
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 5, September-October 2003

Cite this article as follows: Gonzalo Génova, Carlos Ruiz del Castillo and Juan Llorens: “Mapping
UML Associations into Java Code”, in Journal of Object Technology, vol. 2, no. 5, September-
October 2003, pp. 135-162. http://www.jot.fm/issues/issue_2003_09/article4

Mapping UML Associations into Java
Code

Gonzalo Génova, Carlos Ruiz del Castillo and Juan Llorens,
Computer Science Department, Carlos III University of Madrid, Spain

Abstract
Object-oriented programming languages do not contain syntax or semantics to express
associations directly. Therefore, UML associations have to be implemented by an
adequate combination of classes, attributes and methods. This paper presents some
principles for the implementation of UML binary associations in Java, paying special
attention to multiplicity, navigability and visibility. Our analysis has encountered some
paradoxes in the specification of visibility for bidirectional associations. These principles
have been used to write a series of code patterns that we use in combination with a tool
that generates code for associations, which are read from a model stored in XMI format.

1 INTRODUCTION

One of the key building blocks in the Unified Modeling Language [UML] is the concept
of association. An "association" in UML is defined as a kind of relationship between
classes1, which represents the semantic relationship between two or more classes that
involves connections (links) among their instances [UML, p. 2-20]2.

As it has been denounced long ago [Rumbaugh 87], object-oriented programming
languages express classification and generalization well, but do not contain syntax or
semantics to express associations directly. Therefore, associations have to be
implemented by an adequate combination of classes, attributes and methods [Rumbaugh
96a, Noble 96, Noble 97, Ambler 01]. The simplest idea is to provide an attribute to store
the links of the association, and accessor and mutator methods to manipulate the links.
Other approaches emphasize the use of Java interfaces to implement associations with
some practical advantages [Harrison 00].

1 Actually classifiers. Classifier is a superclass of Class in the UML metamodel.
2 The current submission of communityUML to the OMG for the development of UML 2.0 [cUML] proposes a change
in terminology: "association" instead of "link" and "association type" instead of "association". We support this change,
but in this paper we are going to follow the current official terminology in UML.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_09/article4

MAPPING UML ASSOCIATIONS INTO JAVA CODE

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

CASE tools often provide some kind of code generation starting from design
models3, but limited to skeletal code involving only generalizations and classes, with
attribute and method signatures, but no associations at all4. The programmer has to
manually write the code to manage the associations in a controlled way, so that all
constraints and invariants are kept for correctness of the implementation. This is usually a
repetitive task that could be automated to a certain extent. Besides, the number of things
that the programmer should bear in mind when writing the code for the associations is so
large, that he or she continuously risks forgetting some vital detail. This is specially true
when dealing with multiple (with multiplicity higher than 1) or bidirectional (two-way
navigable) associations. Moreover, the final written code is frequently scattered over the
code of the participating classes, making it more difficult to maintain.

The aim of this work is two fold. First, write a series of code patterns that will help
programmers in mapping UML associations into a target object oriented programming
language. In this work, the language has been chosen to be Java, although the principles
we have followed may be applied to other close languages like C++ or the .NET
framework. Second aim, construct a tool that generates code for associations using these
patterns, the associations being read from a model stored in XMI format5. A third aim
will be to enable reverse engineering, that is, obtaining the associations between classes
by analyzing the code that implements them. Our tool does not presently accomplish this
task, although it is a very simple and straightforward procedure if the code has been
written with our patterns. A complete description of the patterns and the tool is outside
the scope of this paper, but can be found elsewhere [Ruiz 02].

Associations in UML can have a great variety of features. The present work is
limited to the analysis and implementation of multiplicity, navigability and visibility in
binary associations. It excludes, therefore, more complex kinds of associations such as
reflexive associations, whole/part associations (aggregations and compositions), qualified
associations, association-classes, and n-ary associations. It excludes, too, features such as
ordering, changeability, etc.

The three following sections of this article are devoted to studying the features of
multiplicity, navigability and visibility of associations, with a detailed analysis of the
possible problems and proposed solutions. Then, Section 5 contains the description of a
uniform interface for all kinds of associations from the point of view of the participating
classes, such as it is implemented by our patterns and tool. Finally, Section 6 describes
briefly how our tool works.

3 We distinguish here between analysis and design models. An analysis model is an abstraction of the problem (the real
world as it is before the proposed system is built) whereas a design model is an abstraction of the solution (the
proposed system's internal construction) [Kaindl 99], therefore code generation has sense only for a design model.
4 Some tools are an exception to this rule [Fujaba, Rhapsody].
5 XML Metadata Interchange [XMI], an XML-based format designed to store and interchange UML models between
different tools.

THE PROBLEM OF MULTIPLICITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 137

2 THE PROBLEM OF MULTIPLICITY

The multiplicity of a binary association, placed on an association end (the target end),
specifies the number of target instances that may be associated with a single source
instance across the given association, in other words, how many objects of one class (the
target class) may be associated with a given single object from the other class (the source
class) [RM, p. 348; UML, p. 2-23]6.

The classical example in Figure 1 illustrates binary multiplicity. Each instance of
Person may work for none or one instance of Company (0..1), while each company may
be linked to one or more persons (1..*). For those readers less familiarized with UML
notation, the symbol (*) stands for "many" (unbounded number), and the ranges (1..1)
and (0..*) may be abbreviated respectively as (1) and (*).

Person Companyworks for
1..* 0..1

Figure 1. A classical example of binary association with the expression of multiplicities

The potential multiplicities in UML extend to any subset of nonnegative integers [RM, p.
346], not only a single interval as (2..*), or a comma-separated list of integer intervals as
(1..3, 7..10, 15, 19..*): specifications of multiplicity like {prime numbers} or {squares of
positive integers} are also valid, although there is no standard notation for them.
Nevertheless, in UML as in other modeling techniques, the most usual multiplicities are
(0..1), (1..1), (0..*) and (1..*). We are going to restrict our analysis to multiplicities that
can be expressed as a single integer interval in the form of (min..max) notation.

The multiplicity constraint is a kind of invariant, that is, a condition that must be
satisfied by the system. A possible practice when programming is: do not check always
the invariant, but only at the request of the programmer, after completing a set of
operations that are supposed to leave system in a valid state (a transaction). This practice
is more efficient in run-time, and gives the programmer more freedom and responsibility
in writing the code, with the corresponding risk that he or she forgets putting the
necessary checks and carelessly leaves the system in a wrong state. On the other side, we
think that checking multiplicity constraints is not very time consuming (inefficient),
especially when compared with the time required to manage collections or synchronize
bidirectional associations (see Section 3). Therefore, we think that it is worth doing as
much as we can for the programmer, so that our first target will be to analyze the
possibility of performing automatic checks for multiplicity constraints.

6 Other notations invert the placement of multiplicity values, following the near-end convention instead of the far-end
convention, which is the one used in UML. It has been well established that the semantics of both conventions are
equivalent for binary associations, but differ substantially when they are applied to associations of higher degree [Song
95, McAllister 98, Castellani 00, Génova 02, Génova 03b].

