
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Cite this column as follows: Bertrand Meyer: “Proving Pointer Program Properties, Part 1: Context and
Overview”, in Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 87-108.
http://www.jot.fm/issues/issue_2003_03/column8

JOURNAL OF OBJECT TECHNOLOGY

Vol. 2, No. 2, March-April 2003

Proving Pointer Program Properties
Part 1: Context and overview

Bertrand Meyer, ETH Zurich, Switzerland and Eiffel Software, Santa Barbara, U.S.A.

Abstract
Efforts to reason formally about programs, and in particular to prove their properties
mathematically, have no practical value unless they can handle all the language facilities on
which realistic programs depend. It is then not surprising that one of the biggest obstacles to
the spread of such correctness-guaranteeing methods has been the lack of a good way to
model the highly dynamic nature of the run-time structures created by object-oriented
programs — and by most plain C or Pascal programs — with their heavy use of pointers, or
references, from object to object.
The present discussion proposes a mathematical theory for modeling pointer-rich object
structures and proving their properties.
The model only uses simple concepts from set theory: sets, relations, functions, composition,
restriction, image. For run-time operations all it needs is the notion of event, a function yielding
a new program state from an existing one.
The model has two principal applications:
• The coarse-grained version of the model, considering only the existence or not of a

reference between an object and another, gives a basis for discussing overall properties of
the object structure, defining as a result the correctness constraints of memory
management and especially garbage collection, full or incremental. Mathematically, this
model uses a binary relation.

• The fine-grained version, based on functions which together make up the relation of the
coarse-grained version, integrates the properties of individual object fields. As a result, it
allows proving the correctness of classes describing structures with luxurious pointer
foliage, from linked lists and graphs to B-trees and double-ended queues.

This is part of a series of 3 articles. Parts 2 and 3 will be published in the May-June 2003 issue
of JOT.

1 INTRODUCTION

Scope

Advances in the theory of programming enable us to reason more systematically about
programs. This goal is not just academic any more, thanks in particular to recent tools that
permit the mathematical development of significant industrial systems accompanied by a proof
of their correctness.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/column8

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §1

A wider use of these techniques would be of great benefit to software technology, but
obstacles remain, including theoretical obstacles. One of the most significant is the lack of a
generally accepted mathematical model for the possibly complex structures, involving
numerous pointers (or references) between objects, that we can direct our programs to create
during their execution. We will study such a model and its application to a variety of problems,
including:

• Memory management, especially garbage collection, for programs that create many
objects linked by references.

• Mathematical proofs of properties of object-oriented components describing object
structures involving possibly complex use of references.

Organization

This presentation includes four separate articles.

• The rest of Part 1, Context and Overview, explains the goals and assumptions of the
project, then (2) describes its rationale by recalling the inevitability of using references
when modeling systems. It also includes a summary of notations (3), a bibliography (4) and
acknowledgments, all applicable to the full series.

• Part 2 presents a coarse-grained model that describes the pointer structure as a whole,
ignoring individual object fields. The mathematical framework covers such concepts as
abstract addresses, objects, links between objects, stack, heap, garbage, live objects, and
such events as heap and stack allocation, full and incremental garbage collection, yielding
a substantial set of theorems.

• Part 3 shows how to refine this first model into a fine-grained model for proving
properties of individual classes and individual object fields.

• Part 4 applies the fine-grained model to prove properties of specific classes describing
linked object structures. This part is not yet available at the time of writing, but the main
results appear in a separate paper [12].

Trusted components

This work is part of a more general effort towards “Trusted Components” [10]: reusable
software elements enjoying guaranteed properties. The project includes two complementary
parts:

• A “low road” aimed at analyzing components built with current technology — library
classes, COM objects, Enterprise Java Beans, .NET assemblies — through a Component
Quality Model that has to take into account the state of the industry as it is.

• A “high road” aimed at producing components enjoying mathematically proved properties.

The present work is on the “high road”; it is a required milestone on that road, since as discussed
in section 2 realistic components need pointers.

