
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this column as follows: Shih-Chien Chou: A Process Modeling Language Consisting of High
Level UML-based Diagrams and Low Level Process Language, in Journal of Object Technology,
vol. 1, no. 4, September-October 2002, pages 137-163.
http://www.jot.fm/issues/issue_2002_09/article3

A Process Modeling Language
Consisting of High Level UML-based
Diagrams and Low Level Process
Language

Shih-Chien Chou, Department of Computer Science and Information
Engineering, National Dong Hwa University, Taiwan

Abstract
This article presents a process modeling language consisting of high level UML-based
diagrams and a low level process language. The high level diagrams facilitate process
program development, while the low level process language models processes as
process programs. Between them is a mapping to further facilitate program
development.

1 INTRODUCTION

Software can be developed by following a process prescribed by a method, such as the
Booch method [Booch96]. Recently, many process-centered software engineering
environments (PSEEs) [Chen97, Sutton95, Belkhatir94, Doppke98, Iida93, Heimann97,
Perry91, Peuschel92, Bandinelli93, Jaccheri93] have been developed to facilitate
controlling complicated software processes (software development processes). Generally,
a PSEE provides a modeling language to model processes as process programs for
enactment (execution). A process modeling language is thus essential in a PSEE.

Generally, a process modeling language should model necessary process
components, including products, developers, activities, activity sequence and
synchronization, exceptions and their handlers, tools, schedules, budgets, and
relationships among process components. Moreover, the language should facilitate
process program development. The rationale is that complicated software processes may
result in large-sized process programs. If process program development is not facilitated,
developing the process program of a complicated process tends to be difficult and worse,
the process program tends to be unstructured and hence difficult to verify and maintain.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/article3

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

We have designed a modeling language to model processes using high level UML-
based diagrams and a low-level process language (note that UML is the abbreviation for
“unified modeling language” [Fowler97]). The high level diagrams facilitate process
program development. The low level process language models processes as process
programs. Between those two levels is a mapping, which facilitates transforming the high
level diagrams into process programs. This article presents our process modeling
language. The following text respectively describes the high level UML-based diagrams,
the low level process language, the mapping, and an example.

2 HIGH LEVEL UML-BASED DIAGRAMS

The high level UML-based diagrams facilitate process program development. In
developing a process program, the process should first be analyzed and designed, during
which a model is needed. Since a software process is composed of partially ordered
activities [Garg96, Feiler93] and the UML activity diagram is powerful in modeling
activities and their order, we designed a diagram based on the UML activity diagram to
model activities, activity sequence, and activity synchronization. The diagram is called
the P-activity diagram [Chou00]. In addition to the P-activity diagram, we also designed
a P-class diagram [Chou00] to model products, roles, tools, schedules, budgets, and their
relationships. The P-activity diagram and P-class diagram are respectively described
below.

P-activity diagram

The P-activity diagram models activity-related components. It is designed to improve the
understandability of activities in a process. Process components modeled in this diagram
include activities, activity sequence, concurrent activities and activity synchronization,
activity communication, and exceptions and their handlers. They are respectively
described below:

1. Activities and activity sequence. Activities are the most important components to
model. To improve understandability, a process’s activities can be structured in a
layered fashion. That is, activities can be decomposed. With decomposition, a
process can be first depicted as a top level P-activity diagram, which is composed
of coarse-grained activities. Activities in the top level diagram can be decomposed
to form more detailed P-activity diagrams if necessary. The decomposition
proceeds until all activities are fine-grained enough. For example, a waterfall
model can be first modeled as coarse-grained activities including “Analysis”,
“Design”, “Implementation”, and “Testing”. The activities can then be
decomposed as needed. For example, the activity “Testing” can be decomposed
into finer-grained activities such as “Unit test”, “Integration test”, and “System

High-Level UML-based Diagrams

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 139

test”. Activities that are decomposed are called non-primitive activities, whereas
those that are not decomposed are called primitive activities.

