
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 2, March-April 2003

Cite this article as follows: Anna Grimán, María Pérez: “Architectural Quality in Development
Processes”, in Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 169-182.
http://www.jot.fm/issues/issue_2003_03/article4.

Architectural Quality in Development
Processes: A Case Study

Anna Grimán and Maria Pérez, Universidad Simón Bolívar. Caracas,
Venezuela

Abstract
Software quality is expressed through various attributes, many of them are architectural.
So, an architecture-focused development process, with an integrated self-evaluation,
must be selected.
The purpose of this research is to present the incorporation of Architectural Tradeoff
Analysis Method in the Rational Unified Process which emphasizes the definition of the
software architecture through its 4+1 architectural views.
The improved RUP was applied to a case study: a Knowledge Management System
(KMS), and the most important quality attributes for it were selected during the
elaboration phase (Maintainability, Reliability and Efficiency), candidates architectures
were proposed and the most suitable architecture was gotten.

1 INTRODUCTION

A stable architecture for guiding the system throughout its future lifetime is obtained
iteratively and includes the identification of requirements, design, implementation and
testing. Software architecture encompasses the different ways of presenting the system
through components from different perspectives or points of view. However, software
architecture is influenced not just by structure and behavior, but also by use,
functionality, performance, flexibility, reuse, understandbility, restrictions, economic and
technological commitments and aesthetics [Jacobson et al. 2000]. Many of these are
intuitive; quality attributes that any architecture must have.

According to Jacobson [Jacobson et al. 2000] an architecture is needed in order to:
Understand the system – all those involved in developing the system must understand its
structure; Organize the development – by breaking the system down into subsystems and
defining the interfaces and their relationships, thought can be given to the tasks to be
developed in the next stages of development; Foster reuse – if components with specific
functionality are specified, they can be used together in order to: Make the system evolve
– changes in requirements can be implemented fairly effortlessly.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/article4

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Bass et al. [Bass et al. 1998] believe software architecture is important because it
facilitates communication among stakeholders and helps in decision-making on design
issues by defining restrictions involving implementation, identifying quality attributes,
handling changes and using transferable and reusable models.

This paper briefly describes the case study (DID-KMS PROJECT), the improved
development process used in case construction, and then the architectural views and the
scenarios as proposed Architecture Tradeoff Analysis Method (ATAM) activities. The
following section describes the instantiation of the quality model for the DID-KMS
PROJECT. Continuing with ATAM, the sensitivity Points and Tradeoff analyses are
conducted, and lastly the conclusions and recommendations are presented.

2 DID-KMS PROJECT

KMS can be used to code, store and distribute a company’s Knowledge Base. It can be
used as a knowledge repository when knowledge needs to be coded. It supports the
company’s social capital by establishing structural links between people, regardless of the
barriers imposed by time or geography, thereby improving the capacity to combine and
exchange intellectual capital [McLure 1998].

According to O’Brien [O´Brien 1999], many organizations are developing KMS to
manage Organizational Learning and business know-how. These systems help knowledge
workers to create, organize and share important business information as and when they
need it. Included are processes, procedures, patents, reference works, formulas, best
practices, forecasts and arrangements. Internet websites and intranets, groupware, data
mining, knowledge bases, discussion forum and videoconferences are just some of the
key information technologies for gathering and distributing this knowledge.

Turban et al. [Turban et al. 2001] hold that the new challenge of Knowledge
Management requires that organizations begin to acquire systems that support it. The
activities that must mainly be supported by these systems are the following: a)
Knowledge identification: Determination of knowledge that is critical in decision-making;
b) Discovery and analysis of knowledge: use of search instruments, databases and data
mining. Knowledge must be found, analyzed and put in the right context; c) Setting up
Organizational Knowledge Databases: Organizational memory and best practices must
be stored in an indexed, properly maintained Knowledge Base; d) Use and distribution of
knowledge: definition of a suitable audience and placement of technologies to enable
Knowledge to be delivered when it is needed.

It was within this context that the initiative to develop a KMS to support knowledge
management related to the USB1’s research projects arose [Domínguez 2001].

