
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 6, November-December 2003

Cite this article as follows: Rainer Weinreich, Reinhold Plösch: “Remote Configuration of Agent-
Based Component Systems”, in Journal of Object Technology, vol. 2, no. 6, November-December
2003, pp. 67-84. http://www.jot.fm/issues/issue_2003_11/article1

Remote Configuration of Agent-Based
Component Systems

Rainer Weinreich and Reinhold Plösch, University of Linz, Austria

Abstract
The nearly omnipresence of the Internet and the steady increase of wireless computing
and mobile devices require highly dynamic adaptable distributed system architectures.
Building such architectures needs a combination of key concepts from component
technology and distributed systems. Mobile agents provide this combination. We use
mobile agents as the building blocks of a component-based system for remote
supervision and control of both hard- and software in a distributed environment. In this
paper we concentrate on the configuration of individual components and component
relationships in our system. We identify requirements for remote configuration of agent-
based component systems and discuss architectural and user interface related issues
of our approaches. We use a code-on-demand approach for supporting elaborate user
interfaces. We use a generative approach based on enhanced meta-information for
reducing development effort. The presented approaches are applicable for remote
configuration of component-based systems in general and consider additional
requirements imposed through the use of mobile agent technology.

1 INTRODUCTION AND OVERVIEW

Distributed software architectures are currently increasingly influenced by two major
technological movements—the Internet and pervasive computing (including wireless and
mobile systems). In the last years, the Internet has mainly been used as the technological
basis for creating the Web, a global hypertext and hypermedia network, enriched with
simple interactive (HTML-based) services, like search engines, electronic shops, and
electronic auctions. Currently, the Internet and its protocols are more and more becoming
the infrastructural backbone for arbitrary services and systems. Nearly every distributed
application is required to work in an Internet context or is based on standardized Internet
protocols.

The Internet is also changing application deployment and maintenance. Internet-
based deployment comprises not only the transfer and installation of software, but all
activities from installation until deinstallation and removal of a software system at a
consumer’s site [1]. This includes tasks like remote activation, deactivation,
configuration, reconfiguration, addition, removal, and update of software. All these

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_11/article1

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

activities are not only performed for whole applications but also for individual
components, and sometimes even at run-time. The result is the need for highly flexible
and adaptable software architectures as well as the need for remote configuration and
management tools.

The second major technological movement is wireless and mobile computing, which
makes further demands on distributed software architectures. Examples are adaptation to
different environmental conditions, dynamic service discovery, scalability, robustness
and security [2]. Remote configuration tasks may be performed using a whole range of
potentially different end-user devices with dedicated user interfaces.

Many of the challenges stated above are addressed by component technology [3][4].
Component models [5] provide standards for component customization, communication,
evolution and composition. Components are the basis for adaptable software
architectures. Mobile agent technology has similar characteristics as component
technology [6]. Nearly all distinguishing features of component systems that are
standardized in general component models are equally important in mobile agent
systems. However, mobile agent technology additionally emphasizes support for
distribution, heterogeneity, adaptation to different environments, code mobility, and
spontaneous computing. These features are especially important for the application
domains outlined above. In fact, mobile agent platforms may be viewed as powerful and
flexible component environments.

We use mobile agent technology as the basis for a flexible component system for
remote diagnosis and monitoring of hard- and software resources in heterogeneous
distributed environments. Currently the main usage areas are process automation systems
though the system is not limited to this domain. A main characteristic of our system is its
highly dynamic structure. Diagnosis and monitoring components may move within the
network to their intended place of action, which is the hard- or software resource to be
monitored or analyzed. This requires support for code mobility. Other features that are
needed and supported by our system are dynamic service discovery, dynamic services,
native-code management, multi-protocol remote access of various types of components,
robustness, and security (see [7]).

A main feature of our system, which is also the topic of this paper, is remote
configuration and management of monitoring and diagnosis components over Internet
connections. Since the components of our system are mobile agents, we will use the
terms component and agent interchangeably in the remainder of this paper. We have
experimented with a number of approaches for remote configuration of individual agents
and of system properties like agent relationships. While most of the explored techniques
apply to remote configuration of components in general, some are specific to the
characteristics of mobile agent systems.

The remainder of this paper is structured as follows: In Section 2 we describe
requirements and solution options for the configuration of remote components including
requirements that are specific for the configuration of mobile agents. In Sections 3 and 4
we present approaches for remote configuration that have been implemented in our
system. The emphasis of this paper is on Section 3, which contains a discussion of

INTRODUCTION AND OVERVIEW

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 69

approaches for the configuration of individual agents. Section 4 outlines our approach for
configuring system properties and structure. We describe related work in Section 5.
Remote configuration over Internet connections needs security support. However, a
discussion of security options and requirements is beyond the scope of this paper. A short
overview of security support in our system can be found in [7].