MAPPING UML ASSOCIATIONS INTO JAVA CODE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Optional and mandatory associations

The value of minimum multiplicity can be any positive integer, although the most
common values are 0 or 1. When the value is 0 we say the association is optional for the
class on the opposite end (class Person in Figure 1), when the value is 1 or greater we
say it is mandatory (class Company). Optional associations pose no special problems for
the implementation, but mandatory associations do. From a conceptual point of view, an
object participating in a mandatory association needs to be linked at any moment with
one object (or more) on the other side of the association, otherwise the system is in a
wrong state. In the example given in Figure 1, an instance of Company needs always an
instance of Person. Therefore, in the same moment you create the instance of Company,
you have to link it to an instance of Person.

This can happen in three different ways:
• An instance of Company is created by an instance of Person and linked to its

creator.
• An instance of Company is created with an instance of Person supplied as a

parameter.
• An instance of Company is created and it issues the creation of an instance of

Person.
The third case poses additional problems. The creation of a Person will probably require
additional data, such as name, address, etc., and it does not seem very sensible to supply
them in the creation of a Company. This problem becomes much worse if Person has
other mandatory associations, for example one with the Country where he or she lives:
if this were the case, the creation of a Company would require supplying data for creating
a Person, for creating a Country, etc.

The most obvious solution is to allow only the first and second forms of
instantiation. But then suppose the association is mandatory in both ends. Which instance
is to be created first? We have not a satisfactory choice, since we will put the system in a
wrong state until both creations are finished. We could think of an atomic creation of
both instances, but this is valid only for the simplest case in which only two classes are
involved. Should we define atomic creators for two, three, any number of classes?
Similar problems arise when dealing with object deletion.

Imagine now that we are not creating or deleting instances, but changing links
between instances. If you want to change the instance of Company that is linked with a
given instance of Person, simply delete the link with the old Company and add a new
link with the new Company. This works as far as the old Company is linked to other
instances of Person; you can even delete the link and add no new one, since the
association is optional for Person. If you had only one Person linked to a given
Company, you should supply a new Person to the Company before deleting the link with
the old Person, but this is only the specified behavior (the association is mandatory for
Company) and you cannot complain about it.

THE PROBLEM OF MULTIPLICITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 139

Nevertheless, we find new problems here. If the association with Company were
mandatory for Person too (that is, 1..1 multiplicity instead of the current 0..1), the
instance of Person could not delete the old link with a Company and then add the new
one, nor it could do it in the reverse order, "first add then delete", because it would go
through a wrong system state. An atomic change of links would be valid only for the
simplest cases, but not for more complex ones such as the following, rather twisted case
(see Figure 2): consider classes A and B, which are associated with multiplicity 1..1 on
both ends, and the corresponding instances a1, a2, b1 and b2. In the initial state, we
have the links a1-b1 and a2-b2. In the final state, we want to have the links a1-b2 and
a2-b1. Even if we can change atomically a1-b1 to a1-b2 without violating the
multiplicity constraints on a1, this would leave b1 without any links and b2 with two
links until the final state is reached. We should have to perform the whole change
atomically by means of an atomic switch implemented in a single operation.

(a)

A B
1..1 1..1

(b)

a1 : A

a2 : A

b1 : B

b2 : B
(c)

a1 : A

a2 : A

b1 : B

b2 : B

(d)

a1 : A

a2 : A

b1 : B

b2 : B

Figure 2. Multiplicity constraints can make very difficult changing links between instances without entering a wrong
system state: a) class diagram; b) initial state; c) intermediate wrong state; d) final desired state

Obviously, we cannot define a new operation to avoid any conceivable wrong state
involving several instances. In consequence, we think that mandatory associations pose
unsolvable problems regarding the creation and deletion of instances and links: we cannot
achieve with a few primitive operations that a mandatory association is obeyed at any
time, and we cannot isolate, inside atomic operations, the times when the constraint is not
obeyed. Therefore, we have to relax the implications of mandatory associations for the
implementation, as other methods do [Harrison 00]. Our proposal is as follows: do not
check the minimum multiplicity constraint when modifying the links of the association
(mutator methods, or setters), but only when accessing them (accessor methods, or
getters). The programmer will be responsible for using the primitives in a consistent way
so that a valid system state is reached as soon as possible.

For example, you will be allowed to create a Company without linking it to any
Person, and you will be allowed to delete all the links of a Company with instances of
Person; but before accessing, for other purposes, the links of that particular instance of
Company towards any instances of Person, you will have to restore them to a valid state,

MAPPING UML ASSOCIATIONS INTO JAVA CODE

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

otherwise you will get an invalid multiplicity exception, which shall be defined in the
code that implements the associations according to our proposal.

Single and multiple associations

The value of maximum multiplicity in an association end can be any integer greater or
equal than 1, although the most common values are 1 or *. When the value is 1 we say
the association is single for the class on the opposite end (class Person in Figure 1),
when the value is 2 or greater we say it is multiple (class Company). Single associations
are easier to implement than multiple associations: to store the only possible instance of a
single association we usually employ an attribute having the corresponding target class as
type, but to store the many potential links of a multiple association we must use some
kind of collection of objects, such as the Java predefined Vector, HashSet, etc. In the
general case we cannot use an array of objects, because it gets a fixed size when it is
instantiated. Since collections in Java can have any number of elements, the maximum
multiplicity constraint cannot be stated in the declaration of the collection in the Java
code, but it must be checked elsewhere during run-time.

We need two kinds of mutators, add and remove, which will accept as a parameter
either single objects or entire collections. Because of the problems with minimum
multiplicity explained above, the remover sometimes will leave the source instance in a
wrong state; we can't avoid this situation. The adder, instead, leaves us a wider choice. If
we try to add some links above the maximum multiplicity constraint, we can choose
between rejecting the addition or performing it; in the latter case we violate temporarily
the constraint until a call to the remover restores the source instance to a safe state; the
wrong state would only be detected by accessor methods, as we settled in the case of
minimum multiplicity. However, this is true only for multiple associations implemented
with a collection; in single associations implemented by means of an attribute we simply
cannot violate the maximum multiplicity constraint: we are forced to reject the addition.

If we choose to reject the addition, instead, besides having an asymmetric behavior
between remover and adder, we can find precedence problems when invoking the adder
and the remover in succession. Consider class Game associated with class Player with
multiplicity 2..4 (see Figure 3), and suppose an instance g1 of Game is linked to two
instances p1, p2 of Player. We want to replace these two players by four new different
players q1, q2, q3, q4. If we issue "first remove then add", we get finally what we want;
if we issue "first add then remove", the addition is rejected and the remotion leaves the
instance of Game in a wrong state.