The purpose of the KMS developed in this research is to encourage the professors at
the la USB to manage their research projects through a Web interface, thereby fostering
collaborative work and facilitating information sharing. The benefits of DID-KMS

1 Universidad Simón Bolívar, Caracas – Venezuela.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 171

PROJECTS will include the ability to capitalize on the knowledge generated by the
research projects and keep it where it is accessible by everyone to so that information on
specific areas can be sought quickly and easily. The objectives to be met are: to
encourage people to apply for Research Project funding, as well as to foster the
development of tools to facilitate the handling of these projects once they are approved. A
further intention is to foster clarity and precision in the formulation of these projects in
order to reduce initial rejections and be able to attain successful projects. All this must be
done while supporting the processes that are characteristic of a KMS: capturing,
generating, sharing and distributing knowledge.

The DID-KMS PROJECT system enables stakeholders to capture, generate, share
and distribute much of the knowledge handled at the USB, while enabling the university
to capitalize on and store all this knowledge, giving it a competitive advantage over other
organizations.

The development process undertaken for the construction of the system in which the
architectural evaluation is incorporated, is described below. The RUP development
process was used for this.

3 DEVELOPMENT PROCESS

The Rational Unified Process (RUP) [Kruchten 2000] was used to carry out the
development process. RUP is a Software Engineering process, which provides a
disciplined approach in order to assign tasks and responsibilities in a development
organization, placing particular emphasis on architecture through its 4+1 views.

The main objective of RUP is to ensure high quality software production that
recognizes the needs of the end user according to a schedule or foreseeable plan. Since
RUP does not cover the architectural assessment, ATAM was included in the elaboration
phase. The reason for evaluating the architecture is that this is the main determiner of
quality attributes [Kazman et al. 2000b]. ATAM is a method for assessing software
architecture considering multiple quality attributes [Kazman et al. 2000].

Fig. 1 illustrates each phase of this method where one can see that ATAM is a spiral
model divided into four main phases, where each of them makes one or more
contributions to the understanding of the system, reducing risks and modifying the design
[Kazman et al. 2000].

Given below are the objectives attained at each stage without any level of detail
except in the phases of interest to the research by reason of the architectural evaluation.

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Fig. 1: The steps taken by the Architectural Software Tradeoff Method. ATAM

During the Scenarios and Requirements Gathering phase, two activities are included:
Collect scenarios and collect requirements, constrains and environment. The objective of
both activities is to elicit functional and non-functional requirements of the system vis-à-
vis a diverse group of stakeholders. In order to do so, a brainstorming session was held
before a representative group of stakeholders linked to the USB’s system of research and
development activities. As a result of this, fundamental use cases were identified.

Once these use cases were established, it was necessary to specify the architecture
through its different views.

In the following section, the results of phase II of the ATAM are described.

4 ARCHITECTURAL VIEWS AND SCENARIOS REALIZATION

This phase also included two activities: Describe architectural views and realize
scenarios. A view of the architecture is a simplified description of a system seen from a
particular perspective or point of view, making available particular knowledge and
omitting entities that are not relevant from its perspective [Bass et al. 1998].

Five views are normally specified in this activity but only the logic view will be
described here since it accounts for the majority of the contribution for this research.

The Logic view mainly supports the functional requirements, in other words the
services the system must provide to its end users [Kruchten 2000]. Hence this view
includes: the Conceptual Model, the Class Diagram and the Entity-Relationship Diagram.

In order to be able to evaluate the architecture, two possible Class Diagrams
(Candidate Architectures) have been proposed. In each diagram, some of the Gamma
Patterns Design [Gamma et al. 1997] models were identified: Chain of Responsibility,

Identify
Tradeoffs

Identify
Sensitivities

Attributes
Specific
Analyses

Collect Requirements,
Constrains,
Environment

Collect
Scenarios

Describe
Architectural
Views

 Realize

 Scenarios

PHASE I:

Scenarios &
Requirements
Gathering

PHASE II:

Architectural Views
& Scenarios
Realization

PHASE III:

Model Building
& Analyses

PHASE IV:

Tradeoffs

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 173

Observer and Command. This will enable advantages and disadvantages to be obtained so
they can later be compared with one another, the architecture best suited to the needs of
the system can be proposed, and the one than meets the quality requirements desired can
be chosen.