2 CONFIGURATION REQUIREMENTS

In order to discuss typical requirements and approaches for configuring components and
mobile agents, we first need to present different variants of system structures for remote
configuration over the Internet. In its simplest form—depicted in Figure 1—the host for
remote configuration is directly connected to a host where the components to be
configured are installed and possibly activated.

Internet
Administration Site Target Site

Admin
Host

Target
Host

Fig 1: A simple system structure for remote configuration

We call the location where remote configuration tasks are performed by human operators
the administration site. The administration site may be only one host or a network of
hosts, which may all be used for configuration purposes. The location where the software
is installed and running is called the target site. If the components to be configured are
implementing the middle-tier of a three-tier application model, the target site might be a
single computer with the application server hosting these components as shown in Figure
1.

A typical agent-based system, however, is a distributed system where the
components to be configured are distributed to a number of hosts at the target site (T1,
T2, …) as depicted in Figure 2. Configuration may be performed from different hosts at
the administration site (A1, A2, …), also shown in Figure 2.

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

Internet
Administration Site Target Site

A1

A2

T1

T3

T2

Fig 2: Configuring a distributed system from multiple hosts

Usually company networks are guarded by firewalls and not every host at the
administration site may directly access the Internet. Likewise only selected hosts at the
target site are visible to the Internet. Communication has to be routed through proxies (P)
at the administration site and through dedicated entry points at the target site as depicted
in Figure 3. In addition, the host acting as proxy in Figure 3 may also serve as
administration server (AS) for centralized management of configuration tools and
component repositories.

Internet
Administration Site Target Site

T1

T3

T2P,
AS

A1

A2

Fig 3: System structure with firewalls in mind

The presented system structures for remote configuration serve as the basis for the
description of requirements on remote configuration systems in general and on our
system in particular. Important requirements are:

a) Dynamic configuration of individual mobile agents and of the system structure.
We need to support the configuration of both individual mobile agents and
general system properties and structure. System structure is defined through agent
communication relationships. Parts of the structure may be defined through rather
fixed relationships that can be changed manually. For example, our system allows
the configuration of publish/subscriber relationships between agents. General
system properties may be changed by configuring special agents that are
responsible for distributing the information within the target site (see Section 4).

Dynamic configuration refers to the ability to configure the system while it is
up and running. This requires a highly dynamic system architecture which allows

CONFIGURATION REQUIREMENTS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 71

adding and removing components at run-time – a natural feature of any agent-
based system. However, it also requires special protocols to change the properties
of individual agents. Mobile agents are active objects encapsulating their own
thread of control. It is not possible to change a certain property at any time and
sometimes it is not possible to change an agent’s properties at all. This has to be
taken into account when designing protocols for updating agent state at run-time.

b) Minimal administration of configuration tools at administration site: This
requirement refers to the administrative effort that is involved in managing the
configuration tools and repositories at the administration site. Changes or updates
of the tools itself should require no or only minimal activities at the configuration
hosts (see A1, A2, … in Figure 3). Pre-installing the configuration tools at each
configuration host is not desirable. Centralized configuration can be achieved by
loading the tools on demand from a central administration server (see AS in
Figure 3). This requires a dedicated run-time environment at each host. In the
ideal case such an environment is a standard equipment of the client host, like
web browsers, which are able to host HTML-based user interfaces. If HTML-
based user interfaces are not powerful enough, additional environments for
hosting user interfaces based on other technologies have to preinstalled at each
configuration host. Examples are the Java Plug-In [8] and Java Web Start [9]
technologies for Java-based user interfaces. This is still preferable to installing the
application at each host, since update and other changes of the configuration tools
require no management activity at the client hosts.

c) Support for different types of configuration clients: The rise of mobile and
wireless computing is leading to a large number of different end-user devices with
different display sizes and capabilities. The system structure at the administration
site—as depicted in Figure 3—is also appropriate for supporting different kinds of
configuration clients (A1, A2, … in the figure). An administration server (AS)
could provide different user interfaces depending on the end-user device used for
configuration. For example, it might provide WML-pages for a WAP-enabled
device [10].