THE PROBLEM OF MULTIPLICITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 141

(a)

Game Player
0..* 2..4

(b)

g1 : Game

p1 : Player

p2 : Player

(c)

g1 : Game

q1 : Player

q2 : Player

q3 : Player

q4 : Player

(d)

g1 : Game

Figure 3. Precedence problems found when invoking the adder and the remover in succession: a) class diagram of
Game-Player association; b) initial state with players p1, p2; c) final desired state after removing players p1, p2

and then adding players q1, q2, q3, q4; d) final wrong state after unsuccessfully trying to add players q1, q2, q3, q4
and then removing players p1, p2

In the end, we have preferred to reject the addition if it violates the maximum allowed,
and ask the users of mutator methods to use them always in the right order, first remove
then add, so that we can get an analogous behavior for single and multiple associations.
Therefore, the remover does not check the minimum multiplicity constraint (possibly
leaving empty a mandatory association), the adder does check the maximum multiplicity
constraint, and the getter raises an exception if either constraint is not fulfilled.

Accessor methods of multiple associations have another peculiarity, when compared
with the accessors of single associations: they return a collection of objects, not a single
object, therefore the returned type is that of the collection, not that of the target class. In
our implementation, the returned type is the Java interface Collection, which is
implemented by all standard collections. Internally, we use a HashSet collection, which
ensures that there are no duplicate links in an association, as the UML requires [UML, p.
2-19]7.

Finally, the standard collections in Java are specified to contain instances of the
standard class Object, which is a superclass of every class in Java. You cannot
specialize these collections to store objects pertaining only to a particular class8. This
means that, if we use a HashSet inside Company to store the links to instances of
Person, we must ensure on our own that no one puts a link to an instance of another
class such as Dog or Report (this could happen if a collection of objects is passed as a
parameter to the add method). Therefore, the mutator methods must perform a run-time

7 In other places we have given conclusive arguments against the no-duplicates restriction in UML associations
[Génova 03b], but here we have respected the current specification of UML.
8 That is, you cannot specialize them to modify their storage structure, but you can modify their behavior so that they
store in effect only the required objects, precisely by means of the run-time type checking method we describe.

MAPPING UML ASSOCIATIONS INTO JAVA CODE

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

type checking by means of explicit casting. If the type-check fails, then the link is not set
to that object, and a class cast exception, which is predefined in Java, is raised.

3 THE PROBLEM OF NAVIGABILITY

The directionality, or navigability, of a binary association, graphically expressed as an
open arrow at the end of the association line that connects two classes, specifies the
ability of an instance of the source class to access the instances of the target class by
means of the association instances (links) that connect them9. If the association can be
traversed in both directions, then it is bidirectional (two-way), otherwise it is
unidirectional (one-way).

A navigable association end, which is referenced by its rolename, defines a
pseudoattribute of the source class, so that the source instance can use the rolename in
expressions in the same way as it uses its own attributes [RM, p. 354]. An instance can
communicate (by sending messages) with the connected instances of the opposite
navigable end, and it can use references to them as arguments or reply values in
communications [UML, p. 2-114]. Similarly, if the association end is navigable, the
source instance can query and update the links that connect it to the target instances.

The examples in Figure 4 illustrate navigability. The association Key-Door is
unidirectional, meaning that a Key can access the Door it can open, but an instance of
Door does not know the set of instances of Key that can open it: the Door cannot traverse
the connections (links) against the navigability of the association. On the other side, the
association Man-Woman is bidirectional, meaning that connected instances of these
classes know each other.

(a)

Key Dooropen
0..* 1..1

(b)

Man Woman
0..1 0..1
husband wife

Figure 4. Examples of a) unidirectional and b) bidirectional associations

The arrowheads can be shown or omitted in a bidirectional association [UML, p. 3-73].
Unfortunately, this leads to an ambiguity in the graphical notation, because we cannot

9 An alternate definition: the possibility for a source object to designate a target object through an association instance
(link), in order to manipulate or access it in an interaction with message interchanges. The Standard does not give a
clear definition of navigability, as we have shown in previous works where we have tried to clarify this topic [Génova
01, Génova 03a, Génova 03b]. In this paper, we take navigability and directionality as synonyms.

THE PROBLEM OF NAVIGABILITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 143

distinguish between bidirectional associations and associations with unspecified
navigability. Or, worse, unspecified associations are assumed to be bidirectional without
further analysis [Génova 01].

Unidirectional associations

A single unidirectional association is very similar to a single valued attribute in the
source class, of the type of the target class: an embedded reference, pointer, or whatever
you want to call it. The equivalence, however, is not complete. Whereas the attribute
value is "owned" by the class instance and has no identity, an external referenced object
has identity and can be shared by instances of other classes that have a reference to the
same object [Rumbaugh 96b] (see Figure 5). Anyhow, the equivalence is satisfactory
enough to serve as a basis for the implementation of this kind of associations. In fact, in
Java there is no difference at all: except for the case of primitive values, attributes in Java
are objects with identity, and if they are public you cannot avoid them to be referenced
and shared by other objects.

(a)

Person
birthdate: Date

(b)

Person Date Book
0..1

birthdate
1..1
publication

Figure 5. Partial equivalence between a) attribute and b) single unidirectional association

A multiple unidirectional association is a bit more complicated, although the
implementation can be based on the same principles, since it can be assimilated to a
multivalued attribute10. To manage the collection of objects on the navigable end,
however, we need an additional object of a standard collection class, which is a HashSet
in our implementation (see Figure 6).

10 UML allows multiplicity in attributes, thus multivalued attributes [UML, p. 2-50].

MAPPING UML ASSOCIATIONS INTO JAVA CODE

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

(a)

Recipe Aliment
1..*

ingredient

(b)

Recipe

HashSet Object

Aliment

1..1 ingredient

1..*
element

Figure 6. Multiple unidirectional association: a) analysis diagram and b) design diagram. A new object must be

inserted to manage the collection of target objects. The standard collections in Java, such as HashSet, are defined for
the standard class Object, which is a superclass of every class; therefore, mutator methods must ensure that the

objects contained in the collection parameter are of the appropriate type before adding them to the collection attribute.

Therefore, the type of the attribute used to implement the association inside the source
class is not any more the target class itself, but the HashSet class or another convenient
collection class. The methods to manage the association will have to accomplish some
additional tasks. Mutators can add or remove not only single objects of the class target,
but also entire collections; thus, the type of the parameter will be either the target class of
the association or the intermediate collection class. In this case, mutator methods must
ensure that the objects contained in the collection parameter are of the appropriate type
before adding them to the collection attribute. Accessors, as we have already explained
(see Section 2), do not return a single object, but a collection of objects, even when the
collection is made up of only one element. The returned collection object is not
identically the same one that is stored inside the source class, but a clone (a new object
with a collection of references to the same target elements), because the original
collection object must remain completely encapsulated inside the source object
(represented by the composition in Figure 6).

As the diagrams in Figures 5 and 6 show, in our opinion the multiplicity constraint in
a design model can be specified only for a navigable association end11. Indeed, the
multiplicity is a constraint that must be evaluated within the context of the class that owns
the association end; if that class knows the constraint, then it knows the association end,
that is, the end is navigable. You cannot restrict the number of objects connected to a
given instance unless this instance has some knowledge of the connected objects, that is,
unless you make the association end navigable. Therefore, the need for a multiplicity
constraint other than 0..* (that is, unrestricted) is an indication that the association end

11 This principle does not apply to analysis models, which usually do not deal with navigability [Fowler 97, Stevens
00]. Obviously, code generation only has sense when starting from design models.