Fig. 2 shows the Candidate Architecture 1. Note that two patterns [Gamma et al.
1997] have been used in this architecture: Chain of Responsibility and Observer.

Fig. 2: Candidate Architecture 1

In the Chain of Responsibility Design Pattern, when a client issues a request, it
propagates along the chain until it reaches a ConcreteHandler object, which takes
responsibility for handling it. This leads to: reduced coupling, greater flexibility in the
assignment of responsibilities and lack of guarantee in the receipt.

In the Candidate Architecture 1, the Financial Handler, Activity Handler, Mail
Handler and Document Handler classes play a similar role to the ConcreteHandler object
as these are levels in the Components Handler class that in turn would play the role of an
Handler object.

Search Engine
SQL_instruction

Register
date
user
function
project_title

undo_function()
redo_function()

DBMS
connection_driver
location_DB

connect()
disconnect()

consult

update

Components Handler
name
status

modify_status()
update_register()
consult_register()
add()
delete()

uses

Project Handler

end()
create()
add()
delete()
modify_attribute()
evaluate()

uses

Spreadsheet
nombre
data

modify_attribute()
add()
delete()

Activity
date
time
title
message
added_by
addition_date

modify_attribute()
add()
delete()

Document
name
size
pub/priv
type

modify_attribute()
add()
delete()

e-mail
TO
FROM
date
subject
dir_attach

modify_attribute()
add()
delete()
send_to_queue()
send()
response()

Derived product
type
name
location

Research project
title
objectives
password
acceptation_date
status
financied_by
duration_estimated

handles

Evaluation
date
evaluator

Form Handler

generate()

Pre-set form
name
type
creation_date

handles

Request Handler

accept_parcially()
accept_totally()
reject()

Financing request

date
amount
project title
objectives
code
requests

add()
delete()
modify_attrbute()

hanles

SUBJECT HANDLER
Professor

name
last_name
ID
category
status
department
SPI_id
research_group
email
password

modify_attribute()
add()
delete()

uses

uses

Mail Handler

sort_messages()

uses

Documents Handler
quote

zip_file()
calculate_quote()

uses

Activities Handler

sort_operations()

handles

Session

date
duration
preferences
messages_num
activities_num
documents_num
project_title

update()
finance()

associated to

Finalcial Handler

calculate_operation()

handles

modify

modify
modify

modify

OBSERVER

CONCRETE
OBSERVER

CONCRETE
SUBJECT

CONCRETE
HANDLER

CONCRETE
SUBJECT

CONCRETE
HANDLER

CONCRETE
SUBJECT

CONCRETE
HANDLER

CONCRETE
SUBJECT

CONCRETE
HANDLER

DESIGN PATTERNS:
OBSERVER
CHAIN OF RESPONSABILITY

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

The direct advantages of applying this pattern are: better distribution and control of
requests and more scalability.

In the Observer Design Pattern all the observers are notified when a change occurs
in the status of stored objects. This had the following consequences: it reduces the
coupling between Data and Observer Objects and it supports broadcast communication
and unexpected changes.

In the Candidate Architecture 1 the data that will be subject to frequent changes are
in the classes of the four main components, which is why the Financial Handler, Activity
Handler, Mail Handler and Document Handler classes play a similar role to a
ConcreteSubject object, whereas the Component Handler will play the role of a Subject
object. Moreover, notification of updates makes sense if several professors are working
on the same project. This can be known thanks to the sessions. Therefore, the Session
class would play a similar role to a ConcreteObserver object, whereas the Professor class
would play the role of an Observer object.

The direct advantage of applying this pattern is: it facilitates group work since
updating the data handled by the different components could be notified to all the
“registered observers”, in this case it would be professors working on the same project.

