
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this article as follows: Charles A. Suscheck, Bo Sandén: “A Construct for Effectively
Implementing Semantic Associations”, in Journal of Object Technology, vol. 2, no. 3, May-June
2003, pp. 101-111. http://www.jot.fm/issues/issue_2003_05/article1

A Construct for Effectively Implementing
Semantic Associations

Dr. Charles A. Suscheck, TurboPower Software, Colorado
Dr. Bo Sandén, Colorado Technical University, Colorado

Abstract
Associations are a key concept in object-oriented modeling. Implementing purely
semantic associations with direct containment can lead to reduced cohesion and
increased coupling as well as difficulties with referential integrity. Implementing
semantic associations using the constructs shown in this paper will lead to domain
objects that are more flexible and reusable. Adding container classes for domain objects
and their association objects leads to a high level of traceability between the conceptual
model and it’s implementation.

1 THE IMPORTANCE OF ASSOCIATIONS

Object-oriented (OO) techniques were specifically developed in order to reduce domain
complexity and communication between domain experts and systems developers can
understand. OO models the user’s perspective of the system in a semantically meaningful
manner that follows human conceptualization. “Object-oriented systems allow the real
world to be represented more directly than do conventional ones” [Gottlob96].

Associations play a key role in object-oriented domain modeling. They capture the
nature of the domain by depicting relationships among objects. An association is a group
of links between instances with common semantics and structure, the key point being an
association involves a semantic relationship between two or more classes.

Associations can be either static or dynamic in nature. Dynamic interactions depict
sending messages or signals between classes. Static structures such as inheritance,
aggregation, and composition are also forms of associations.

A third category of associations is a purely semantic association. Semantic constructs
such as roles and relationships comprise this group. Associations that support semantic
constructs are easily modeled in UML, but inconsistently implemented. Semantic
associations enrich the understanding of the system by capturing the nature of the domain
and, in certain domain constructs, play a key role in the understanding of the system’s
conceptual model.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/article1

A CONSTRUCT FOR EFFECTIVELY IMPLEMENTING SEMANTIC ASSOCIATIONS

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Purely semantic associations are the focus of this article. Dynamic associations and
static associations are well understood and implementation is handled through native
constructs in nearly all object-oriented languages. Semantic associations are implemented
inconsistently, if at all, in development languages which necessarily puts their
implementation in the hands of the developer. We will focus on implementing semantic
associations and how container classes play a key role in associations.

2 STRUCTURE OF ASSOCIATIONS

General Association Concepts

An association is by default bidirectional meaning that it can be read from either end with
significance. An example is an "is_married_to" association between a class Man and a
class Woman. Adding an arrowhead at one end specifies that the association is only
navigable in one direction as in Fig. 1. Given a Radar object, the associated Beam objects
can be identified, but a Beam object has no reference to the Radar object emitting it.

Radar Beam
Emits

Figure 1: An association with direction

Associations can have other properties such as multiplicity, which constrains the number
of related objects. In Fig. 2, a workstation displays data upon zero or more windows, but
the data displayed on a given window comes from exactly one workstation.

Workstation

Window

Displays
data upon

1

0..*

Figure 2: An association with multiplicity

STRUCTURE OF ASSOCIATIONS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

Association constraints can be added to restrict the instances that can participate in an
association. In Fig. 3 a club employs a bartender. The bartender must be older than 21.
The association is constrained by the age of the bartender. Constraints can affect when an
association is formed or what instances of a class can be associated.

C l u b E m p l o y s

{ A g e > = 2 1 }

B a r t e n d e r

Figure 3: A constraint on an association.

Properties can be attached to an association by means of an association class
[Rumbaugh91], [Booch99]. An association class has exactly one instance for each set of
objects linked through the association and a lifetime delimited by the existence of the
association. If a link is dissolved, the association class instance is destroyed. In Fig. 4, the
radar detects a flying entity. Due to the association, certain information exists that is
specific to the association, namely the DetectsParms class. The DetectsParms association
class can contain such information as time of detection, radar cross section, and signal
strength, which are only relevant when the radar detects the flying entity. In UML a
dashed line is used to specify an association class.