§1 INTRODUCTION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 89

Why this should work

There have been numerous attempts before to provide a theory for pointer structures, none of
which has established itself widely in practice — to the point that Abadi and Cardelli’s treatise
on the theory of objects [1] stays aways from pointers. It is fair to ask why the present one has
a better chance. It rests its claims on three properties: simplicity; abstraction; and object-
orientation.

First, the model exclusively relies on simple mathematical concepts. The mathematics
involved is elementary set theory. Anyone who understands sets, relations, union, intersection
and the like can follow it.

Next, the model takes advantage of abstract operators. Transitive closure and other high-
level operations on relations and functions bring significant expressive power. The image
operator, for example, is central to the development.

Third, we use the concepts of object technology and focus on properties of object-oriented
programs.Most authors of theoretical work in the field define, as their basic problem, the need
to model a non-object-oriented construct: the C++ or Java assignment to a “qualified target”

Yet O-O methodology implies that reference assignments must only occur within a routine of
the corresponding class, under the unqualified form

Like goto avoidance in elementary programming, this rule is both sound for program design and
helpful for mathematical modeling.

We try to take advantage of object technology, whose reusability goal shifts the focus of
proofs to class invariants expressing key properties of the pointer structures defined by a class.
A typical example is

as illustrated by this picture of a run-time linked list structure:

x.a := b

a := b

“Starting from the list header and following the reference first_element
that leads to a list cell, and then the reference right that leads from a cell
to the next, we will never hit the same cell twice, and eventually we will hit
a Void”.

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §1

Fig. 1: Run-time snapshot of a linked list

The class-based nature of object-oriented programs enables us to devote our efforts to proving
that the corresponding reusable classes preserve these invariants. This seems the best way to
avoid, in the words of Bornat [4], being

force[d] towards global reasoning [where] every [attribute] assignment seems to
affect every assertion [about] the heap

as seems hard to avoid if x.a := b is the object of our study. By contrast
The [classical] Floyd-Hoare treatment of assignment to a variable concentrates
attention on assertions that involve that variable, leaving others untouched, making
steps of local reasoning whose restriction to particular formulæ matches the
locality of assignment.

Proofs concentrating on classes give us back that locality. From such proofs — especially
invariance proofs — we can infer the abstract properties of the routines of a class, as available
to client code: Instead of x.a := b, a client application in genuine O-O programming uses
calls of the form x.r (b); the interface of the class, expressed in Eiffel by the contracts, gives
the properties of such calls for all exported routines r.

This is indeed what we need to know when using pointer-manipulating programs.
Programmers use pointer structures as convenient implementations of abstract structures having
certain abstract properties. For example, a linked list as pictured above is useful as a
representation of an abstract sequential structure; what is relevant, when you build and use such
a structure through a reusable library class LINKED_LIST, is to know that a call

results in a list having the same elements as before except for a new one, of content some_
value, inserted at the front. This property is part of the contracts for the routine put_front of
LINKED_LIST and the class as a whole:
• The routine must ensure its postcondition, which will state that there is a new element at

the front containing the desired value, and that the remaining elements have been
preserved.

• The routine keeps the original elements (it doesn’t create a full new list).

my_list.put_front (some_value)

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right right
first_
element

(LINKABLE)

right

§1 INTRODUCTION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 91

• The routine, like all others in the class, must preserve the invariant stated informally above
(no cycle, Void at end).

It’s in proving that put_front has these properties that we’ll need a theory of pointer
manipulations, but that theory can satisfy the principle of locality. Here the body of put_front
might be of the form

which we may illustrate as

Fig. 2: Inserting an element at the front

relying only on local reasoning about first_element and the contract of procedure put_
right in class LINKABLE. To establish that the implementation of put_right satisfies this
contract (stating that the routine reattaches the right link to the argument) uses reasoning that
is in turn local to class LINKABLE.

Using operators on relations and functions

In expressing the properties that make up the contracts of pointer-rich structures, the abstract
style of specification mentioned above will be particular effective. Authors who have already
used such a style to discuss pointer programming issues include Möller [13] and Back et al. [3];
the present effort relies on their work and extends it.