d) Loose coupling of tools at administration site and of components at target site:
Certain implementation decisions might lead to a tight coupling of the tools at the
administration site and of the agents at the target site. Tight coupling may be the
result of using a platform specific type system for configuration data, since this
presumes that agents and tools are based on the same platform. For example, if
configuration data is represented as Java objects both tools and agents need to be
Java-based. Platform independent data formats and type systems (e.g., based on
XML) are more flexible, since tools and target components may be implemented
in any language. However, such type systems may not be as expressive as
platform-specific ones, confining agent properties to simpler data types with no
associated behavior. In the case of agent-based systems one might be tempted to
install an agent platform not only at the hosts of the target site but also at the hosts
of the administration site. However, this also leads to tight coupling of
administration site and target site since it assumes that the configuration tools are

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

only used for configuring agents of a particular agent platform. This rules out
systems like ours, where one administration site is used for configuring multiple
target sites with possibly different agent systems installed. We will present our
solution to this problem in Section 3.1. In addition, the notion of migrating an
agent to an administration host, changing its configuration and sending it back to
the target site is often not feasible. Two problems that come immediately into
mind are security and agent activity. A firewall aware system structure as depicted
in Figure 3 would need flexible agent platforms that allow control of message
routing. However, agent platforms usually support peer-to-peer communication as
depicted in Figure 2. Also, firewall settings at the configuration site might not
allow an agent entering the site at his will; most of the time even callbacks are
denied. A further problem is that an agent is an active entity. It is often not
possible to stop an agent’s activity just for changing some configuration settings.

e) Evolution support: In dynamically adaptable systems components (mobile agents
in our case) are added, removed and replaced by newer versions over time.
Multiple versions of the same component may exist simultaneously in the system.
This is supported by mobile-agent systems, since features like code mobility
require flexible mechanisms for code management. Typically the agent system
provides separate name spaces for different agents and a code loader which makes
sure that the code of different versions of the same agent type can be loaded at the
same time [11]. From the configuration viewpoint we have to make sure that we
are able to configure an agent at any time during its life time. Even if some agent
code has been removed from the repository at the administration site or if it has
long been replaced by newer versions there may still exist some instances of older
versions at the target system, which need to be configured. The most obvious
solution to this problem is to store the user interface code for configuring the
properties of a particular agent with the agent itself at the target site. If the agent is
to be configured, the user interface code is requested from the agent and sent to
the tools of the administration site (code on demand [12]). Otherwise the user
interface code is integral part of the agent and is transferred along with agent state
and code when the agent is roaming the network at the target site. However, the
solution of storing user interface code with the agent itself also has drawbacks. It
is a form of tight coupling of the target site with the tools at the administration
site, since the user interface code needs a special execution environment at the
administration site. In addition, multiple different end user devices for
configuration are not supported. Still it may be useful for some kind of remote
configuration systems and we will present a similar approach in Section 3.1. A
better solution is to store a platform independent user interface description with
the agent. This allows device independent user interface generation at the
administration site while maintaining the ability of configuring each agent in the
system. A further enhancement is generating the user interface by analyzing the
agent itself. We present such an approach in Section 3.2.

f) Minimization of user interface development: Development of user interfaces for
remote configuration is a tedious task and component (agent) developers should

CONFIGURATION REQUIREMENTS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 73

focus on developing the application logic instead of providing remote
configuration support. In the ideal case, no user interface needs to be developed at
all. One approach for supporting user interface development tasks is user interface
frameworks. Component developers just need to adapt general framework classes
providing generic functionality for setting new values, for reverting to old values
and for performing consistency checks. As stated above this approach not only
involves coding effort but also tightly couples configuration tools to the platform
of the user interface framework. For example, a Swing-based user interface
requires a Java runtime environment at the administration site. A better approach
is to generate the user interface from some kind of User Interface Specification
Language (UISL). This is platform independent but still the user interface has to
be specified. The most preferable approach is generating the user interface by
analyzing the agent itself. This approach is based on the availability of meta-data
about components, a distinct feature of each component-based system (see [5] for
the importance of meta-data). By using meta-data the user interface can be
generated automatically and involves no development effort at all. Meta-data is
usually extracted from component implementation and interfaces and is stored as
part of the component. However, meta-data provided by component platforms like
Java and .NET often lacks important information that is necessary for generating
“well-formed” user interfaces and for providing sufficient validation of
component property values. In Section 3.2 we present an approach for
automatically generating user interfaces from enhanced agent meta-data.

g) Security: Security is a dominant requirement for Internet-based remote
configuration. Since security is a very broad topic to discuss in general and very
dependent on the specific configuration of the system and on the organizations
involved, we are not able to discuss it sufficiently in this paper. As discussed
above and illustrated in Figure 3 security issues may influence the fundamental
structure of a configuration system and needs to be taken into account from the
beginning. We provide an overview of basic support for authentication and
authorization in our system in [7].