THE PROBLEM OF NAVIGABILITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 145

must be navigable. In consequence, unidirectional associations with multiplicity
constraints on the nonnavigable association end must be rejected in code generation.

Bidirectional associations

The partial equivalence between attributes and unidirectional associations is not any more
found among bidirectional associations. Instead, an instance of a bidirectional association
is more like a tuple of elements [UML, p. 2-19]. Combining the multiplicities in both
association ends, we can have three cases: single-single, single-multiple, and multiple-
multiple.

Figure 7. Single-single bidirectional association: a) analysis diagram and b) design diagram. The implementation of the
association's mutators must ensure that the husband of the wife of a given man is that man himself, and vice versa

Figure 8. Sequence diagram illustrating the synchronization of a bidirectional association. The update of the attribute
Woman.husband to "John" (last operation) takes place only after the update of the attribute Man.wife to "Mary"

has been correctly accomplished. If the woman were already married, then she would not request the man to update the
marriage association on his side; if the update on the man's side fails (because he is already married), then the woman
does not update her side. To achieve this behavior, the add method returns a convenient result that is checked by the

client object

An easy way to implement a single-single bidirectional association is by means of two
synchronized single unidirectional associations (see Figure 7). The synchronization of the

MAPPING UML ASSOCIATIONS INTO JAVA CODE

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

two halves must be preserved by the mutator methods on each side: every time an update
is requested on one side, the other side must be informed to perform the corresponding
update; the update is accomplished only if both sides agree that they can perform it while
keeping maximum multiplicity constraints12 (see Figure 8).

A single-multiple bidirectional association can be implemented in a similar way,
combining a single unidirectional association and a multiple unidirectional association.
And, finally, a multiple-multiple bidirectional association is achieved by means of two
multiple unidirectional associations (see Figure 9).

(a)

Person Book
1..3 0..10
author publication

{synchronized}

(b)

Person Book

HashSet

HashSet

Object

Object

1..1
publication

1..1
author

0..10
element

1..3
element

Figure 9. Multiple-multiple bidirectional association: a) analysis diagram and b) design diagram

Synchronization becomes progressively a more and more complex issue when one or
both association ends are multiple. Consider the example given in Figure 9. Suppose you
want to add an author to a particular Book instance; you do this by issuing the add
method on the Book instance, and passing a Person instance as a parameter. If the Book
can have more authors without violating its maximum multiplicity (which is 3), then it
requests the author to add the Book itself to the collection of publications the Person
has; this can fail if the maximum multiplicity constraint for the number of publications
(in this case, 10) is violated. If the request to the author succeeds, then the Book updates
its side.

Now, you can try adding a collection of authors to a Book, too. As one can expect,
the Book requests each one of the authors to add the Book itself as a publication; if only
one of the authors fails to add the Book, then the whole operation must be undone, since
an update must be atomic: all or none.

12 We have already justified in Section 2 that mutators must be allowed to violate the minimum multiplicity constraint.

THE PROBLEM OF NAVIGABILITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 147

Similar considerations apply to the remove mutator, bearing in mind that the
remove method is performed even if the minimum multiplicity constraint is not kept,
therefore it can leave the source instance or any of the affected target instances in an
invalid state.

In UML, an association is defined as a "set of tuples" [UML, p. 2-19], meaning that
you cannot have twice the same tuple in the collection of links of an association13. This is
automatically safeguarded if we follow the implementation scheme explained above.
Anyhow, it suggests also a different kind of implementation that could have some
advantages. Instead of synchronizing two unidirectional associations to get a bidirectional
one, we can directly store the collection of bidirectional links (see Figure 10).

Person Book«singleton»
PersonBookAssociation

PersonBookLink

1..1
pbAssociation

1..1
pbAssociation

0..*tuple

1..1 author 1..1publication

Figure 10. An alternative scheme for implementing bidirectional associations by means of a collection of "reified"

tuples

Within this alternative scheme the links are "reified" and become objects on their own
[Rumbaugh 87]. To manage the collection of links, or tuples, we need an object, which
will be the only instance of a class (in application of the "Singleton" design pattern
[Gamma 94]) representing the association itself. The main advantage of this approach is
that it avoids the dispersion of the information about the association instances (links), so
that updates are effected in only one place, without synchronization problems. It is easily
extended to implement association-classes and associations of higher degree (ternary
associations, etc.). However, these advantages have a high cost, as we can appreciate by
comparing Figures 9 and 10.

First, note that the original multiplicity constraints are not expressed in this scheme:
the multiplicity of roles Person.pbAssociation and Book.pbAssociation must be
obviously 1..1, since there is only one instance of the object that manages the association
considered as a collection of links; besides, a link is the connection of two instances,
therefore a link has exactly one "leg" on each side [Génova 02, Génova 03b], that is,
multiplicities must be 1..1 on the roles author and publication; finally, the role
tuple has multiplicity 0..* regardless of the multiplicity of the original association, even
if it was single-single, because it stores all the links that may exist between any instances
on each side. In consequence, multiplicity constraints become more difficult to keep,
since the control cannot consist simply in "counting links".

13 The convenience of this constraint, inherited from Entity-Relationship modeling, is disputed by many authors
[Genilloud 99, Stevens 02, Génova 03b].

MAPPING UML ASSOCIATIONS INTO JAVA CODE

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Second disadvantage, the uniqueness of each tuple, required by the "set of tuples"
constraint, is not automatically safeguarded. Suppose we implement the collection of
tuples by means of a HashSet of objects, each object storing two references, author
and publication. As each tuple object has its own identity, two different tuples
referencing the same two targets would be considered as different objects, therefore the
HashSet collection would not check the uniqueness of each tuple for us14.

Considering all these factors, in our implementation we have discarded the "reified
tuples" approach in favor of the previous "synchronized cross-references" scheme.

14 This is not anyway an unsolvable difficulty. For two “equal” tuples to be recognized and their uniqueness to be
warranted, you must redefine the equals and hashCode methods, inherited from Object and employed by
HashSet with this purpose [Eckel 00].

THE PROBLEM OF VISIBILITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 149

4 THE PROBLEM OF VISIBILITY

So far we have dealt only with the Java implementation of two features of UML
associations: multiplicity and navigability (directionality), but we are interested also in
the implementation of visibility. According to the Standard [UML, p. 2-23], the visibility
of an association end "specifies the visibility of the association end from the viewpoint of
the classifier on the other end". The Standard assimilates the visibility of an association
end to the visibility of an attribute, and gives the same four possibilities:

• public - Other classifiers may navigate the association and use the rolename in
expressions, similar to the use of a public attribute.

• protected - Descendants of the source classifier may navigate the association
and use the rolename in expressions, similar to the use of a protected attribute.

• private - Only the source classifier may navigate the association and use the
rolename in expressions, similar to the use of a private attribute.

