :Site reviewed in medias
G3.1.3 :Visible in S.Engines

•Notify visitor

G3 : Increase volume of

Figure 15: Steps and artifacts of the Goal-Driven Development Process.

Detailed content of the step 5 is provided in figure 11

A brief description of these steps and related artifacts of the process are presented with a
case study in the Goal Driven Development Process at http://www.goobiz.com/
Process/Overview_Process.htm .

2. An application software specification part that permits use case specifiers to

describe invocation of business behaviors by use cases at the application
system layer. The figure below shows main artifacts of this Goal-Driven
Software Development Process. It does allow to make a zoom on the step 6 of the
previous figure.

GOAL-DRIVEN FRAMEWORK FOR ADAPTING INFORMATION SYSTEMS TO THEIR
CHANGING BUSINESS ENVIRONMENT…

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 137

DESIGN USE CASES, BASED ON
RESPONSIBILITIES IDENTIFIED

IN THE SYSTEM ARCHITECTURE

USE COMPONENTS OF THE
BUSINESS ARCHITECTURE

(BASED ON ACTIVITY DIAGRAMS
VALIDABLE BY NON-TECHNICAL

PEOPLE)

DETAIL APPLICATION REQUIREMENTS
THAT USE BUSINESS COMPONENTS

B

U

S

I

N

E

S

S

G

O

A

L

S

IMPLEMENT
COMPONENTS in the

TECHNICAL
ARCHITECTURE

GOO2.1

CD1 CD3

GOO2.2.1

CD4

create()
...

get()
...

set()
...

Reactions()

UC1

UC2

I-GOO2.2

Specify Constraints Upon
Domain Classes / GOO_COMP

GOO2.2

CD11

create()
...

CD12

create()
...

CD34

create()
...

DCD / GOO2.2.1DCD/ GOO2.2

Order Entry

 N.Cust Total

Ord

Valid

Ship F
Cust

Deliv T Date

<<uses>>

GATHER APPLICATION
REQUIREMENTS

USING SCENARIOS

APPLICATION - CTRL

ENTITIES- CTRL-ACCESS

:UC2
evt1()

evt1.1()
evt2()

evt2.1()

Reactions()

<<uses>>

I-GOO2.1

E

N

T

I

T

I

E

S

G

O

A

L

S

<<implemented by>>

evt1.1.1()

:GOO2.2 :GOO2.2.1

evt1()

:UC2

evt2.1()
evt2()

evt1.1()

Visitor
[Entr y]

<<Ct rl>>
Vis itor

[Registration]
{with a Bonus System}

Company
[Pre sentation]

 {Promote
Registration

 wi th a Bonus System.. }
[end regi ste r]

W ebSite_Mngt [Make Buyer] {Mo tiva te Vis itors to Regis ter with a Bonus System}

L otter y [Re al iz e]
{Goal- valu e <1 wi nner
 /100 regis tered visi tor}

Vi sitor
[Notifi cation]

V isitor [Registration] {with a Bonus System
 Goal-value = 1 00 registrant per a week..}

[v isi t or ent ere d]

[winner_rate > 1/ 100]

Mate rial
[Pur chase]

[Min. stocks
reached]

Lotter y_Rule s
[Re vie w]

B on us
[Affec tation]

Bonus_Rules
[Re view]

[bonus cri tical
rate]

Produc t_Info
[Presentation]

Visitor
[Make B uyer]

Product [Promotion] {Mo tivate Vis itors to Regis ter with a Bonus System..}

[not ifi ed]
[not w inne r]

[register]

.. .

<<invokes>>
<<invokes>>

<<invokes>>

<<includes>>
<<invokes>>

I-L au nc h

I_B on us_Re vie w

Lotter y [Re alization] { ..1/100}

<<includes>>

<<includes>>

<<includes>>

<<invokes>>

_Mktg
[lottery review]

_Purchase
[material purchase]

_Sales
[bonus review]

_Sales
[make buyer]

Business System

I_Register_Visitor

I_Present_Company

I_Present
Product

I_Make_
Buyer

I_Purchase

I_Lottery_
Review

P S M P I M Goal-Oriented Objects

GOObiz.com

®

Figure 16: The framework presents artifacts and traceability relationships for the Goal-Driven Software Development

Process guided by business goals and organized by application constraints.

A brief description of these steps and related artifacts of the process are presented in the
Goal Driven Software Development Process at http://www.goobiz.com/Process/
Overview_Process.htm#BM2

As a result, the entire development framework allows continuity of specifications
from requirements capture till implementation of related business and application
behaviors on the technical platform (PIM). Thus, it does assist portability of these PIM
level specifications into appropriate components of the technological target platform
(PSM) such as Servlets/JSPs , Session and Entity Beans in J2EE ™ using the patterns
PEX and PES.

6 CONCLUSION

Patterns and the development framework briefly presented above aim to increase the
reactivity of systems developed with UML in the sprit of the OMG's Model Driven
Architecture (MDA).

Goal-Driven Development Patterns allow analysts and designers to render their
system specifications easy to change, to retain the validity of analysis specifications at
lower development levels (design and implementation). Using these patterns, business

HOW TO INCREASE YOUR BUSINESS REACTIVITY WITH UML/MDA

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

components evolve coherently with business strategies. Specifications that are
rendered traceable between the business and the application layers allow actors of the
application systems able to use business behaviors (rules) as they are defined at the
business layer, with a total transparency when changes occur upon these behaviors.

The Goal-Driven Development Framework acts as a catalysor in such a development
process by ensuring traceability between related UML artifacts, contributing so directly
to the reactivity of the resulting system.

REFERENCES

[OMG] http://www.omg.org/mda/executive_overview.htm

[MDA] http://www.omg.org/cgi-bin/doc?mda-guide

[Odel03] James Odell et al: “The Role of Roles”, in Journal of Object Technology, vol.
2, no.1, Jan-February 2003, pp. 39-51.
http://www.jot.fm/issues/issue_2003_01/column5

[Berk03] Birol Berkem: “Patterns for Model Driven Development with UML”, at the
OMG Meetings–BEIDTF (Paris) http://www.omg.org/cgi-bin/doc?bei/2003-
07-01, June 2003

 [Berk99] Birol Berkem: “Traceability Management with UML” - Journal Of Object
Oriented Programming (JOOP), September 1999

About the author

Birol Berkem is a consultant and trainer in the areas of business and application system
analysis and design with the object technology. He is the author of the Goal-Driven
Development Patterns and Frameworks for the traceability of specifications with
MDA/UML. His e-mail address is birol.berkem@goobiz.com

http://www.omg.org/mda/executive_overview.htm
http://www.omg.org/cgi-bin/doc?mda-guide
http://www.jot.fm/issues/issue_2003_01/column5
http://www.omg.org/cgi-bin/doc?bei/2003-07-01
mailto:birol.berkem@goobiz.com