Condition Exception

Figure 1. P-activity diagram notations

(a) Non-primitive
 activity

(b) Primitive
 activity

(c) Activity
 sequence

(e) Concurrent activities
 and
 activity synchronization

(g) Exception

Activity
name

Activity name
Class operations

event (f) Activity
 communication

(d) Activity
 decomposition

Activity
 name

To model activity and their decomposition, the notations in Figures 1(a) through
1(d) are used. Figure 1(a) models non-primitive activities. Figure 1(b) models
primitive activities. Some primitive activities can be accomplished by invoking
class operations. In this case, the upper notation in Figure 1(b) is used, in which
the first field shows the activity name and the second shows class operations.
Placing class operations in primitive activities maintains traceability between P-
activity diagrams and classes, with which changing a P-activity diagram can trace
back to the affected classes, and vice versa. If a primitive activity is not
accomplished by invoking class operations, the lower notation in Figure 1(b) is
used.
Figure 1(c) models activity sequence. That is, for the activities connected by
arrows, the successors can be started only when the predecessors finish. Figure
1(d) models decomposition relationships among activities.
We use an example (see Figure 2) to depict the usage of Figures 1(a) through 1(d).
Figure 2(a) shows a process containing three non-primitive activities. Figure 2(b)
shows the decomposition result of the activity “Testing”. Naming the starting
circle in Figure 2(b) as “Testing” means that the activity “Testing” is decomposed
into a P-activity diagram shown in the figure. Figure 2(a) also shows that
conditions can be associated with activity sequence lines. For example, after the
design activity, if the design verification passes, the implementation task starts.
Otherwise, the design activity is redone.

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Design

Implementation

Design
verification failed

Design verification pass

Figure 2. Activity modeling

Testing

Unit
test

Integration
test

System
test

Testing

Exit

(a) (b)

Design

Implement
subsystem 1

Design
verification failed

Design verification pass

Implement
subsystem 2

Implement
subsystem 3

Figure 3. Concurrent activities and
 activity synchronization

Testing

2. Concurrent activities and activity synchronization. Sometimes, activities can be

concurrently enacted. Moreover, concurrent activities may need to synchronize.
We use the notation in Figure 1(e) to model concurrent activities and activity
synchronization. Figure 3 depicts an example of using the notation. The figure

High-Level UML-based Diagrams

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 141

shows that after the design verification passes, three implementation activities
start concurrently. After the implementations, the activity “Testing” starts. That is,
the concurrent activities are synchronized before the enactment of the activity
“Testing”.

Analysis Design

.

.

.

.

.

.

.

.

.

.

.

.

SpecProduced SpecProduced

Figure 4. Communication between the activities “Analysis” and “Design”

(a) (b)

3. Activity communication. An enacting activity may communicate with others. We

use Figure 1(f) to model activity communication, which is accomplished through
signaling and waiting for events. For example, Figure 4(a) shows that when the
analysis activity finishes, it signals the event “SpecProduced”. Having detected
that event, the design activity starts (see Figure 4(b)).

4. Exceptions. Exceptions refer to events that cannot be regularly controlled. For
example, customer may change requirements any time during software
development. Requirement change should thus be regarded as an exception. When
an exception occur, the corresponding handler should be enacted. We use Figure
1(g) to model exceptions. Exception names are associated with the notation.
Moreover, the arrow points to the handler of the exception. For example, in Figure
5, when the exception “Schedule overrun” occurs, the exception handler “Timeout
handling” is executed.

A P-activity diagram can be constructed using the notations shown in Figure 1. Figure 6
shows an example P-activity diagram, which depicts a waterfall process for software
development.

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Design

Implementation

Design
verification failed

Design verification pass

Figure 5. Exception

Timeout
handling

Schedule
overrun

Analysis

Design

Specification verification failed

Specification verification pass

Start

Exit

Implementation

Testing

Design
 verification failed

Design verification pass

Suspend
current
activity

Requirement
change

Requirement

 c
hange

Requirement change

Figure 6. P-activity diagram example

High-Level UML-based Diagrams

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 143

Class name

Attributes

Operations

Super class

Subclass

Composite
class

Component
class

Subclass

Class 1 Class 2Relationship
name

(a) Class (b) Inheritance
 relationship

(c) Composition relationship (d) Other relationships

Figure 7. P-class diagram notations

Class name

Figure 8. P-class diagram example

Design
document

Specification

ClassModel
...