We have outlined and discussed basic requirements and solutions for remote
configuration of dynamic and adaptable component-based systems. Most of the presented
requirements are typical for remote configuration of component-based systems in general.
Some are imposed through the use of mobile agent technology. In the next section, we
present two solutions for remote configuration, which have been realized in our system.

3 CONFIGURATION OF INDIVIDUAL AGENTS

We have implemented two different approaches for remote configuration of agent
properties at run-time. Both solutions are based on a central administration server at the
administration site (see Figure 3), which eases administration of configuration tools as

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

stated in Section 2b. In addition, the administration server acts as a proxy for the
configuration hosts, thus supporting network configurations with firewalls. In the first
approach, agents are configured from Java-based user interfaces that are loaded on
demand from the target site. The second approach is a generative approach where user
interfaces are generated on the fly based on enhanced meta-information about the agents
to be configured. In the following two subsections we present both approaches in more
detail and refer to the requirements presented in the previous section.

Remote Configuration Based on Code on Demand

The code on demand approach supports dynamic configuration of agent properties (2a),
central administration of configuration tools (2b) and component evolution (2e).
Drawbacks are confinement to a particular kind of user interfaces (2c, 2d) and to Java
based mobile-agent systems. Also, user interfaces need to be coded manually (2f), albeit
based on a user interface framework which is part of our system.

InternetAdministration Site Target Site

Client Administration
Server

Client

Client

Host

Agent ServerApplication
ServerWebserver Agent and UI Code

Repositories

Host

Gateway

Fig 4: System Structure

The main system structure is equal to the structure shown in Figure 3 and is presented in
more detail in Figure 4. Agents are installed and configured from configuration clients at
the administration site. Upon installing an agent, its code, an initial configuration and its
user interface code are transferred to the target site. The user interface code is not directly
stored as part of the agent code. Instead, it is stored in a code repository at the target site.
In principle, this would allow to implement the user interface for configuration based on
other technology than the agent itself. In our system, however, both user interface and
agent are implemented in Java. An agent does not store its user interface code directly but
holds a unique ID that identifies the user interface code in the repository. If a
configuration request is issued from one of the clients at the administration site, this ID is
requested from the agent and used for identifying and transferring the user interface code
to the configuration client.

CONFIGURATION OF INDIVIDUAL AGENTS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 75

Storing the user interface for configuring an agent in a repository at the target site
ensures that for each agent that has been installed at the target site a configuration user
interface can be found, no matter which administration site is used. Administration clients
may even be placed within the target site since, from a logical perspective, the user
interface that is needed for configuring an agent is always with the agent. From a
technical perspective this solution enables code sharing. An installation tool might check
whether an appropriate user interface for a newly installed agent is already available at
the target site and assign its unique ID to the agent.

Storing the user interface code at the gateway server does not raise security
problems, as only properly authenticated users are allowed to install or change mobile
agents at a target system. Therefore the issue of malicious target sites tampering with the
stored user interface code can be omitted.

We should note that we have also experimented with implementing the user
interfaces themselves as agents and thus using agent mobility for transferring the user
interface to the configuration clients at the administration site. This proved not feasible
for mainly two reasons: (1) Configuring multiple target sites with different agent
platforms is not possible and (2) agent platforms are not adaptable to the underlying
network infrastructure.

First, we need to administrate multiple target sites based on different agent platforms
from one administration site. As pointed out in Section 2d representing the user interface
as agent would require an agent platform at the configuration client. Since target sites can
use different agent platforms, a client would need multiple agent platforms for
configuring agents from different target sites. Downloading the agent platform on
demand is no feasible alternative. A common agent platform standard like FIPA [13]
might help. However, standardization would need to include the underlying execution
platform (e.g., the Java platform). We have defined an Agent Platform Abstraction Layer
(APAL) specifying platform-independent abstractions for agent creation, disposal,
communication and migration (see also [7]). This allows at least platform independent
implementation and configuration of agents at the administration site and thus supports
different agent platforms at different target sites (We should note that the implementation
is still confined to Java-based agent platforms).

The second problem has also already been addressed in Section 2d and concerns
network security based in firewalls. Corporate networks are usually secured by (multiple
layers of) firewalls. Agent platforms need to be adaptable in terms of message routing
and protocols to operate in such environments. However, typical agent systems are
designed for operating in open environments based on peer-to-peer connections between
agent servers. An additional problem for agent mobility is that accessing the
administration site from the target site is prohibited by firewall settings.

We have implemented an adaptable communication infrastructure, which is used for
sending agent properties from the configuration clients in Figure 4 to an agent at one of
the agent servers at the target site. Communication is routed through a proxy at the
administration server and through the host acting as entry point (gateway) at the target

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

site. Agent properties are not directly updated. Instead, the target agent first caches the
configuration data and updates its properties only if it reaches a consistent state (2a).