Consider the property “We will never hit the same cell twice”, from the informal
description of the linked list invariant. Abstract operators let us state it concisely as

create n
n.put (value)
n.put_right (first_element)
first_element := n

(first_element ; right*) ∩ id [LINKABLE] = ∅

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right

rightfirst_
element

new

value

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §1

to be understood as follows: first_element and right are functions, which for any object
give another object, corresponding to the respective fields in LINKED_LIST and LINKABLE;
the semicolon represents composition of functions or relations; the asterisk is reflexive
transitive closure (the result of applying a function or relation zero or more times); and id [X]
is the identity relation on a set X. So the formula states that the composition of first_element
with any number of applications of right yields no identity pair (no pair of the form [x, x])
— the desired property. Without the abstract operators, one would have to write (see for
example the style of [15]) something like

with the auxiliary function definition

The verbosity is striking; the added variables (x, m, n) play no useful role, and the recursive
function definition is overkill. It’s this kind of notational inflation that makes simple problems
look complicated, leading to a a “big artillery” style of specification and proof that is hard to
pursue very far in practice.

As another example, one of our theorems will state1)

where r(.X.) denotes the image of a subset X under a relation r, that is to say, the set of
elements to which r links an element of X; the relation attached links two objects if there is
a reference from one to the other. The theorem, known as the “No Zombie” property, expresses
the basic rule that following a reference from any object will lead another object: there are no
dangling references. It’s an invariant that all operations on references must be preserve. Without
the image operator, this could be expressed as

∀ x: LINKED_LIST | ∀ m, n: |

m ≠ n ⇒ next (x, m) ≠ next (x, n)

next (x, n) = first_element (x) if n = 0
= right (next (x, n–1)) if n > 0

[T11] attached (.Objects.) ⊆ Objects

1 See Part 2, Coarse-grained model.

∀ x: Objects | ∀ l: Attributes (Class (x)) |

(∃ y: | reference (x, l) = y) ⇒ y ∈ Objects

NI

NI

§2 RATIONALE: WHY USE REFERENCE-BASED MODELS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 93

It’s not hard to decide which version to show to a human reader or an automatic prover.

Proof support

A rule applied to this effort is to ensure that all stated properties are ultimately proved, not just
manually but mechanically. At the time of writing the mechanical part is in progress, using the
Atelier B formal development workbench [5].

Mathematical basis and style

The mathematical concepts used are from elementary set theory. The notations are introduced
on first use and summarized at the end of Part 1.2)

“Events” follow the ideas of B [2]. Syntactically, they are expressed in an Eiffel-like form
that should be immediately understandable, specifying for each event its condition of
applicability (precondition: require), its operation on the state (body: do), and properties of
the resulting state (postcondition: ensure), which must be proved as theorems. The model also
includes invariants, which every event must be proved to maintain.

The reader may find the style of mathematical development too detailed, perhaps tedious,
with the inclusion of many theorems, some seemingly obvious. The aim has been to help
understand the issues in depth and to prepare for machine-checked proofs using Atelier B.

2 RATIONALE: WHY USE REFERENCE-BASED MODELS

To prepare the model’s presentation in the next articles of the series, we first review why
pointers are useful and why they cause trouble. This survey (which you can peruse quickly if
you are already convinced of the inevitability of pointers, and of the theoretical problems they
raise, such as dynamic aliasing) sets the precise context of the rest of the discussion.

The lure of dynamic models

Programmers today want to take advantage of the power of object technology to build class
structures whose run-time instantiations will consist of large numbers of objects containing
many references to each other.

2 See Section 3, page 99

Ruth
99

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §2

It would be wrong to dismiss the resulting complexity as self-inflicted: unlike the
complexity of a programming language or an analysis notation, which can be criticized as the
result of poor design, the complexity faced here results from our attempts to model (using a
language or notation that may be beyond reproach) inherently complex aspects of the world. An
employee belongs to a department, a department has a budget, a budget has an applicable
period, a period has a beginning date and an ending date, and so on. Criticizing object models
because they lead to objects that may include many references fields — a reference field of type
DEPARTMENT in class EMPLOYEE etc. — would be all the more unfair that one of the
achievements of object technology is precisely that it enables us to describe object structures of
great apparent complexity while retaining simplicity in the design of the corresponding classes
and their mutual relations, that is to say, the software model.