• package - Classifiers in the same package (or a nested subpackage, to any level)
as the association declaration may navigate the association and use the rolename
in expressions15.

In Java we find the same four kinds of visibility for attributes and methods (not a chance,
of course), known as access control levels [Gosling 96, Arnold 00], although their
semantics is not exactly the same as in UML16. Package visibility is the default for
unspecified access control, usually known as friendly. Since we have implemented UML
associations by means of Java attributes and methods, it seems that we should not find
special problems with the implementation of visibility17; on the contrary, it should be
rather easy.

This is true for unidirectional associations: if we declare the Java attributes and
methods with the same access control as the UML association end we want to implement,
we automatically get the desired behavior. But the story runs differently for bidirectional
associations. In principle, it seems sensible to declare private one or both ends of a binary
association. We can think of an association with two private ends as a "secret"
relationship that is not known outside the participating classes, such as a Bank-Client
association, for example. Similarly, an association with one public and one private
association ends would be only partially known from the outside. But there are problems.

15 This last kind of visibility, appended in version 1.4 of the Standard, is ambiguously defined, since an association
could be declared between classifiers from two different packages. Which package does the association declaration
belong to, then? We suggest this wording instead (additions in italics): "Classifiers in the same package (or a nested
subpackage, to any level) as the source classifier may navigate the association and use the rolename in expressions,
similar to the use of an attribute with package visibility.
16 The protected access control means in Java the union of protected and package visibilities in UML, that is,
the protected element is visible for descendants as well as for other elements in the same package [Arnold 00, Eckel 00,
Gosling 96].
17 Except that protected will have the Java meaning, not the UML meaning. The Standard acknowledges that all
forms of nonpublic visibility are language-dependent [UML, p. 3-42].

MAPPING UML ASSOCIATIONS INTO JAVA CODE

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Consider the bidirectional association Lecturer-Subject with public and private
visibilities (see Figure 11).

Lecturer Subject
0..* 0..*
+lecturer -subject

Figure 11. A bidirectional association with public and private association ends

The public association end, lecturer, can be used by any other class in the model with
visibility to the Subject class, that is, the collection of lecturers that teach on a given
subject can be queried and updated directly by any class in the model that sees the
subject. Instead, the private association end, subject, meaning the collection of subjects
on which a given lecturer teaches, is known only to the lecturer itself, just as a private
attribute. The Lecturer class could declare other public methods that internally refer to
the subject rolename, thus providing indirect access to the private association end, but
direct access is restricted to the owner class itself. This is no more than the idea of
declaring something private.

Now, we have got a paradox here about the bidirectionality of the association. The
association end with the private rolename subject is known only to its owner, that is,
the Lecturer class. We repeat: only to its owner. That means that the Subject class
does not know the subject association end! The Subject class knows that it is
associated with the Lecturer class, but it does not know that the Lecturer class is
associated with it in return. Is this really a bidirectional association?

In our implementation, based on synchronized cross-references as explained above,
this paradox manifests itself in the impossibility to reciprocally update the association
ends. Remember that, when an instance of Subject tries to add an instance
(newLecturer) of the Lecturer class to its collection of lecturers
(lecturer.add(newLecturer)), it first has to invoke the add method on the
reciprocal side (lecturer.subject.add(self))18; but now this is impossible due to
the private visibility of the subject association end. The same happens with the
remove method. On the contrary, if an instance of Lecturer tries to update the
association, it can issue the update method on the opposite side, because it is public, and
it can update its own private side, thus the whole operation succeeds. At first sight, then,
it seemed that the association could be managed via the class that owns the public
association end (in this case, the Subject class), but this has turned to be false: in fact,
only the class that owns the private association end (Lecturer) can manage the
association, and direct access from outside the two participating classes is impossible.
However, as it has been explained above, the Lecturer class could declare public
methods to provide indirect access to the private association end from the outside.

18 An object refers to itself in UML by means of the self keyword, equivalent to Java’s this.

THE PROBLEM OF VISIBILITY

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 151

Even worse, if both association ends were private, as in the Bank-Client example,
the association would become inaccessible from both sides19. The approach based on
"reified tuples" does not solve the problem either, since it involves auxiliary classes that
cannot provide "private" access to the main classes, excluding all other classes.

Summing up, a public-private bidirectional association can be managed only from
the class that owns the private end, and other classes, including the class on the other end
of the association, can have only indirect access if this class provides the adequate public
methods. A private-private bidirectional association, on the contrary, cannot be managed
at all. Similar considerations can be made for package and protected visibility, which
behave in this case respectively like public and private visibility. In consequence,
bidirectional associations with visibility other than public or package in both ends must
be rejected in code generation. We think this result is not only a bias of our particular
implementation, but a real semantic difficulty of the definition of visibility in
bidirectional associations. Visibility in UML is not specified for associations but for
association ends, and it is assimilated to the visibility of attributes [UML, p. 2-23]. We
need in UML a definition of visibility that fits better with the concept of bidirectional
association.

19 A reflexive association (an association between instances of the same class) is an exception to this rule, since private
association ends are visible inside the class, that is, for both sides of the association.

MAPPING UML ASSOCIATIONS INTO JAVA CODE

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

5 A UNIFORM INTERFACE

The code required to implement a UML association consists basically of an adequate
combination of Java attributes and methods, but this combination depends on the
multiplicity, navigability and visibility of the association. With respect to multiplicity, to
store the only possible instance of a single association we can employ an attribute of the
corresponding target class, but to store the many potential links of a multiple association
we need some kind of collection of objects: we have chosen a HashSet collection, since
it ensures that there are no duplicate objects in the collection. With respect to
navigability, a unidirectional association is implemented only in the source class, whereas
a bidirectional association is implemented in both classes, with code that ensures the
synchronization of both ends. The visibility of the association ends maps directly onto the
visibility of the required methods; the attributes, instead, will remain always private, to
keep a controlled access through the interface methods.

We have designed a uniform interface for all kinds of associations, that is, an
interface that is as independent as possible of the multiplicity, navigability and visibility
of the association ends. The interface comprises accessor and mutator methods, as well as
other auxiliary methods to learn the state and definition of the association. Our intention
is that the client code can use the interface of the association without knowing a priori,
when possible, what kind of association it is; this will make the client code much more
stable with regard to changes in the design (for example, a unidirectional association that
becomes bidirectional).

In fact, the implementation of unidirectional and bidirectional associations is
different, because only bidirectional associations have to be synchronized, but both kinds
present exactly the same interface on each end. On the contrary, single and multiple
associations have not only different implementations, but a slightly different interface,
because single associations do not manage collections of objects as parameters or return
values. We could treat single associations as a particular case of multiple associations and
provide no special implementation or interface for them, but we consider that they are
used so frequently that the benefits in efficiency are proportionate to the losses in
interface uniformity.

In the following paragraphs, "%Target" means the name of the target class in the
association, which will have to be substituted by its real name when the code is generated
for each concrete association in the design model. The source class of a unidirectional
association presents an interface to query and update the opposite association end; the
target class does not present an interface, because it is not aware of the association. In
contrast, the two sides of a bidirectional association present an interface; in this case the
terms "source" and "target" become relative to the class that is seeing the opposite
association end.