In Fig. 3, the Architecture Candidate 2 is presented. Note that the design patterns
identified in this Architecture are Chain of Responsibility and Command. For the purpose
of this paper, the Chain of Responsibility pattern is not described again.

In the Command Design Pattern [Gamma et al. 1997], when a client issues a request
it propagates along the chain until it reaches a ConcreteCommand object that takes
responsibility for handling it. This leads to the following consequences: reduced
coupling, easy addition of new commands, support for recording changes, support for
transactions and support for the Undo operation.

In the Candidate Architecture 2, requests would reach each handler that uses some of
the functions defined in the Functions Library, but before executing them the Record of
Modifications which in turn checks the feasibility of the function and invokes its
execution, is updated. For all these reasons, the Format Handler, the Component
Handler, the Project Handler and the Request Handler play a similar role to a Receiver
object, while the Function Library class would play the role of a ConcreteCommand
object and the Record of Modifications, would play in turn the role of Invoker.

The direct advantages of applying this pattern are: it permits better distribution and
control of functions, enables audits to be carried out, increases the possibility of recovery
and facilitates scalability considerably.

After this analysis, continuing with the ATAM method, in the next section the Utility
Tree of quality for the DID-KMS PROJECT is built .

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 175

Fig. 3: Candidate Architecture 2

5 QUALITY MODEL BUILDING AND ANALYSES

At this stage a Utility Tree, where the most important quality characteristics and
attributes for the DID-KMS PROJECT are identified, must be built. Since ATAM does
not give any specific way of doing this, the Product Quality Model proposed by Ortega
[Ortega et al. 2000] will be used as the basis. This is a software product quality model
but the idea at this stage is to identify quality characteristics and attributes for the
architecture of KMS. Therefore, architecture had to be taken as the product to be
evaluated, and certain changes made to the model, specifically at the level of metrics. Fig.
4 shows the quality model proposed by Ortega [Ortega et al. 2000], which integrates the
ideas of several quality models and presents them in a coherently related manner.

Components Handler
name
status

modify_status()
update_register()
consult_register()
add()
delete()

Register
date
user
function
project_title

undo_function()
redo_function()

Function Library

add_function()
delete_function()
do_function()
undo_function()

uses

uses

Search Engine
SQL_instruction

uses

D BMS
connection_driver
location_DB

connect()
disconnec t()

usesconsult

Finalcial Handl er

calculate_operati on()

Spr eadsheet
nombre
data

modi fy_attri bute()
add()
delete()

handles

Activities Handler

sort_operations()

Activity
date
time
title
message
added_by
addition_date

modify_attribute()
add()
delete()

handles

Documents Handler
quote

zip_file()
calculate_quote()

Document
name
size
pub/priv
type

modify_attribute()
add()
delete()

uses

Mail Handler

sort_messages()

e-mail
TO
FROM
date
subject
dir_attach

modify_attribute()
add()
delete()
send_to_queue()
send()
response()

uses

Financing request
date
amount
pr oject ti tle
objectives
code
requests

add()
delete()
modify_attrbute()

Request Handler

accept_parcially()
accept_totally()
reject()

uses

hanles

Form Handler

generate()

uses

Professor
name
last_name
ID
categ ory
status
department
SPI_id
research_group
emai l
password

modify_attribute()
add()
delete()

uses

Pre-set form
name
type
creation_date

handles

associated_to

Evaluation
date
evaluator

Derived product
type
name
location

Project Handler

end()
create()
add()
delete()
modify_attribute()
evaluate()

uses

uses

Research project
title
objectives
password
acceptation_date
status
financied_by
duration_estimated

qualify

correspond_to

handles

CONCRETE
COMMAND

INVOKER

RECEIVER

RECEIVER HANDLER
RECEIVER

RECEIVER

CONCRETE
HANDLER C ON CRETE

HANDLER
CONCRETE
HANDLER

CONCRETE
HANDLER

CHAIN OF REPONSABILITY
COMMAND

DESIGN PATTERNS:

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Fig. 4: Software Quality Model

Taking the Ortega et al. [Ortega et al. 2000] model as the basis, the quality characteristics
and attributes expected for the DID-KMS PROJECT were identified.