Another property of reference-rich object structures is that they usually take advantage of
dynamic allocation, meaning that execution creates objects on demand. You do not need to
know in advance how many EMPLOYEE objects your program will need: the program will create
a “list of employees” object at the beginning of its execution; if later on it needs a new
EMPLOYEE object it will create it at that time, for example from an employee record in a
database, and add to the list a reference to that object. This is both more convenient and more
economical than having to plan a maximum number of EMPLOYEE objects, with the risk of
failing in the occasional case that requires more of them than planned, and of wasting memory
in all others.

An added advantage is — in a good object-oriented environment — the ability to rely on
automatic memory management mechanisms for the allocation and de-allocation of memory for
objects, and particularly on an automatic garbage collection facility for recycling the memory
space used by objects that can provably be of no longer use to the current execution of a
program. Doing such recycling manually in the program requires considerable programming
work of no direct relevance to the application and, even more worryingly, can easily lead to
grave errors, hard to debug, in the case of mistakenly recycling space for a still active objects.
If the programming language provides references within a suitable type system, the
programming environment can, through its garbage collector, remove all such worries.

The alternative to using references would be, as in the days before object technology —
indeed, the days before Pascal —, to model everything through integers and arrays. But no one
who has had a taste of object-oriented analysis, design or programming will voluntarily go back
and renounce the benefits of a model supporting references, dynamic object creation, and
automatic garbage collection.

§2 RATIONALE: WHY USE REFERENCE-BASED MODELS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 95

The challenges of reasoning with references

Unfortunately, approaches to mathematics-based software development and proof still
generally limit themselves to dealing with basic data types such as integers and booleans,
lacking a good formal model for object structures involving references. The reason is that
references introduce properties that complicate the mathematical description of object
structures.

The most significant is dynamic aliasing, the ability for an object to become known under
two different names, because two different references point to it. Dynamic aliasing breaks some
common, widely assumed modes of reasoning. We are used to assuming that in a situation such
as the following we understand what is going on:

We assume, at the position marked Before, that a certain property holds of some thing we call
a. Then someone applies an operation to another thing, b. This operation does not involve a in
any explicit way deducible from the description of the operation itself. Then we expect that after
the operation, the property we relied on still holds of a, since the operation should not have
“touched” a.

With the introduction of references, unfortunately, this simple mode of reasoning does not
necessarily hold. Assume that a and b denote references. A property of a reference is that it may
refer to an object; using Eiffel’s terminology we’ll say that a reference may be attached to an
object. (A reference that is not attached to any object is said to be void.) Then a and b might be
attached to the same object, and an operation on b may invalidate a property of a, if that property
characterizes the attached object.

In the figure below, both a and b are attached to an EMPLOYEE object with several fields,
including salary. If SOME_PROPERTY says that the monthly salary of the object attached to a
is less than fifty thousand euros, and SOME_OPERATION increases by one the salary of the object
attached to b, SOME_PROPERTY will not hold at the point marked After above.

Fig. 3: Aliasing

-- Before: SOME_PROPERTY holds of a

Apply SOME_OPERATION to b.

-- After: SOME_PROPERTY still holds of a

salary49,999
a

b

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §2

This is a case of aliasing (an object being known through two different names, here a and b).
With non-reference variables, belonging to types that we will call expanded using Eiffel
terminology again, no such problem arises: if a and b are different variables of type INTEGER,
an expanded type, an operation on b may never change a property of a.

What makes aliasing even more tricky is that in object-oriented languages — and any
language permitting pointers, such as Pascal or C — aliasing can be dynamic: we cannot foresee
all cases before run time, since aliasing may result from a reference assignment

which may be executed, or not, depending on input data or interactive user actions; so in general
we have no easy way, when looking at two reference names a and b in the program text, to know
whether or not they may during execution ever become attached to a common object. This
makes reasoning about programs much more difficult than with programming models where all
types are expanded.