Radar FE
Detects

Detects Parms

Figure 4: An association class, DetectsParms

Associations don’t necessarily have to be binary, although the vast majority are.
Associations between more than two instances (known as higher order or n-ary
associations) are difficult to deal with [Rumbaugh91] from both an implementation
standpoint and a cognitive standpoint. Fig. 5 shows an example of a ternary association.
A person uses different computer languages on different projects.. Ternary associations
cannot be subdivided without losing information, but can usually be replaced by binary
associations if additional classes are introduced. In the example in Fig. 5 we can add a

A CONSTRUCT FOR EFFECTIVELY IMPLEMENTING SEMANTIC ASSOCIATIONS

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

class Job that is linked many - to one to each of Person, Project and Computer Language.
Higher order associations are not to be confused with association classes in which the
association class only exists for the duration of the association. The participants in n-ary
associations are first class objects and can exists outside of the context of the association.
A diamond is used in UML to specify an n-ary association [Rumbaugh99].

Computer Language

Person Project
Uses

Figure 5: A ternary association from (Rumbaugh 1987)

Semantic associations

Semantic associations support relationships that are loose (not appropriate as direct or
indirect containment) and are based on the semantics of the domain. Semantic
associations are necessary of the understanding of the conceptual model, but require a
loose coupling when moving to implementation.

Roles in associations are an example of a purely semantic relationship. A role is the
function, behavior, or assigned characterization that an object plays in an association. For
example, in Fig. 6, a person plays the role of employee while the company plays the role
of employer in the works-for association. The actual association is “works-for”. Role
names are sometimes used instead of association names when describing the association.
Role names are particularly important when associating instances of the same class.
There are very thorough discussions about roles in [Rumbaugh87], [Whitehurst97],
[Kendall99].

Another form of purely semantic association is one that defines an important
relational state. In Fig. 7 the Radar and the Flying Entity (FE) are related by a state
association. The Radar detects the FE and the FE is detected by the Radar. They have a
relationship that changes their state, yet the relationship is not a role, nor an association
that produces a distinct physical implementation. The FE is now detected and the Radar
enters a tracking state (a role based behavior).

STRUCTURE OF ASSOCIATIONS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 105

Person

Company

Works-for

Employer

Employee

Figure 6: Roles in an association (Rumbaugh 1987)

Radar FE
Detects

Figure 7: A loose state association

Researchers have introduced a number of complex constructs to support domain
modeling [Kristensen94]. One of the more common complex constructs is Role based
behavior [Whitehurst97]. The behavior of an object can change depending on the role it
plays. When an association is formed between two instances, the behavior of the
associated instances is altered in some way. A real world example is a person who
becomes a parent. The person has a parental association with a young person (a child)
and the behavior of the person is changed due to this association. Another example is a
radar that has detected a flying entity. The radar now enters a tracking phase where it
moves to follow the detected entity.

3 IMPLEMENTATION OF ASSOCIATIONS

Many tools that generate code from UML diagrams use a reference pointer to implement
all associations. If a Radar emits a beam, it would contain an attribute Emits that holds a
pointer to the Beam. This is exactly the same implementation scheme as containment by
reference. The semantics of the directional association are lost and the loose coupling
inferred by the conceptual model are lost. The Radar and Beam relate, but their
relationship is not so much one of aggregation (like a bolt being contained in the Radar)
as it is of a semantic construct that isn’t captured by simply including a pointer in the
Radar. Herein lies the problem: semantic associations are often implemented with tight
coupling between the participants.

A CONSTRUCT FOR EFFECTIVELY IMPLEMENTING SEMANTIC ASSOCIATIONS

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

As pointed out in [Whitehurst97], associations should be treated as first-class
entities. They should not be buried inside objects since they are not subordinate to a
particular object but depend upon two or more classes. The information transcends a
single class and should be treated as a first class entity. “Some information inherently
transcends a single class, and the failure to treat associations on an equal footing with
classes can lead to programs containing hidden assumptions and dependencies.”
[Rumbaugh91] .