CreateClassModel
...

DependOn

Analyst

Designer

CASE tool

ResponsibleFor

ResponsibleFor
BoundTo

BoundTo

Design
schedule

Constrain

Document

Requirement

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

P-class diagram

The P-class diagram uses classes to model process components other than activities. It
also models class relationships such as dependency, inheritance, and composition
relationships among products.

Notations used in the P-class diagram are depicted in Figure 7. Figure 7(a) sketches
the class notation. The left notation shows a class name only. It is used when class
attributes and operations need not show. Otherwise, the right notation is used. Figure 7(b)
sketches an inheritance relationship, where the super class is drawn on top of its
subclasses. Figure 7(c) depicts a composition relationship, where the composite class
appears next to the diamond shape. Figure 7(d) depicts the relationships other than the
inheritance and composition relationships. The relationship name is marked along the
arrow.

Figure 8 shows a P-class diagram that uses the notations in Figure 7. The figure
depicts that the products “Specification”, “Requirement”, and “Design document” inherit
the product “Document”. The development of “Design document” is constrained by
“Design schedule”. And, the reflexive composition relationship associated with “Design
document” and that with “Specification” means that those products can be decomposed
into sub-products.

3 LOW LEVEL PROCESS LANGUAGE

The object-oriented low level process language models a process program as a set of
classes. Figure 9 presents a subset of BNF grammars for the language. The grammars
depict that a process program represented in the language is composed of one Process
class and one or more other classes (grammar 1). The Process class defines tasks and
exception handlers (grammar 3), in which a task is a collection of related activities. Note
that the start task (grammar 9) is the entry point of a process program.

In addition to the Process class, the following classes can be used in a process
program: product class, role class, schedule class, budget class, tool class, and
relationship class. They can be instantiated to define corresponding instances. For
example, a role class can be instantiated to define developers. In the language, only
product classes and role classes can be defined as customized classes (grammar 2). The
other classes are all built-in ones. The following subsections respectively describe
process component modeling in the low level process language.

Product modeling

A product is defined by instantiating a product class. A product class defines its
attributes, constructor, and operations other than the constructor (grammar 4). Example 1
depicts a product class Specification, which inherits the built-in class Document by
using the keyword extends.

Low Level Process Language

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 145

1. ProcessProgram ::= {Class} ProcessClass
 /* A process program is composed of one “Process” class and one or more other classes. */
2. Class ::= ProductClass | RoleClass
 /* Only product classes and role classes can be defined as customized classes. */
 /* Other classes such as tools, schedules, and budgets are built-in classes. */
3. ProcessClass ::= “class Process” “{“ (Data) StartTask {Task} (ExceptionBlock) “}”
 /* “Task” defines a task, which is a collection of related activities */
 /* “StartTask” is the entry point of a process program. “ExceptionBlock” defines an exception handler. */
4. ProductClass ::= ClassDef “{“ (Attribute) Constructor (Operation) “}”
 /* A class is composed of attributes, a constructor, and operations. */
5. RoleClass ::= ClassDef “{“ (Attribute) Constructor (Operation) “}”
 /* An operation of a role class corresponds to an activity of a developer */
6. ClassDef ::= “class” ClassName [“extends” ClassName]
 /* “extends” defines inheritance relationships*/
7. Constructor ::= ClassName “(“ (Parameter) “)” “{“ {Statement} “}”
8. Operation ::= [DataType] OperationName “(“ (Parameter) “)” “{“ {Statement} “}”
9. StartTask ::= “start()” “{“ {Statement} “}”
 /* The entry point of a process program. */
10. Task ::= [DataType] TaskName “(“ (Parameter) “)” “{“ {Statement} “}”
11. Statement ::= Data | Relationship | ClassInstance| GeneralStatement| SyncStat
 /* “ClassInstance” instantiates an instance from a class. */
 /* “Relationship” define a relationship among process components, such as products and tools */
12. GeneralStatement ::= ObjectOperationInvocation | WorkAssignment | Branch |Loop
 /* “SyncStat” is for synchronizing activities, including synchronous and asynchronous communication */
13. SyncStat ::= ConcurrencyBlock | EventStat
14. ExceptionBlock ::= “exception” ExceptionName “{“ {Statement} “}”

Symbol Meaning
::= is defined as
| alternative
[X] zero or one instance of X
(X) zero or more instance of X
{X} one or more instance of X
/* . . . */ comments
un-quoted symbols non-terminals
quoted symbols terminals

Figure 9. A subset of BNF grammars for the low level process language. (a) The grammars. (b) Definition of symbols used.