As already noted, we cannot blame such complexity on programming models alone. The
problem is more fundamental, following from our ability to refer to things of the world around
us in more than one way. Reading a “Before” assumption and an operation in the above style

we might hastily deduce that after the operation the original assumption still holds, but we
would be wrong if it turns out that Jill’s son is married to the CEO. Such aliasing can, in life as
in computer programs, be dynamic, since the marriage may take place between the time we hear
the gossip and the time Jill’s salary is raised.

Such examples suggest that it may be unfair to blame pointers for difficulties which can be traced to
the human ability to call things by more than one name. “The beautiful daughter of Leda”,
“Menelas’s wife” and “Helen of Troy” all denote the same person; readers of Saint-Simon are
supposed to know that “Monsieur” is the King’s brother; and more than one amateur of Russian
novels has had trouble remembering on page 467 that “Daria Alexandrovna” was introduced as the
“Countess Oblonsky” on page 5 and called “Dounia” on page 35, but elsewhere was just “Dolly”.

Properties of object structures

Let us get a first idea of where we are heading by considering the kind of properties that —
assuming we overcome the difficulties just reviewed — we want to be able to prove.

Here is a typical example; simple, but beyond the realm of many proof systems. Already
previewed, it’s class LINKED_LIST from the EiffelBase library, reduced to its essentials.3)

b := a

-- I heard that both of the CEO’s in-laws make less than 50K.

Memo to personnel: raise Jill’s salary by one euro

3 See page 90.

§2 RATIONALE: WHY USE REFERENCE-BASED MODELS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 97

Using this class leads to run-time object structures that we may picture as follows:

Fig. 4: Run-time snapshot of a linked list

This involves two classes: LINKED_LIST proper, representing the list header (object at the top
left); and LINKABLE, representing the list elements and meant to be used only by LINKED_
LIST, not directly by clients of LINKED_LIST. The shaded cells represent information
associated with the list, such as the number of items (in the LINKED_LIST object) and actual
list element contents in the LINKABLE objects.

Such structures are the result of class declarations of the form

The kinds of properties we will want to prove include:
• No cycles: if at any time during the life of such a list we follow the first_element

reference from a LINKED_LIST object, and then follow the sequence of right references
in LINKABLE objects for as long as applicable, we will never encounter the same
LINKABLE object twice.

• Void termination: any such sequence eventually links to Void.
• No tail sharing: starting from two different LINKED_LIST objects, such sequences of

LINKABLE objects are disjoint.
• The procedure put_front (given next) will result in a list with one more item than before.
• The procedure remove_front will result in a list with one fewer item, and cause the

addition of one object to the list of “garbage”, that is to say, objects whose memory may be
safely returned to the operating system.

class LINKED_LIST [G] feature
first_element: LINKABLE [G]
... Routines (see below) ...

end -- class LINKED_LIST

class LINKABLE [G] feature
right: LINKABLE [G]
... Routines (see below) ...

end -- class LINKABLE

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right right
first_
element

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §2

The first two of these properties are invariants; they must be ensured by all the initialization
procedures of the class (“constructors” in C++ terminology), and preserved by all exported
routines such as put_front and remove_front.

Here are these two routines — with Eiffel assertions omitted although they will figure in
any acceptable version of the classes. First put_front in LINKED_LIST:

In a practically useful library, put_front would have an argument of type G representing the
value to be stored in the new element; in this discussion, however, we may omit the argument
since we focus on the references between objects (the arrows on the last figure) and ignore any
non-reference fields in objects (the figure’s shaded areas).

Procedure put_front calls the following procedure from class LINKABLE (available only,
thanks to the mechanism of selective export, to class LINKED_LIST and its descendants):

Procedure remove_front in LINKED_LIST will be written:

We will explore how to prove the properties of such routines.

put_front is
-- Add element to beginning of list.

local
n: LINKABLE [G]

do
create n
n.put_right (first_element)
first_element := n

end

put_right (other: LINKABLE [G]) is
-- Make other the new right neighbor of current object..

do
right := other

end

remove_front is
-- Remove first element of list.

require
not_empty: first_element /= Void

do
first_element := first_element.right

end

§3 CONVENTIONS AND NOTATIONS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 99

3 CONVENTIONS AND NOTATIONS

This section serves as reference for the whole set of articles.