Implement through direct containment

Associations can be implemented by means of one way or two way pointers (direct
containment) or by additional object constructs [Odell95]. Fig 8 shows containment with
two-way pointers. A diamond is used to indicate the root of a pointer. If a radar detects
multiple flying entities, the Radar object contains an array of pointers.

Radar Flying Entity
Detects

Figure 8: Using bi-directional containment to implement associations

Although easy to implement, direct containment has problems with extensibility. Adding
a new association to a class means adding a new array of pointers. If an association is no
longer viable, an empty pointer array is still contained within the class. Another problem
is the potential for referential integrity rifts. In Fig. 8, if the radar is deleted, the pointer in
the Flying Entity must be updated to no longer reference the radar.

Eventually, associations that are not pertinent to the scenario being modeled must be
added to objects since a single object must have methods for every protocol that it can
possibly participate in, not just those that are presently being used [Whitehurst97]. For
example, in Fig. 9, a radar may have a number of association not necessarily pertinent to
the semantics being described.

IMPLEMENTATION OF ASSOCIATIONS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 107

Radar Flying Entity
Detect

RepairManufacture

Operate
Installs

Owns

Figure 9: Direct containment of all associations

Finally, association classes are difficult to represent using direct containment. Either a
new pointer to the association class instance must be created, or its properties must be
captured within the participating classes, violating the domain semantics.

Implementation Constructs

Associations can be implemented using junction classes and container classes
[Fowler97]. Each instance of a junction class has a one directional pointer to each object
linked by the association. A container object represents a set of junction object. In Fig.
10, Detection is a junction class and Detection CC is a container class. A Detection object
has pointers to a Radar instance and a Flying Entity instance. A Detection CC contains
pointers to many Detection instances.

Radar Flying Entity Detection

Detection
CC

Figure 10 Using constructs to implement an association

Using constructs to implement associations has several advantages. Relationships can be
added without changing the domain classes. “This advantage is absolutely critical for
large-scale software reuse; otherwise objects need to change every time they are used in a
different application" [Whitehurst97]. Furthermore, the container classes can be used for

A CONSTRUCT FOR EFFECTIVELY IMPLEMENTING SEMANTIC ASSOCIATIONS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

instance accounting, and designers can apply object-oriented techniques to the container
classes themselves.

One or more association classes can easily be added to the association and higher
order associations can be modeled by adding more pointers to the junction object.
Another advantage is that queries such as “what radars detect any flying entities at time
T” can be easily answered. This is particularly important when users follow the progress
of the simulation on a GUI. If the associations between the domain objects are buried
within the domain objects, the queries must be methods of the domain classes, which
pollutes the semantics. For example, a radar that detects a flying entity might not know its
identity, so querying on a particular entity may be invalid from a domain perspective.

Another advantage of container class implementation is that queries about
associations are easy. Queries such as “what radars detect any flying entities at time T”,
“what flying entities are detected by radar 124 at time T”, and “when was flying entity 88
detected” can be easily answered if a container class of the detection association is used.
The answers to such queries are increasingly important when a GUI is used to show
simulation activity in wall clock time. If the associations between the domain objects are
buried within the domain objects themselves, the queries may become directed and not
unidirectional. Additionally, implementing associations this way requires the query
mechanism be included with the domain object. Doing so pollutes the semantics of the
domain object. For example, does a radar domain object need to support queries such as
described above? The actual radar might not know the identification of the flying entity,
only that it detects an entity, so querying on an exact flying entity may not be valid from
a domain perspective.

4 CONTAINER CLASSES

The domain objects as well as the junction class can be grouped within container classes,
leading to higher tractability between the conceptual domain model and the
implementation. In Fig. 11 container classes have been added to allow for instance
accounting of the domain objects and the association. It is easy to see that the container
classes map directly to the conceptual model and that the detection association becomes a
first-class entity and is not buried within the implementation.

Container classes provide data structures which can be the fundamental
underpinnings of associations implemented as constructs. Using container classes allows
the capability to ask questions of the associations (this is called instance accounting).