Selection of architectural attributes for a KMS

Bass et al. [Bass et al. 1998] describe Functionality as “a system’s capacity to do the
work for which it was designed or proposed." The authors also affirm that Functionality
is orthogonal to the structure and is therefore not an architectural characteristic by nature;
i.e. any possible number of structures can be conceived in order to implement any
functionality. The system could even exist as a monolithic component without any
internal structure [Bass et al. 1998]. Therefore, Functionality does not depend on
software architecture, so it must not be taken as one of its quality characteristics.

Although focused on systems in general, Jacobson et al. [Jacobson et al. 2000] state
the following (applied perfectly to a KMS): “If we can be sure about anything, it is that
any sizeable system will evolve. It will even evolve if it is still under development.” This
is possible thanks to the architecture, which is why maintainability has to be considered
one of the architectural quality characteristics to be taken into account.

As far as system Reliability is concerned [Bass et al. 1998], it is defined as the
system’s ability to remain operational over time and, like Ortega [Ortega et al. 2000],
they point out that Reliability is related to fault tolerance and the time it takes to recover,
both aspects being attainable through the architecture. Thus for KMS’s domain,
Reliability must also be considered a quality characteristic or attribute to be propitiated
by the architecture.

Usability

Functionality

Reliability

Maintainability

Portability

Requirements

Design

Implementation

Product
Effectiveness

Process
Effectiveness

Product
Efficiency

Process
Efficiency

External attributes Internal attributes/
Product properties

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 177

Now the following doubt arises: what is the reason for the faults from which the
system has to recover, putting Reliability at stake? There can be many kinds of fault
(physical damage of a piece of hardware, electrical current failure, etc.), software failures
(unexpected cases, invalid operations, etc.) or faults caused by external effects (request
overload, unauthorized access, etc.). Although Security, according to Ortega [Ortega et al.
2000], is part of the Functionality and, as shown above, the latter is not architectural,
Bass et al. [Bass et al. 1998] consider that Security is, as they say that prevention,
detection and response to such effects involve architectural strategies that may require the
existence of special components to solve it [Bass et al. 1998]. A KMS in particular will
not be taken as just another characteristic, but as a sub-characteristic of Reliability.

As regards Efficiency, Bass et al. [Bass et al. 1998] relate it to the time required to
respond to a particular stimulus (event) or the number of events processed in the same
time interval. These authors also say Efficiency can be measured on the basis of the
amount of information and communication between system components, which clearly is
an architectural characteristic, since components can be implemented within the server
layer that handles users’ requests efficiently. Generally, because they capture, distribute,
share and generate Knowledge, KMS have this type of information flow, therefore
handling must take place as efficiently as possible. So, efficiency must also be taken into
account when it comes to guaranteeing product quality through the architecture as far
as a KMS’s domain is concerned.

Thus the most important architectural quality characteristics to be taken into account
when developing the KMS are: Maintainability, Reliability and Efficiency.

It is necessary to show the attributes and their respective metrics resulting from, as a
result of selecting the most important characteristics of the Quality Model proposed by
Ortega et al.[Ortega et al. 2000] for the KMS. Table 1 only shows the attributes
associated with the quality characteristics identified above, that could be fostered through
the software architecture, as well as the metrics to be applied to evaluate the
corresponding attributes. Note that the metrics included here in those proposed by Ortega
have been marked with (***), they are extremely important, not just for the development
of a KMS, but for any system in general.

MAINTAINABILITY RELIABILITY EFFICIENCY

 Capacity for Analysis
- Easy to diagnose Record

of diagnoses
 Capacity for Change

- Parameterization Record
of changes

- Functional independence
of the modules

- Incorporation of new
requirements

- Monitoring of client’s
needs

 Maturity
- Average time between

failures
- Which failures were

solved?
- Percentage of test cases

from point of view of
operation by the user

- How many test cases
pass the product
successfully?

- Operational risks

 Behavior over time
- Response time
- Satisfaction with the
number of tasks
completed in a specified
time.