The model consists, in the B style, of constants, variables, and events that affect the
variables. Constants and variables are sets (including the special cases of relations and
functions).

In addition to events, the formal elements are of four kinds: axioms introducing new
elements (which may themselves be sets) of known sets; definitions introducing new elements
in terms of previously introduced ones; invariants expressing properties that we must prove to
be preserved by every event; and theorems that we must prove to follow from the other
properties. All these elements are numbered in a single sequence, with numbers respectively
starting with A, D, I and T.4)

We will try to keep our model minimal by limiting the number of elements that we
explicitly postulate: axioms and invariants. (Definitions and theorems do not introduce any new
assumption.) To help keep track of this goal, every new axiom or invariant is marked by a in
the right margin.

The rest of this section gathers the notations used in the remaining articles. It is not
necessary to study it on first reading since all non-elementary notations are introduced on first
use. Sources for the notation include Z, B, and reference [7].

Naming conventions

4 For example the first axiom is [A1], the first definition [D9], the first invariant [I3] and the first theorem [T7].

Symbol Name Typical use Meaning

A, B, C, … Set naming
convention

A (Names of sets,
especially of
addresses or objects,
but not relations or
functions, usually
start with an upper-
case letter.)

a, b, c, …
r, …
f, …

Member, relation,
function naming
convention

a (Names of set
elements, functions
and relations usually
start with a lower-
case letter.)

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §3

General

Properties of the model

Symbol Name Typical use Meaning

=∆ Definition x =∆ E From now on,
understand x as an
abbreviation for E.

: Distinguished
member

a: S From now on,
assume that S (a
known set) has a
specific member, to
be called a.

Symbol Name Typical use Meaning

Ai Axiom number i. a: S Assume that S (a
known set) has a
specific member, to
be called a.

Di Definition number i.
(Must be of one of
the two forms shown
on
the right.)

x =∆ E From now on,
understand x as an
abbreviation for E.

Ii Invariant number i. A = B All events must
preserve the given
property (proof
obligation).

Ti Theorem number i. A = B The given property
follows from
previous definitions,
axioms and
theorems

§3 CONVENTIONS AND NOTATIONS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 101

Sets

Symbol Name Typical use Meaning

∈ Set membership a ∈ S (True or false.) a is a
member of S.

∅ Empty subset ∅ Subset (of any set)
that has no members.

⊆ Set inclusion X ⊆ Y (True or false.)
Every member of X
(if any) is also a
member of Y.

∪ Union of subsets A ∪ B Union of A and B:
the subset whose
members are the
members of either or
both of A and B.

∩ Intersection of
subsets

A ∩ B Intersection of A and
B: the subset whose
members are the
members of both of
A and B.

– Difference of
subsets

B – A Difference of B and
A: the subset whose
members are the
members of B that
are not members of
A.

........... Complement of a
subset

X
Complement of X:
the set whose
members are
members of the
enclosing set that are
not members of X.

× Cartesian product A × B Cartesian product of
A and B: the set of
pairs [a, b] where a
is a member of A and
b a member of B.

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §3

Logic

{ } Extension
(enumeration)

{a, b, c} The set whose
members are a, b
and c.

Powerset (X) The set whose
members are the
subsets of X.

Finite powerset (X) The set whose
members are the
finite subsets of X.

Set of integers The set whose
members are all
positive integers

.
Set of positive
integers

. The set whose
members are all
positive integers

Symbol Name Typical use Meaning

¬ Negation ¬ P True if and only if P
is false.

⇒ Implication P ⇒ Q True unless P is true
and Q is false.

∀ Universal quantifier ∀ j: A | P True if and only if P
holds of every x that
is an element of A.
(True if A is an
empty subset.)

∃ Existential
quantifier

∃ j: A | P True if and only if P
holds of at least one
x that is an element
of A. (False if A is an
empty subset.)

Symbol Name Typical use Meaning

PI PI

FI FI

NI NI

NI NI

§3 CONVENTIONS AND NOTATIONS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 103

Relations and functions

Symbol Name Typical use Meaning

[] Pair [a, b] The pair whose first
element is a and
second element is b.

Relation A relation of source
set A and target set B
is a set of pairs
whose first element
is a member of A and
second element a
member of B.