Configuration data is encoded as Java objects. This might tightly couple user
interface and agent code and imply that configuration user interfaces need to be Java
based (see requirement 2d). However, this is not the case in our system. The target site
can only be accessed through the gateway host (see Figure 4). Messages from external
sources like configuration clients are routed through an application server at the gateway
host which converts the protocol to the native protocol of the agent platform at the target
site. Since multiple protocol converters for converting different protocols can be installed,
configuration user interfaces that are not Java-based are possible. For example, we have
implemented access from clients using HTTP for transport and XML for data encoding
(see next section) and from CORBA via IIOP. Conceptually, accessing the system using
other protocols like SOAP is possible.

A Generative Approach for Configuration UIs

As outlined in Section 2, generative approaches for configuration user interfaces are
beneficial for supporting different types of configuration clients (2c) and for minimizing
the effort involved in user interface development (2f). The approach presented in this
section is particularly interesting for supporting these two requirements. However, other
requirements like 2a, 2b, 2d and 2e are supported as well. The main idea is to use
enhanced meta-data about an agent for automatically generating user interfaces and thus
to eliminate the need for user interface development in the ideal case.

Internet

A1

A2

P, AS T 2

UI-Model
Generator

Meta-data
Properties

Presentation Hints

T 1

Target Site

A
A
A

UI
Generator

RendererRendererRenderer

Administration Site

Configuration Descriptor

(Properties, UIS, Meta-data)

Constraints

A

T 3

UIS

Fig 5: Generic User Interfaces

The basic system structure is similar to the one presented in the previous section and is
shown in Figure 5. The figure also shows the main system components and the data
needed for user interface generation.

In our system, agents are implemented in Java. Therefore meta-data about agents,
like configurable properties, can be retrieved using introspection and reflection [16].
Meta-data and property values are transferred from an agent (A) to the UI-Model

CONFIGURATION OF INDIVIDUAL AGENTS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 77

Generator as shown in Figure 5. The UI-Model Generator automatically generates an
XML-based User Interface Specification (UIS) and transfers it together with the meta-
data and property values to a User Interface Generator that is located at the administration
server at the administration site. We call the package consisting of UIS, meta-data about
properties, and property values Configuration Descriptor (see Figure 5). Property meta-
data and values are not represented as Java objects in the configuration descriptor, since
this would lead to a tight coupling between the tools at the administration site and the
components at the target site (see requirement 2d). Instead, we convert the retrieved
meta-data (property names and types) as well as property values to a platform
independent representation based on XML.

In principle, meta-data about property names and types is sufficient for automatically
generating the user interface. However, the meta-data extracted from agents lacks
important information like units of measurement and allowed ranges for property values.
This information is needed for presenting and validating property values at the user
interface. We enable an agent developer to provide such information either using an
extended meta-data API or by providing XML-based constraint specifications for
individual properties, which have to be deployed with the agent code. These constraints
are sent to the user interface generator at the administration site as part of the
configuration descriptor.

 <dialog for=”insight.agent.logfile.LogfileAgent” label=”Logfile Agent Properties”>
 <category label= “General”>
 ...
 </category>
 <category label= “Task Schedule”>
 ...
 </category>
 <category label= “Protocol Files”>
 <input name= “rootDirectory” label= “Root Directory:”> </input>
 <list name= “files” label= “Files: “> </list>
 <input name= “expression” label= “Expression:“ </input>
 <check name= “sendFiles” label= “Attach Files:” </check>
 </category>
 </dialog>

Fig 6: Presentation Hint Example

User interfaces based on constraint-enhanced meta-information are still rather crude in
appearance. For example, field names that are derived from component properties are not
verbose enough and all fields are just presented as one long list and lack semantic
grouping (see left part of Figure 7). We allow agent developers to enhance the user
interface layout and appearance by providing presentation hints as shown in Figure 6.

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

Fig 7: Use Interface without/with presentation hints

Using this information we are able to improve the appearance of the user interface as
shown in Figure 7. The user interface shown in the right part of Figure 7 has been
generated using the presentation hints presented in Figure 6. The main differences are
verbose field labels and more clearly arranged user interface elements.

Summarizing, meta-data about properties, constraint specifications and presentation
hints are extracted from an agent and sent to the user interface model generator at the
target site. The model generator creates an XML-based user interface specification (UIS)
which is transferred to the administration site along with property meta-data and property
values in XML-format. The generated UIS is a hard- and software independent
description of the layout of the agent properties and thus independent of any specific
configuration client (see requirement 2c).