CONTAINER CLASSES

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 109

Radar Flying Entity Detection

DetectionRadar Flying Entities
CC CC

Maps to Conceptual Level

Implementation Level

CC

Figure 11: Container Classes

5 CONCLUSION

Associations are critical to the integrity of an object-oriented domain model. It is best to
use the constructs of junction classes and container classes to implement associations
since they alleviate problems of coupling, cohesion, referential integrity, and semantic
misalignment. Using constructs to implementing associations has several distinct
advantages. When relationships are implemented as separate classes, more relationships
can be added without changing the domain classes. Adding or removing associations will
not affect the domain classes. They can be designed without regard to the context in
which they are being used, which dramatically increases cohesion and decreases
coupling. The container classes used to model the associations can do instance accounting
and can be queried so that the relationships can be examined from both sides. Designers
can apply object-oriented techniques to the structures that support associations and take
advantage of data structures provided by commercial foundation classes.

A CONSTRUCT FOR EFFECTIVELY IMPLEMENTING SEMANTIC ASSOCIATIONS

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

REFERENCES

[Booch99] Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language
User Guide Object Technology Series, ed. Rumbaugh Booch, Jacobson.
Reading, MA: Addison-Wesley, 1999.

[Fowler97] Fowler, Martin. Analysis Patterns: Reusable Object Models. Menlo
Park: Addison-Wesley, 1997.

[Gottlob96] Gottlob, G., Schrefl, M., and Rock, B. "Extending Object-Oriented
Systems with Roles." ACM Transaction on Information Systems 14, no.
3 (1996): 268-296.

[Kendall99] Kendall, E. "Role Model Designs and Implementations with Aspect-
oriented Programming." A paper delivered at the OOPSLA 1999,
Denver, CO, 10/1999 1999.

[Kristensen94] Kristensen, B. "Complex Associations: Abstractions in Object-Oriented
Modeling." A paper delivered at the OOPSLA 1994, Portland, OR,
1994.

[Odell95] Odell, J., Fowler., M. "From Analysis to Design Using Templates."
Report on Analysis and Design, March 1995.

[Rumbaugh87] Rumbaugh, J. "Relations as Semantic Constructs in an Object-Oriented
Language." A paper delivered at the OOPSLA 1987, 1987.

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.
Object-Oriented Modeling and Design. Englewood Cliffs: Prentice
Hall, 1991.

[Rumbaugh99] Rumbaugh, J., Jacobson, I., Booch, G. The Unified Modeling Language
Reference Manual Object Technology, ed. Jacobson Booch, Rumbaugh.
Reading, Mass: Addison Wesley, 1999.

[Whitehurst97] Whitehurst, R. Alan. "Association Frameworks in Simulation Reuse." A
paper delivered at the Computer Simulation Society Proceedings on
Object-Oriented Simulation, 1997.

CONCLUSION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 111

About the authors

Dr. Charles A. Suscheck is TurboPower’s director of research and an innovator of OO
technologies. He lectured at OOPSLA and ECOOP, and major companies such as MCI,
Raytheon, American Greetings, Sherwin Williams, and Cap Gemini America. Dr.
Suscheck has over 20 years of professional experience in IT and holds a Doctorate of
Computer Science from Colorado Technical University. His research interests include
software development methodologies, discrete event simulations, creative thinking, and
the effect of object-oriented frameworks on domain designs. Email:
charles@suscheck.com.

Dr. Bo I. Sandén is a Professor of Computer Science at Colorado Technical University.
He teaches at the doctoral, masters and undergraduate levels and serves as a doctoral
thesis advisor at Colorado Tech. His primary research interest is software design,
particularly for multi-threading. He is the author of two textbooks and numerous journal
papers. He holds a Ph.D. from the Royal Institute of Technology in Stockholm, Sweden.
Before joining academia, he spent 15 years in the software industry as a developer and
project manager. He is a member of ACM and of the IEEE Computer Society. Email:
reached at bsanden@acm.org.

mailto:charles@suscheck.com
mailto:bsanden@acm.org