↔ Set of relations A ↔ B The set of relations
of source set A and
target set B, i.e. the
set of pairs [a, b]
such that a is a
member of A and b
a member of B.

↔|| Set of finite relations A ↔|| B The set of relations
of source set A and
target set B that are
finite sets. (Their
domain and range
are both finite.)

→| Set of functions
(possibly partial)

A → B Functions of source
set A and target set
B: members of A ↔
B which for any
member a of A have
at most one member
pair whose first
element is a.

→|| Set of finite
functions

 A →|| B Functions of source
set A and target set
B, whose domain is a
finite subset

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §3

→ Set of total functions A → B Total functions of
source set A and
target set B:
members of A |→ B
whose domain is A.
(For any member a
of A, such a function
has exactly one
member pair whose
first element is a.)

domain Domain domain (r) For a relation r of
source set A, the
subset of A whose
members are all a
such that r contains a
member pair whose
first element is a.

range Range range (r) For a relation r of
target set B, the
subset of B whose
members are all b
such that r contains a
member pair whose
second element is b.

r \ X Restriction r \ X Restriction of
relation r to a
subset X of its target
set: the relation
containing every
pair in r whose first
element is a member
of X.

id Identity relation id [X] Identity relation on
X: the relation of
source set X and
target set X whose
members are all the
pairs having the
same first and
second element.

Symbol Name Typical use Meaning

§3 CONVENTIONS AND NOTATIONS

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 105

(Exponent) Iteration of a relation rn (For n ≥ 0.) r
iterated n times: if n
= 0, the identity
relation; if n > 0,
r composed,
recursively, with rn–
1.

+ Transitive closure of
a relation

r+ Transitive closure of
r:
r1 ∪ r2 ∪ r3 ∪ …

* Reflexive transitive
closure of a relation

r* Reflexive transitive
closure of r:
r0 ∪ r+

cyclic Cyclic relation cyclic (r) (True or false.) r is a
cyclic relation:
among the members
of r are n pairs
[a1, a2], [a2, a3], …,
[an–1, an], [an, a1]
for some n ≥ 1.
(True if r is an
identity relation, or
contains an identity
relation, e.g. if it is a
transitive closure.)

–1 Inverse of a relation r –1 Inverse relation of r:
the set of pairs [a, b]
such that the pair [a,
b] is a member of r.
The inverse of a
function is a relation,
not necessarily a
function.

() Function application f (x) Application of a
function f to a
member a of its
domain: the element
b (there is exactly
one) such that [a, b]
is a member of f.

Symbol Name Typical use Meaning

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §3

Events and assertions

(. .) Image by a relation r (. A.) Image of subset A
under relation f: the
set of all b (if any)
such that r has a pair
[a, b] for some a that
is a member of A.

(. .) Image by a function f (. A.) Image of subset A
under function f: the
set of all b (if any)
such that b = f (a) for
some a that is a
member of A.
(Definition
equivalent to
previous one but
applied to case of a
function.)

curry Currying curry (f) Curried version of f
(f specialized on its
first argument): if f
is a member of
A × B → C, curry (f)
is a member g of
A → (B → C) such
that, for any a, g (a)
is the function h
such that, for any b,
h (b) = f (a, b).
This definition uses
total functions but
immediately
generalizes to partial
functions and
arbitrary relations.

Symbol Name Typical use Meaning

require Precondition require
condition

Event may occur if
and only if condi-
tion is satisfied.

Symbol Name Typical use Meaning

§4 REFERENCES

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 107

4 REFERENCES

This bibliography applies to the entire series of articles.
[1] Martín Abadi and Luca Cardelli: A Theory of Objects, Monographs in Computer Science,
Springer-Verlag, 1996.

[2] Jean-Raymond Abrial, The B Book, Cambridge University Press, 1995.

[3] Ralph Back, X. Fan and Viorel Preoteasa: Reasoning about Pointers in Refinement Calculus,
Technical Report, Turku Centre for Computer Science, Turku (Finland), 22 August 2002.

[4] Richard Bornat: Proving Pointer Programs in Hoare Logic, in Mathematics of Program
Construction, Springer-Verlag, 2000, pages 102-106.