A UNIFORM INTERFACE

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 153

Accessor methods

We have two accessor methods, test and get, with the following signatures:
• boolean test(%Target query_link);
• boolean test(Collection query_links);
• %Target get();
• Collection get();

The test method checks whether a given instance of the target class (the query_link
parameter) is linked with the instance of the source class that receives the method
invocation. The second version of this method is defined only when the association end is
multiple; in this case the method checks whether all the instances contained in the
collection parameter are linked to the source instance20.

The get method returns the target instances that are linked with the source instance.
The first version is for a single association end and it returns a unique value, the type of
which is the %Target class, whereas the second version is for a multiple association end,
so that it returns a value of type Collection. According to the justification given above
when dealing with the problems of multiplicity, mutator methods warrant that maximum
multiplicity is not violated, but regarding minimum multiplicity, it can happen that the
number of linked instances is smaller than the minimum required by the design, in which
case the invalid multiplicity exception is raised21.

Mutator methods

We have also two mutator methods, remove and add, with the following signatures:
• int remove();
• int remove(%Target old_link);
• int remove(Collection old_links);
• boolean add(%Target new_link);
• boolean add(Collection new_links);

The remove method deletes target instances from the opposite association end, and
returns a convenient error code. It can remove all instances (first parameterless version),
one instance (second version), or a collection of instances (third version, available only
when the opposite association end is multiple). In the third version, if any instance in the
collection parameter is not of type %Target, then no link is removed, following the
"none or all" semantics, and a class cast exception is raised. On the contrary, if any
instance in the collection (or the single instance, in the second version of the method) is
simply not linked to the source instance, then the operation proceeds without considering
it an error. In a bidirectional association, the method invokes a reciprocal remove on
each one of the instances to be deleted. The remove method can leave the source

20 The parameter type is defined as Collection to get more generality. Collection is an abstraction (technically,
an interface) realized by library classes such as ArrayList, HashSet and TreeSet.
21 In fact, the check is performed by the isValid method, which can be more elaborated than simply verifying that
the number of linked instances is not smaller than the minimum required; the programmer can modify manually the
code of isValid to implement a more complex constraint.

MAPPING UML ASSOCIATIONS INTO JAVA CODE

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

instance or some of the target instances in an invalid state regarding the minimum
multiplicity constraints, in which case an error code is returned, but no exception is
raised. If a subsequent get method were invoked, the invalid multiplicity exception
would be raised.

The add method appends a new target instance or a collection of target instances to
the opposite association end, and returns a boolean value to indicate whether the
operation was performed or not. The second version of this method is defined only when
the association end is multiple; if any instance in the collection parameter is not of type
%Target, then no link is added, following the "none or all" semantics, and a class cast
exception is raised. On the contrary, if any instance in the collection (or the single
instance, in the first version of the method) is already linked to the source instance, then
the operation proceeds without considering it an error (and, of course, without adding a
duplicate). In a bidirectional association, the method invokes a reciprocal add on each
one of the instances to be appended. The add method checks whether the source instance,
or any of the target instances, would be left in an invalid state regarding the maximum
multiplicity constraints, in which case the operation is cancelled, no link is added, and a
False value is returned22.

If you want to substitute some target instances by other target instances, you must
invoke first the remove method and then the add method; otherwise the result could be
different from expected (see Section 2). Beware that this is valid even for single
associations: there is no implicit remove of the old instance when you add a new
instance (this is done this way in order to get the most similar behavior between single
and multiple associations).

Auxiliary methods to learn the state of the association

We have two auxiliary methods to know the state of the association from the point of
view of a particular source instance:

• boolean isValid();
• long numberOfLinks();

The isValid method determines whether the source instance sees the right number of
target instances on the opposite side of the association, according to the multiplicity
constraints specified in the design model. The tool generates code only for the simplest
case, where the multiplicity constraint consists of a single MIN..MAX interval. Anyway,
the programmer can modify manually the code to implement a more complex constraint,
and the changes will affect the execution of accessor and mutator methods, since they
check the multiplicity constraints by means of this method. This method is useful too
when the automatic check of multiplicity constraints is disabled and the programmer
assumes the responsibility for checking them manually at specific points in the source
code.

22 As in the previous case, the check is performed by the isValid method, which can achieve a more general
behavior.

A UNIFORM INTERFACE

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 155

The numberOfLinks method returns the number of target instances linked to the
source instance.

Auxiliary methods to learn the definition of the association

We have five auxiliary methods to know the definition of the association from one side of
the association, that can be useful for the client code:

• boolean isBidirectional();
• boolean isMandatory();
• boolean isMultiple();
• long getMIN();
• long getMAX();

The isBidirectional method determines whether the reciprocal association end is
navigable too. The isMandatory method determines whether the minimum multiplicity
is greater than zero. The isMultiple method determines whether the maximum
multiplicity is greater than one. The getMIN method returns the value of the minimum
multiplicity constraint. The getMAX method returns the value of the maximum
multiplicity constraint. A special value is returned when this is many ('*'). The interface
also defines the constant value int MANY (actually –1).

6 THE CODE GENERATION TOOL

In this section we are going to present briefly the tool we have developed: JUMLA (Java
code generator for Unified Modeling Language Associations). This tool reads a UML
model, stored in XMI format, and generates Java code to manage the UML associations
contained in the input model, according to the technique described in this paper. The tool
generates code for associations only: it ignores every other UML artifact that is not
directly related to associations, such as generalization between classes, class attributes
and methods, etc. The tool presents the classes and associations found in the model, and
the user can select which associations he or she wants to generated code for.

The tool creates output Java files for the involved classes and inserts into them the
code for the associations, with convenient labels to mark the start and the end of the
generated code. If the class file already exists, the code is inserted at the end of the class
file, respecting any other class code that the programmer may have written manually (on
the contrary, if the programmer changes the association code and then re-generates it, the
manual changes are lost).

Figures 12 shows a sample model and Figure 13 shows how it is presented in the
main window of the JUMLA tool. The left pane of the tool shows the classes contained in
the model, in a tree structure corresponding to the package structure of the model. The
right pane shows the associations contained in the model. For each association, the
following information is presented: source and target classes; rolename (optional),
multiplicity, navigability and visibility of source and target association ends; association

MAPPING UML ASSOCIATIONS INTO JAVA CODE

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

name (optional). The user can select with check boxes the associations he or she wants to
generated code for.

University

Department

Student

Course

Teacher

1..1

1..*

< studies in 0..*0..1 0..*

1..*
+student

+course

teaches >1..2

0..3

+teacher

+course

controls > 0..*
(-)

1..*+member

1..1-director

Figure 12. A sample model with some classes and associations between the classes

Figure 13. A snapshot of the JUMLA tool. The interface of the current version of the tool is in Spanish (Archivo =
File, Edición = Edit, Ayuda = Help).

The tool behaves according to five predefined options which can be disabled by the user
to get more flexibility in the generation of code or in dealing with the input model. Table
1 summarizes them.