 Use of resources
- Use of the CPU.
- Use of Memory
- Satisfaction with the
processing speed
considering other

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

178 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

- Improvements due to
technological changes

- Traceability between
requirements, design and
implementation.

- *** Access and capacity
to update programmer’s
manual

 Stability
- Number of variables
modified compared to all
the variables in a module

- Existence of collateral
effects when making
changes

- Number of global
variables compared with
the modules that use
them

- Existence of an impact
matrix.

 Testability:
- Check points.
- Detection of impact.

 Coupling
- Level of coupling

 Cohesion
- Level of cohesion.

 Control system
structure.

- Number of modules.
- Average size of the
modules.

- Maximum depth of
module nesting.

- Average depth.
 Descriptive

- Level of description
- Specified.
- Documented
- Self-descriptive
- *** Existence of the
programmer’s manual

 Parameterized
- Use of parameters.
- Unnecessary parameters
- Poor parameter passing

- Adjustment of the
operating environment
according to the
requirements

- Definition of mechanism
to ensure that software
capacities meet the
client’s needs

- Volatility of product
requirements.

- Level of satisfaction with
audits to the software

- Strategy to integrate
additional elements

- Acceptance criterion
- Integration check
- Test record
- Maintenance strategy
- Update of specifications,

documents and
strategies

- Component tests
- Update of system in the
user’s environment

- Control in modifications
to minimize upsets for
clients.

- Development techniques
used.

 Fault tolerance
- Canceling of incorrect

operation.
 Recovery

- Restart capacity
- Reinitialization speed
- Existence of processes

that reduce software
product hanging time.

- Availability of the
software product.

- *** Data integrity
checking

 Security
- Control of access
- Auditing capacity

products competing for
this resource

- Satisfaction with the
memory considering
other products that
compete for this
resource

Table 1: Attributes selected from Ortega’s model

In the next section the Sensitivity Points and Tradeoff are identified.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 179

6 TRADEOFFS

This phase covers two activities: Identify Sensitivities and Identify Tradeoffs. In the first
of them, the sensitivity of the attributes analyzed was discovered; which means that if one
of them changes, so does the architecture. The models must then vary in order to reflect
those changes and assess the results. Any value that significantly affects the architecture
must be considered a Sensitivity Point. In the second activity, the Sensitivity Points
identified were examined in a little more detail. If a sensitivity point affects another
attribute positively, but in turn has a negative influence on a different attribute, then there
is a Tradeoffs.

Control System Structure

The Control System Structure (See Table 1) within the Maintainability characteristic,
affects the architecture since it is related to the Number of Modules in the system. If the
number of modules increases or diminishes, changes must be made to the models to
reflect the transformation. Depending on the use frequency, this addition may affect the
Use of the CPU and of the Memory, and even reduce Response Time, not to mention the
increase in both Coupling and Cohesion.

In summary, a change in the Number of Modules affects the following metrics:
Record of Changes, Use of Parameters, Documented, Level of Cohesion, Use of CPU,
Use of Memory, Response Time, Level of Coupling.

Therefore the metric Number of Modules can be considered a Sensitivity Point for
the Control System Structure attribute.

Capacity for Change

The metric Incorporation of Requirements is even more subjective and depends on the
extent of the change in question. However, the Capacity for Change attribute within the
Maintainability characteristic affects the architecture since it is related to the
Incorporation of Requirements. The Incorporation of Requirements may not involve the
creation of a new module or component, but it does involve the creation of new
relationships and can affect Efficiency.

The Incorporation of Requirements affects the following metrics: Data Integrity
Check, Documented Amount of variables modified compared with the Total number of
variables in a module.

Hence the Incorporation of Requirements metric may be considered a Sensitivity
point for the capacity for change attribute.

Recovery

Given the use frequency and order of magnitude of the Recovery attribute, the
architecture is affected because it relates to the Data Integrity Check. Therefore, the Data
Integrity Check metric can be taken as a sensitivity point for the Recovery attribute.