[5] ClearSy [name of company, no author listed]: Web documents on Atelier B,
www.atelierb.societe.com, last consulted December 2002.

[6] C.A.R. Hoare and He Jifeng: A Trace Model for Pointers, in ECOOP ‘99 — Object-Oriented
Programming, Proceedings of 13th European Conference on Object-Oriented Programming,
Lisbon, June 1999, ed. Rachid Guerraoui, Lecture Notes in Computer Science 1628, Springer-
Verlag, pages 1-17.

[7] Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall,
1990.

[8] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

[9] Bertrand Meyer, Christine Mingins and Heinz Schmidt: Providing Trusted Components to
the Industry, in Computer (IEEE), vol. 31, no. 5, May 1998, pages 104-105.

[10] Bertrand Meyer et al.: Trusted Components papers at se.inf.ethz.ch, last consulted
December 2002.

[11] Bertrand Meyer: A Framework for Proving Contract-Equipped Classes, to appear in
Abstract State Machines 2003 - Advances in Theory and Applications, Proc. 10th International
Workshop, Taormina, Italy, March 3-7, 2003, eds. Egon Boerger, Angelo Gargantini, Elvinia
Riccobene, Springer-Verlag 2003. Pre-publication copy at www.inf.ethz.ch/~meyer/
publications/, last consulted January 2003.

ensure Postcondition require
condition

Theorem (must be
proved): Event will
yield a result
satisfying condi-
tion.

|| Parallel execution x := a || y := b The two operations
occur in parallel.

http://www.atelierb.societe.com
http://se.inf.ethz.ch
http://www.inf.ethz.ch/~meyer/publications/
http://www.inf.ethz.ch/~meyer/publications/

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

 PROVING POINTER PROGRAM PROPERTIES PART 1: CONTEXT AND OVERVIEW §5

[12] Bertrand Meyer: Towards Practical Proofs of Class Correctness, at www.inf.ethz.ch/~meyer/
ongoing/ , last consulted February 2002.

[13] Bernhard Möller: Calculating with Pointer Structures, in Algorithmic Languages and
Calculi, Proceedings of IFIP TC2/WG2.1 Working Conference, Le Bischenberg (France),
February 1997, Chapman and Hall, 1997, pages 24-48.

[14] Joseph M. Morris, A general axiom of assignment; Assignment and linked data structures;
A proof of the Schorr-Waite algorithm. In Theoretical Foundations of Programming
Methodology, Proceedings of the 1981 Marktoberdorf Summer School, eds. Manfred Broy and
Gunther Schmidt, Reidel 1982, pages 25-51.

[15] John C. Reynolds: Separation Logic: A Logic for Shared mutable Data Structures, in
Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, Copenhagen,
July 22-25 2002.

[16] Norihisha Suzuki, Analysis of Pointer “Rotation”, in Communications of the ACM, vol. 25,
no. 5, May 1982, pages 330-335.

5 ACKNOWLEDGEMENTS

(This section expresses thanks for feedback received, without any implication of endorsement
or agreement.) Earlier versions of the approach discussed in this series of articles have presented
in several forums, leading to important comments and criticism: at an IFIP WG 2.3 meeting
(Tony Hoare, John Reynolds, Natarajan Shankar, Michel Sintzoff); at the Turku Centre for
Computer Science (Ralph Back, Viorel Preoteasa); at the Lipari Summer School of August 2002
(Jean-Raymond Abrial — also at an ETH presentation and email correspondence — and Egon
Boerger); at Monash University (Christine Mingins); at the Formal Approaches To Software
(FATS) seminar at ETH (Robert Staerk). Karine Arnout provided detailed comments on an
earlier version of the paper. The final version greatly benefited from extensive comments by
Peter Müller. The work on proving classes is pursued with Bernd Schoeller, who made
important suggestions on part 2.

About the author

Bertrand Meyer is Professor of Software Engineering at ETH Zürich, Switzerland, and
scientific advisor of Eiffel Software (Santa Barbara).

http://www.inf.ethz.ch/~meyer/ongoing/
http://se.inf.ethz.ch/ongoing/references