THE CODE GENERATION TOOL

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 157

Tool Option Default
Check minimum and maximum multiplicity constraints in get method Yes
Check maximum multiplicity constraint in add method Yes
Check type of objects in Collection parameters in add and remove methods Yes
Reject unidirectional associations with multiplicity constraint on source end Yes
Reject bidirectional associations with one private or protected end Yes

Table 1. Summary of tool options

The first two options refer to the automatic checking of multiplicity constraints in mutator
and accessor methods by means of the isValid auxiliary method. According to the
justification given in Section 2, the predefined behavior is: get methods raise an invalid
multiplicity exception, defined in the code that implements the association, if multiplicity
constraints are not satisfied; add methods reject the addition of new links if these
constraints are not satisfied, but they raise no exception; and remove methods don’t do
any checking. Changing the default value of these two options allows the generation of a
simplified code that omits these checks, so that the user assumes the responsibility of
controlling multiplicity.

The third tool option refers to the automatic type checking in mutator methods (add
and remove) for multiple associations, which deal with Collection parameters, by
means of run-time explicit casting. According to the justification given in Section 2, if the
type-check fails, then the links are not updated, and the Java predefined class cast
exception is raised. Changing the default value of this third option allows the generation
of a simplified code that does not check the type of objects received in a Collection
parameter, and does not raise this exception.

The last two options refer to the checking of the input model´s correctness. In the
predefined behavior, unidirectional associations with multiplicity constraints on the
nonnavigable association end are rejected (see Section 3), and bidirectional associations
with visibility other than public or package in both ends are also rejected (see Section
4). Changing the default value of the fourth option allows the generation of code without
checking the multiplicity on the nonnavigable end, instead of rejecting the association.
Changing the default value of the fifth option allows the generation of code, instead of
rejecting the association, when one of the ends is protected or private and the other
end is public or package, warning the user that he or she must provide an indirect
access via other methods. When both ends are protected or private, the association
is allways rejected, since the generated code could not work properly.

7 CONCLUSIONS

In this work we have developed a concrete way of mapping UML associations into Java
code: we have written specific code patterns, and we have constructed a tool that reads a
UML design model stored in XMI format and generates the necessary Java files. We have
paid special attention to three main features of associations: multiplicity, navigability and

MAPPING UML ASSOCIATIONS INTO JAVA CODE

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

visibility. Our analysis has encountered difficulties that may reveal some weaknesses of
the UML Specification [UML].

Regarding multiplicity, we have shown that it is impossible in practice with a few
primitive operations to keep the minimum multiplicity constraint at any moment on a
mandatory association end; our proposal is to check this constraint only when accessing
the links, but not when modifying them. The programmer will be responsible for using
the primitives in a consistent way so that a valid system state is reached as soon as
possible. On the contrary, it is possible to ensure the fulfillment of the maximum
multiplicity constraint during run-time, and so we enforce it in our implementation.
Single association ends are easily stored in attributes having the related target class as
type, but multiple association ends require the use of collections to store the
corresponding set of links; as collections in Java are based on the standard Object class,
it is necessary to perform run-time type-checking by means of explicit casting when using
collections as parameters in the mutator methods.

Regarding navigability, unidirectional associations are easier to implement by means
of attributes than bidirectional associations, because of the difficulties in synchronizing
both associations ends. An update to a bidirectional association must be performed
atomically on both ends to keep them consistent; this is achieved in the source object by
issuing a reciprocal update on the target object. We have considered the pros and cons of
an alternative implementation, based on the storage of “reified tuples”, and finally we
have discarded it in favor of our “synchronized cross-references” scheme. A side
consequence of our analysis is that the multiplicity constraint in a design model can be
specified only for a navigable association end.

Regarding visibility, in the case of unidirectional associations it can be implemented
rather easily by simply mapping the visibility of the association end onto the visibility of
the corresponding accessor and mutator methods, because UML and Java visibility levels
have the same semantics. However, bidirectional associations with one or two private (or
protected) ends behave paradoxically, because the reciprocal update becomes impossible.
Besides, we consider that package visibility is ill-defined for associations in the UML
Specification, and we have suggested a new definition.

The generated code for each association is easily localized inside the involved Java
classes. Each association end presents a uniform programmer's interface. The interface is
exactly the same for unidirectional and bidirectional association ends, but there are slight
differences for single and multiple association ends.

Our approach is rather check-exhaustive with regard to invariants. We think that it is
worth doing for the programmer as much as we can, so that our tool will insert code to
perform run-time multiplicity and type checking and, of course, to issue reciprocal
updates on bidirectional associations. However, different tool options will allow the user
to override the automatic multiplicity and type checks when generating code, in favor of
efficiency. Besides, we have argued that unidirectional associations should not have a
multiplicity constraint on the source end in a design model, and bidirectional associations
should not have both ends with private (or protected) visibility; therefore, the tool will

CONCLUSIONS

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 159

reject the generation of code for these associations. Again, the user will be able to disable
this model-correctness checking and issue the code generation at his/her own risk.

This work can be continued on several lines. First, implementation of other
association end properties, such as ordering, changeability, interface specifier, xored
associations, and so on. Second, specific implementation of particular kinds of binary
associations, such as reflexive associations, aggregations and compositions. Third,
implementation of more complex associations: qualified associations, associations
classes, and n-ary associations. Fourth, expand the tool to perform reverse engineering,
that is, obtaining the associations between classes by analyzing the code that implements
them. Our tool does not presently accomplish this task, although it is a very simple and
straightforward procedure if the code has been written with our patterns. Finally, adapt
the tool and the patterns so that they follow the new Java Metadata Interface (JMI)
Specification [JMI].

8 ACKNOWLEDGEMENTS

The authors wish to give thanks to Perdita Stevens, since this paper was written mainly
while the first author was visiting the Laboratory for Foundations of Computer Science
(LFCS), part of the Division of Informatics of the University of Edinburgh, invited by her
in February-April 2002; a preliminar version of this work was presented at the LFCS Lab
Lunch on April 23rd 2002. This research stay was accomplished with funding by the
Fundación Universidad Carlos III, Madrid, Spain. Thanks also to José Miguel Fuentes,
Víctor Quintana, David Fernández and Vicente Palacios for their valuable suggestions to
improve the paper.

REFERENCES

[Amble01] Scott W. Ambler. “An Overview of Object Relationships”, “Unidirectional
Object Relationships”, “Implementing One-to-Many Object
Relationships”, “Implementing Many-to-Many Object Relationships”. A
series of tips to be found at IBM Developer Works, http://www-
106.ibm.com/developerworks/.

[Arnol00] Ken Arnold, James Gosling, David Holmes. The Java Programming
Language. Addison-Wesley, 3rd ed., 1998.