Instead of providing presentation hints, the complete UIS may be created manually
and stored in a UI repository at the gateway host (see Figure 5). The main advantages of
this approach are even more elaborate user interfaces, albeit the effort for user interface
specification is increased, also.

The configuration descriptor (including the UIS) is transferred to the user interface
generator at the administration site, which finally generates a client specific user
interface. The UI generator uses pluggable renderers for generating different kinds of user
interfaces. The user interfaces depicted in Figure 7 have been generated using a
JFC/Swing renderer. Renderers for HTML, WML and other kinds of user interfaces may
be provided as well.

CONFIGURATION OF SYSTEM PROPERTIES AND STRUCTURE

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 79

4 CONFIGURATION OF SYSTEM PROPERTIES AND
STRUCTURE

The previous section focused on approaches for configuring individual agents. In this
section we outline our approach for configuring system properties and system structure.
System properties are general data that is useful for all components within the system and
data that is needed by system management tools. Examples are the hosts that are part of
the system, the placement of agent run-time environments (agent servers), and
information about the location of resources needed by agents. The system structure is
defined by agent location and agent relationships. We support event relationships
between agents which are used for modeling both control and data flow.

In principle, system properties could be provided by means of one central service at
the target system. Alternatively they could be managed centrally by special agents at the
target system. However, a central location for managing system properties, regardless of
the implementation, suffers from two well known problems. Such a solution might
become a performance bottleneck and it is not fault-tolerant. We provide different
solutions for managing system properties—depending on the type of properties to be
managed. Rather static properties that are unlikely to change are replicated throughout the
whole system, which allows local access to these properties from all agents. Other system
properties are stored in a system-specific trading and directory service. The trading
service is fault tolerant using an enhanced multi-master replication mechanism. Storing
information within the directory service may involve remote access for retrieving
properties, but provides sophisticated synchronization mechanisms for changing and
redistributing information within the system.

In both cases configuring system properties from a client perspective is achieved by
configuring system property agents. Such an agent will either distribute the information
within the system itself or store it in the system directory using the directory service.

The directory service is at the same time a trading service that maintains information
about all agents (components) that are installed at the target site. Therefore, it can be used
by configuration tools for determining which agents are located at a specific host or for
retrieving a remote agent reference for accessing an agent. The trading service itself is
based on agent technology and uses features like mobility for installing replicating
instances at certain nodes within the system.

The environment is currently used as the basis for a system for remote diagnosis and
monitoring of hard- and software resources in heterogeneous distributed environments.
For setting up a working diagnosis and monitoring system, different types of agents need
to be installed, configured and connected. The connections between agents make up the
system structure. In our system these connections are event relationships, which can be
changed either manually through configuration tools or automatically through program
logic.

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

For example, the system provides worker agents performing measurement tasks,
which can be connected to agents for filtering and condensing measurement values.
These agents can in turn be connected to agents generating reports or storing the results in
a data-base. In the described scenario, event connections are used for modeling data flow.
Worker agents may also be connected to supervisors, which are used for monitoring and
validating data. Supervisors may in turn be connected to other agents implementing the
necessary actions that are to be performed in case of problems. In the latter case, event
connections are used for specifying control flow.

Event connections are maintained by an event service in our system, which also
maintains the connection between agents, if agents change their location. The event
service provides similar functionality as similar services for other distributed component
models (e.g., CORBA notification service [14]). The API of the event service is similar to
the API provided by the COM+ event service [15]. Like the trading service the event
service is implemented based on agent technology. Event relationships can be changed
dynamically using tools at the administration site, which are able to access the event
service using the flexible communication infrastructure outlined in Section 3.1 and in [7].

5 RELATED WORK

In this section we identify approaches that are related to the work presented in this paper,
specifically to our work on the configuration of individual agents, since this is the
emphasis of this paper. We distinguish framework-oriented approaches (see Section 3.1)
and generative approaches, which are further distinguished in specification-based and
meta-data-based approaches (see Section 3.2).

The emphasis of framework-oriented approaches is on facilitating the development
of complex user interfaces combined with support for code-on-demand (see Section 3.1).
Examples of application frameworks for user interfaces are JFace [17] and JFC/Swing
[18]. Although general user interface frameworks ease the construction of user interfaces,
there is no explicit support for configuring distributed and potentially mobile
components. User interfaces can be loaded on demand from remote servers using
technologies like Applets and Java Web Start [9]. However, simple code on demand
technologies are not enough. Configuring remote agents needs a more elaborate
infrastructure for retrieving the user interface of a specific agent, wherever this agent is
located. In addition, agent mobility, co-existing versions of agents and user interfaces as
well as specific network topologies imposed by security requirements (see Figure 3 in
Section 2) need to be considered. Further, code on demand technologies imply tight
coupling of client and server since the code available on the server must by executable by
the client.