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

180 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

In short, these were the sensitivity points identified: Number of Modules
(Maintainability), Inclusion of Requirements (Maintainability) and Data Integrity Check
(Reliability)

Once the Sensitivity Points were identified, the second activity in this fourth phase of
the ATAM was carried out: Identify Tradeoffs. This activity involved analyzing the
model built in Phase III: Model Building & Analyses. Table 2 summarizes the analysis
for the two candidate architectures.

SENSITIVITY
POINTS FOR CANDIDATE ARCHITECTURE 1 FOR CANDIDATE ARCHITECTURE

2

Number Of
Modules

Since each module or handler added could play
the role of Concrete Subject within the Observer
pattern, a link must be added to the respective
class Observer which, in this case, is the Session
class, which means there is one more variable for
the server for each professor connected, which
increases the Use of the CPU and of the Server
Memory, and hence reduces the Response Time,
jeopardizing the Use of Resources and the
Stability. At the design level, this implication
cannot be measured, but once the system is
implemented it can be done in execution time.
Furthermore, it is mandatory for the Change
Record and the Programmer’s Manual to be
updated.

The addition of new modules or
components will only involve, as well as
the necessary updating of the Record of
Changes and the Programmer’s Manual,
the addition of the new functions in the
Functions Library, which is not particularly
complicated, fostering on the other hand
the Parameterized nature of the
Maintainability.

Inclusion of
Requirements

Likewise if the change requires a variable in the
class Session it jeopardizes the Use of
Resources and the Stability. In the worst-case
scenario, the inclusion of the new requirement
might involve the creation of one or more
modules, with the same consequences as in the
previous case.

As explained above, the addition of new
handlers involves not only the addition
of their functions in the Functions
Library.

Data Integrity
Check

Recovery would not be affected, since the
Session variable are eliminated when the user
quits the page or after more than 20 minutes and
the statuses are stored. Even these may be
erroneous, but the information necessary for its
recover is kept in the record of modifications.

On the other hand, Recovery is fostered
since the Record of Modifications, prior
to invoking a call to any object from the
Functions Library, can check its
feasibility and actually execute it, still
keeping the old values, facilitating the
Data Integrity Check. The information
stored in the Record of Modifications is
far more complete and reliable.

Table 2: Behavior of the two candidate architectures.

Based on the results of applying the ATAM method, the Candidate Architecture 1 cannot
be considered any more advantageous than the Candidate Architecture 2. Therefore the
latter is deemed to be the most appropriate. It was also noted that Efficiency lies in
Tradeoffs with Maintainability, and that greater Reliability can reduce it considerably.
So, with the right equipment and sufficient memory, these inconveniences can be
secondary.

Having completed all the steps required by the ATAM method for Evaluating the
Architecture, the level of detail was found to be sufficient to begin developing the system

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 181

with a good degree of certainty as regards the ideal structure of the architecture and the
quality characteristics and attributes expected.

7 CONCLUSIONS AND RECOMMENDATIONS

The development process proposed by RUP was used and the Software Quality Model
proposed by Ortega [Ortega et al. 2000] was instantiated as part of this process, in
particular in the specification of the architecture, Thus, the architectural quality
characteristics that must be taken into account for the development of a KMS are:
Maintainability, Reliability and Efficiency. Additionally, some of the metrics proposed
by Ortega [Ortega et al. 2000] were redefined, and three more added, thereby adding to
the research area covered by this paper.

The importance of evaluating software architecture, to enable certain advantages or
disadvantages that might not be visible in the design, was highlighted. In order to
evaluate the architecture, the ATAM method included in the development process was
used. This implied identifying and analyzing several design patterns.

It is recommended that the improved development process be applied with the
architectural evaluation in other domains in order to refine it.

8 ACKNOWLEDGEMENT

The authors wish to thank Kenyer Domínguez and Yemala Castillo for their help in
preparing this paper. This research has been co-financed by the following projects:
FONACIT S1-2000000437 and S1-2001000794, and USB-DI-CAI-011-01.

REFERENCES

[Bass98] L. Bass, P. Clements, and R. Kazman: Software Architecture in Practice.
Addison Wesley. pp. 9, 17, 23, 28-36, 75-81, 1998.