[Caste00] Xabier Castellani, Henri Habrias, Philippe Perrin. "A Synthesis on the
Definitions and Notations of Cardinalities of Relationships", Journal of
Object Oriented Programming, 13(6):32-35 (2000)

[cUML] Financial Systems Architects (New York, U.S.A.). 3C-Clear Clean
Concise. Submission to OMG. Available at http://www.community-
ml.org/.

http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/
http://www.community-ml.org/
http://www.community-ml.org/

MAPPING UML ASSOCIATIONS INTO JAVA CODE

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

[Eckel00] Bruce Eckel. Thinking in Java, 2nd ed. Prentice-Hall, 2000.

[Fowle97] Martin Fowler, Kendall Scott. UML Distilled: Applying the Standard
Object Modeling Language. Addison-Wesley, 1997.

[Fujab] The Fujaba CASE Tool, University of Paderborn, http://www.fujaba.de/.

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[Genil99] Guy Genilloud. "Informal UML 1.3 - Remarks, Questions, and some
Answers". UML Semantics FAQ Workshop (held at ECOOP'99), Lisbon,
Portugal, June 12th 1999.

[Génov01] Gonzalo Génova. "Semantics of Navigability in UML Associations".
Technical Report UC3M-TR-CS-2001-06, Computer Science Department,
Carlos III University of Madrid, November 2001, pp. 233-251.

[Génov02] Gonzalo Génova, Juan Llorens, Paloma Martínez. “The Meaning of
Multiplicity of N-ary Associations in UML”, Software and Systems
Modeling, 1(2): 86-97, 2002. A preliminary version in: Gonzalo Génova,
Juan Llorens, Paloma Martínez. “Semantics of the Minimum Multiplicity
in Ternary Associations in UML”. The 4th International Conference on
the Unified Modeling Language-UML'2001, October 1-5 2001, Toronto,
Ontario, Canada. Published in Lecture Notes in Computer Science 2185,
Springer 2001, pp. 329-341.

[Génov03a] Gonzalo Génova, Juan Llorens, Vicente Palacios. "Sending Messages in
UML", Journal of Object Technology, vol.2, no.1, Jan-Feb 2003, pp. 99-
115, http://www.jot.fm/issues/issue_2003_01/article3.

[Génov03b] Gonzalo Génova. Entrelazamiento de los aspectos estático y dinámico en
las asociaciones UML. PhD Thesis, Carlos III University of Madrid, 2003.

[Gosli96] James Gosling, Bill Joy, Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[Harri00] William Harrison, Charles Barton, Mukund Raghavachari. "Mapping
UML Designs to Java". The 15th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications-
OOPSLA’2000, October 15-19 2000, Minneapolis, Minnesota, United
States. ACM SIGPLAN Notices, 35(10): 178-187. ACM Press, New York,
NY, USA.

[JMI] Java Community Process. Java Metadata Interface (JMI) Specification,
Version 1.0, June 2002. Available at http://www.jcp.org/.

[Kaind99] Hermann Kaindl. “Difficulties in the Transition from OO Analysis to
Design”. IEEE Software, 16(5):94-102 (1999).

http://www.fujaba.de/
http://www.jot.fm/issues/issue_2003_01/article3

ACKNOWLEDGEMENTS

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 161

[McAll98] Andrew McAllister. "Modeling N-Ary Data Relationships in CASE
Environments", Proceedings of the 7th International Workshop on
Computer Aided Software Engineering, pp. 132-140, Toronto, Canada
(1995). A more recent version in: "Complete Rules for N-Ary Relationship
Cardinality Constraints", Data & Knowledge Engineering, 27(3):255-288
(1998).

[Noble96] James Noble. “Some Patterns for Relationships”. In Proceedings of
Technology of Object-Oriented Languages and Systems (TOOLS Pacific
21), Melbourne, 1996. Prentice-Hall.

[Noble97] James Noble. “Basic Relationship Patterns”. In Proceedings of the
European Conference on Pattern Languages of Program Design
(EuroPLOP'97). Irsee, Germany, 1997.

[Rhaps] The Rhapsody CASE Tool, ILogix, http://www.ilogix.com/.

[RM] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

[Ruiz02] Carlos Ruiz del Castillo. Implementación en Java de asociaciones binarias
UML. Universidad Carlos III de Madrid, Proyecto Fin de Carrera,
Ingeniería Informática (Segundo Ciclo), julio 2002. Tutor: Gonzalo
Génova.

[Rumba87] James Rumbaugh. "Relations as Semantic Constructs in an Object-
Oriented Language", In Proceedings of the ACM Conference on Object-
Oriented Programming: Systems, Languages and Applications, pp. 466-
481, Orlando, Florida, 1987.

[Rumba96a] James Rumbaugh. "Models for Design: Generating Code for
Associations". Journal of Object Oriented Programming, 8(9):13-17,
February 1996.

[Rumba96b] James Rumbaugh. "A Search for Values: Attributes and Associations".
Journal of Object Oriented Programming, 9(3):6-8, June 1996.

[Song95] Il-Yeol Song, Mary Evans, E.K. Park. "A Comparative Analysis of Entity-
Relationship Diagrams", Journal of Computer and Software Engineering,
3(4):427-459 (1995).

[Steve00] Perdita Stevens, Rob Pooley. Using UML: Software Engineering with
Objects and Components. Addison-Wesley, 2000.

[Steve02] Perdita Stevens. “On the Interpretation of Binary Associations in the
Unified Modelling Language”, Journal on Software and Systems
Modeling, 1(1):68-79 (2002). A preliminar version in: Perdita Stevens.
"On Associations in the Unified Modeling Language". The Fourth
International Conference on the Unified Modeling Language, UML'2001,

http://www.ilogix.com/

MAPPING UML ASSOCIATIONS INTO JAVA CODE

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

October 1-5, 2001, Toronto, Ontario, Canada. Published in Lecture Notes
in Computer Science 2185, Springer 2001, pp. 361-375.

[UML] Object Management Group. Unified Modeling Language (UML)
Specification, Version 1.4, September 2001 (Version 1.3, June 1999).
Available at http://www.omg.org/.

[XMI] Object Management Group. XML Metadata Interchange (XMI)
Specification, Version 1.2, January 2002. Available at
http://www.omg.org/.

About the authors

Gonzalo Génova received in 2003 his PhD in Computer Science at the
Carlos III University of Madrid, Spain, where he is currently a Teaching
Assistant of Software Engineering and Advanced Software Design. His
main research subject is modeling and modeling languages in software
engineering. He can be reached at ggenova@inf.uc3m.es.

Carlos Ruiz del Castillo received in 2002 his MS degree in Computer
Science at the Carlos III University of Madrid. He is currently working
for a news agency in the development of .NET applications.

Juan Llorens is Associate Professor of the Computer Science
Department at the Carlos III University of Madrid, Spain, where he is the
leader of the IE (Information Engineering) research group. He is also a
Visiting Professor at Aland’s Institute of Technology - ATL,
Mariehamn, Finland. His current research involves the integration of
Knowledge technologies and Software Engineering techniques towards

Software and Information Reuse. He can be reached at llorens@inf.uc3m.es.

http://www.omg.org/
http://www.omg.org/
mailto:ggenova@inf.uc3m.es
mailto:llorens@inf.uc3m.es