Specification-based approaches aim at simplifying user interface development by
generating user interfaces from user interface specification languages. This approach is
interesting since it is independent from specific user interface toolkits and it also enables
support for different hardware devices. The basic idea has been explored some time ago

RELATED WORK

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 81

(e.g., [19][20][21][22]). Newer approaches are based on XML like XForms [24], XUL
[25], and PUC [26][27]. These approaches may be compared to the UIS mentioned in
Section 3.2. However, the UIS is only one building block of a system for remote
configuration of software components and it is not the main focus of this paper. The main
idea of the approach presented in Section 3.2 is the combination of manual and automatic
generation of the XML-based user interface specification and its integration in a remote
configuration infrastructure.

As described in Section 3.2 automatic generation of user interface specifications is
enabled by meta-data about the components to be configured. Meta-data-based
approaches are particularly interesting for configuring component-based systems due to
the self-descriptive nature of components. Automatic user interface generation based on
meta-information is often used in user interface builders for configuring local user
interface elements. Typical examples are development environments for Java and .NET.
However, as discussed in Section 3.2 standard meta-data provided by components is not
sufficient for creating well-structured user interfaces.

In terms of the remote configuration infrastructure our system can be compared to
the Java Management Extension (JMX). JMX [28] is an approach for remote
administration of hardware and software. The components that are installed for remote
administration tasks are called MBeans (Managed Beans). MBeans may be compared to
the agents in our system. An MBean represents a resource to be managed and may be
accessed from remote clients using connectors and protocol adapters. Protocol adapters
are installed at the target site and may use meta-data provided by MBeans for generating
a configuration user interface. For example, the reference implementation of Sun
Microsystems contains a general HTML-adapter which uses introspection and
dynamically generates an HTML-based configuration user interface. Additional adapters
for other kinds of user interface technologies can be provided.

Contrary to our approach, adapters in JMX are confined to the meta-data available in
Java, which leads to less sophisticated automatically generated user interfaces. In
addition, the complete user interface generator (a special adapter) is located at the target
site. Supporting a new type of configuration client requires changes at the target site,
since a new adapter has to be installed. In our approach, only a user interface
specification is generated at the target site. The actual user interface is generated at the
administration site (see Section 3.2). Only a new renderer has to be provided at the
administration server in order to support a new kind of configuration client. In addition,
the effort that is involved in creating new adapters for new kind of configuration clients
in JMX is higher that in our system, since each adapter has to provide the entire
functionality for meta-data analysis and user interface generation. In our approach, the
functionality of the user interface specification generator at the target site need not be
changed. It suffices to provide a new renderer for a new client type at the administration
server. Finally, in our approach the coupling between configuration clients and the
components at the target site is weak, as we use platform independent data formats and
type systems, based on XML. In the JMX the coupling between client and server is
defined by the implementation of a specific adaptor.

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

6 CONCLUSION

We have presented requirements and approaches for configuring remote and mobile
components in a typical real world setting. Currently we use the system for configuring
mobile agents performing monitoring and supervision tasks in process automation
systems. Many of the presented requirements and solutions are important and useful for
remote configuration of distributed components in general.

The use of mobile agent technology as the basis for the components at the target
system imposes specific requirements on the configuration system like support for
dynamically adaptable system structure and agent mobility. In terms of implementing the
configuration system itself, we had to sacrifice seemingly obvious solutions for
configuring remote agents (like migrating the agent and performing the configuration
locally) in favor of other techniques like code on demand and automatic user interface
generation.

REFERENCES

[1] R.S. Hall, D. Heimbigner, A.L. Wolf: “A Cooperative Approach to Support
Software Deployment Using the Software Dock”, Proceedings of the International
Conference on Software Engineering 1999 (ISCE ’99), Los Angeles, California,
USA, 1999.

[2] Kindberg T., Amanda F.: “System Software for Ubiquitous Computing”, IEEE
Pervasive Computing, Vol. 1, No. 1, January-March 2002.

[3] C. Szyperski: Component Software – Beyond Object-Oriented Programming,
Addison-Wesley, 1998.

[4] G.T. Heineman, W.T. Councill (eds.): Component-Based Software Engineering,
Addison-Wesley, 2001.

[5] R. Weinreich, J.Sametinger: “Component Models and Component Services -
Concepts and Principles”, in Component-Based Software Engineering
(http://www.cbseng.com), G.T. Heineman, W.Councill (Ed.), Addison-Wesley
2001.