[Gamma97] R Gamma, R. Helm, R. Johnson, J. Vlissides : Design Patterns. Elements
of Reusable Object-Oriented Software. Addison Wesley Professional
Computing Series. pp. 2, 3, 8, 9, 223-242, 293-304, 1997.

[Jacob00] I. Jacobson, G. Booch, J. Rumbaugh: El Proceso Unificado de Desarrollo
de Software. Addison Wesley. pp. 58, 64-65, 232, 306, 307, 345-365,
2000.

[Kazma00] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere:
The Architecture Tradeoff Analysis Method. Software Engineering
Institute. Carnegie Mellon University. Pittsburgh, USA.
http://www.sei.cmu.edu/ata/ata_method.html

http://www.sei.cmu.edu/ata/ata_method.html

ARCHITECTURAL QUALITY IN DEVELOPMENT PROCESSES

182 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

[Kruch00] Phillipe Kruchten: The Rational Unified Process. Addison Wesley
Longman, Inc. pp. 17-18, 23, 67-73, 83-85, 122-123, 1999.

[McLure98] Molly McLure: “A Framework for Successful Knowledge Management
Implementation”. Proceedings of AIS, 1998.

[O´Brien99] James O´Brien: Introduction to Information System. 8th. Ed. Irwin Book
Team, 1999.

[Ortega00] M. Ortega, M. Pérez and T. Rojas: “A Model for Software Product Quality
with a Systemic Focus”. July 2000. Presented in The 4th World
Multiconference on Systemics, Cybernetics and Informatics SCI 2000 and
The 6th International Conference on Information Systems, Analysis and
Synthesis ISAS 2000. Orlando, Florida, USA.

[Kazma00] R. Kazman, M. Klein, and P. Clements: ATAM: Method for Architecture
Evaluation. http://www.sei.cmu.edu
/pub/documents/00.reports/pdf/00tr004.pdf , August 2000

[Turba01] Rainer Turban and Potter: Introduction to Information Technology. John
Willey & sons inc. N.Y. pp. 338-340.

[Domín01] Kenyer Domínguez: Sistema de Gestión del Conocimiento para Proyectos
de Investigación. Trabajo Especial de Grado. Universidad Simón Bolívar,
2001

María Pérez is member of the Association of Information Systems. She
is titular professor at Simón Bolívar University where she heads a
research group on Information Systems (LISI). She got a Ph.D.
Computer Science degree in 1999. Some of her publications are:
ISACC’95 (Mexico), AIS’96 (USA), AIS’97 (USA), AIS’98 (USA),

AMCIS ’99 (USA), CLEI ’99 (Uruguay); JOOP 12(6); AMCIS ’00 (USA); Journal
Information & Software Technology, 2000; JOOP, 2000; SCI ’00 (USA); Revista de la
Facultad de Ingeniería de la UCV 15(2); AMCIS ’01 (USA), JIISIC ’01 (Argentina),
Revista colombiana de computación 2(2), ISAS’02 (USA), AMCIS’02 (USA), JIISIC’02
(Brasil), SCCC’02 (Chile), SAIS’03 (USA). She can be reached at movalles@usb.ve

Anna Grimán is professor at Simón Bolívar University where she is
part of LISI research team. She got a MSc. Systems Engineering degree
in 2000. Some of her publications are: SCI ’00 (USA), AMCIS ’01
(USA), JIISIC ’01 (Argentina), CLEI’01 (Venezuela), AMCIS ’02
(USA), Information Systems Management 19(2); Revista de la Facultad
de Ingeniería de la UCV, Vol. 16; CLEI Electronic Journal, Vol. 15.,

Software Quality Profesional 4(4), JIISIC’02 (Brasil), AMCIS’02 (USA), SCCC’02
(Chile), SAIS’03 (USA), Information System Management 20(1). She can be reached at
agriman@usb.ve.

http://www.sei.cmu.edu

/pub/documents/00.reports/pdf/00tr004.pdf
mailto:movalles@usb.ve
mailto:agriman@usb.ve