[6] M.L. Griss: “Software Agents as Next Generation Software Components”, in
Component-Based Software Engineering, G.T. Heineman, W.Councill (ed.),
Addison-Wesley 2001.

[7] R. Weinreich, R. Plösch: "An Agent-Based Component Platform for Dynamically
Adaptable Distributed Environments", Informatica Journal, Special Issue on
Component Based Software Development, Vol. 25 Nr. 4, November 2001.

[8] Java Plug-In home page, http://java.sun.com/products/plugin/
[9] Java Web Start Home Page, http://java.sun.com/products/javawebstart/

http://www.cbseng.com
http://java.sun.com/products/plugin/
http://java.sun.com/products/javawebstart/

CONCLUSION

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 83

[10] Wireless Application Protocol Forum: “Wireless Application Protocol Architecture
Specification, WAP-210-WAPArch-20010712”, July 2001.

[11] G.P. Picco: “Understanding, Evaluating, Formalizing, and Exploiting Code
Mobility”, Ph.D. thesis, Politecnico di Torino, Dipartimento di Automatica e
Informatica, 1998.

[12] A. Fugetta, J.P. Picco, G. Vigna.: “Understanding Code Mobility”, IEEE
Transactions on Software Engineering, Vol. 24, No. 5, May 1998.

[13] Foundation for Intelligent Physical Agents (FIPA): Specifications are available at
http://www.fipa.org/repository/index.html.

[14] OMG: “Corba Notification Service Specification”, Version 1.0, Document
formal/00-06-20, http://www.omg.org/

[15] D. S. Platt: Understanding COM+, Microsoft Press, 1999.
[16] Sun Microsystems: “Java Core Reflection API and Specification”, Sun

Microsystems, 1999.
[17] Object Technology International, web server of the Eclipse project,

http://www.eclipse.org
[18] A. Fowler: “The Swing Architecture Overview”, see web server of the Swing

Connection, http://java.sun.com/products/jfc/
[19] D.R. Olsen: “A Programming Language Basis for User Interface Management”, in

Human Factors in Computing Systems, Proceedings SIGHCHI 89, Austin, April
1989, pp 171-176.

[20] P. Sukaviriya, J.D. Foley, T. Griffith: “A Second Generation User Interface Design
Environment: The Model and The Runtime Architecture”, In Human Factors in
Computing Systems, Proceedings INTERCHI 93, Amsterdam, April 1993, pp 375-
382.

[21] P. Szekely, P. Luo, R. Neches: “Beyond Interface Builders: Model-Based Interface
Tools”, in Human Factors in Computing Systems, Proceedings INTERCHI 93,
Amsterdam, April 1993, pp 383-390.

[22] C. Wiecha, W. Bennett, S. Boies, J. Gould, S. Greene: “ITS - A Tool for Rapidly
Developing Interactive Applications”, in ACM Transactions on Information
Systems, Vol. 8, No. 3, July 1990, pp 205-236.

[23] C. Phanouriou, M. Abrams: “Transforming Command-Line Driven Systems to Web
Applications”, In Computer Networks and ISDN Systems 29, 1997, pp 1497-1505.

[24] W3C: XForms 1.0, W3C working draft, http://www.w3.org/TR/xforms/.
[25] The Mozilla Organization: XPToolkit Project, http://www.mozilla.org/xpfe/.
[26] B. A. Myers. "Using Hand-Held Devices and PCs Together", Communications of

the ACM. Volume 44, Issue 11. November, 2001. pp. 34 – 41.
[27] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, M.

Pignol. "Generating Remote Control Interfaces for Complex Appliances."
Submitted for Publication, available at the web server of the Pebbles project,
http://www-2.cs.cmu.edu/~pebbles.

http://www.fipa.org/repository/index.html
http://www.omg.org/
http://www.eclipse.org
http://java.sun.com/products/jfc/
http://www.w3.org/TR/xforms/
http://www.mozilla.org/xpfe/
http://www-2.cs.cmu.edu/~pebbles

REMOTE CONFIGURATION OF AGENT-BASED COMPONENT SYSTEMS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

[28] Sun Microsystems: “Java Management Extensions Instrumentation and Agent
Specification”, V 1.0, July 2000.

About the authors

Rainer Weinreich is an assistant professor at the Johannes Kepler
University of Linz. His research interests include component-based and
distributed software architectures and mobile agents. He can be reached
at rainer.weinreich@jku.at.

Reinhold Plösch is an assistant professor at the Johannes Kepler
University of Linz. His research interests include reliable components
and mobile agents. He can be reached at reinhold.ploesch@jku.at.

mailto:rainer.weinreich@jku.at
mailto:reinhold.ploesch@jku.at