(a)

(b)

An operation of a product class starts with its name, followed by the parameters it

uses and then the statements implementing the operation (grammar 8). If necessary, an
operation can return value by using the return statement. In this case, the type of return
value is put in front of the operation name (see the verify operation in Example 1). The
operation with the same name as the class is the constructor of that class, which normally
assigns attribute values and establishes tool binding relationships.

A product class can be instantiated to define products using the following syntax:

instanceName is a className(paramenets);

For example, the following statement defines a product systemSpec which belongs to
the product class Specification.

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

systemSpec is a Specification(“System specification”,
“Supermarket system”, “systemSpec.doc”,
“systemSpec.ROSE”, “WORD97”, “ROSE98”);

Example 1. Product class

class Specification extends Document {

TextFile: TextSpec;
NonTextFile: NonTextSpec;
Tool: EditTool, DrawTool;

Specification(String dName, String pName, String tFile,

String nFile, String eTool, String dTool) {
DocName = dName;
ProjectName = pName;
TextSpec is a TextFile(tFile);
NonTextSpec is a NonTextFile(nFile);
EditTool is a Tool(eTool);
DrawTool is a Tool(dTool);
TextSpec BoundTo EditTool;
NonTextSpec BoundTo DrawTool;

}

edit(Analyst analyst1, Requirement req) {

analyst1 develops thisProduct referring to req;
}

int verify(Analyst analyst1, Requirement reference_docu) {

int: VerificationPass;
analyst1 develops thisProduct referring to

reference_docu;
input “Verification Pass? (1: pass, 0: failed)”,

VerificationPass;
return VerificationPass;

}
}

The most important statement used in class operations is the work assignment statement,
which assigns work to developers, requires developers to develop products, associates
limits to the development, and indicates products for reference. It has the following
syntax:

developer_name develops product_name referring to reference_list

with limits schedule_name, budget_name;

Low Level Process Language

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147

The statement requires the developer developer_name to develop the product
product_name. The schedule and budget limits are respectively schedule_name and
budget_name. Moreover, the products to be referred to are listed in reference_list.
The following example depicts a work assignment statement:

analyst1 develops thisProduct referring to req;

This statement requires analyst1 to develop thisProduct, and indicates that the
product for reference is req. The keyword thisProduct used in the statement, which
resembles the keyword this in JAVA, indicates that the product to be developed is the
very instance instantiated from the product class.

Developer modeling

A developer is defined by instantiating a role class. A role class defines its attributes,
constructor, and operations other than the constructor (grammar 5). Example 2 depicts a
role class Analyst, which inherits the built-in class Role.

Example 2. Role class

class Analyst extends Role {

Analyst(String ipAdd, String email, String dName,String
rName){
IpAddress = ipAdd;
EmailAddress = email;
DeveloperName = dName;
RoleName = rName;

}

EditSpec(Requirement req, Specification spec) {

spec.edit(thisDeveloper,req);
}

}

The operations of a role class can be defined similar to those of a product class (grammar
8), in which the one with the same name as the role class is the class’s constructor. Each
operation other than the constructor models an activity assigned to the role. For example,
the “analyze requirements and develop a specification” activity of an analyst is modeled
as the EditSpec operation in Example 2. Since an activity normally requires a developer
to develop a product, statements in the operations of a role class generally invoke
operations of product classes. For example, the operation EditSpec of the role class
“Analyst” is accomplished by invoking the statement
spec.edit(thisDeveloper,req);. Note that the keyword thisDeveloper
indicates that the developer involved in the statement is the very developer instantiated
from the role class.

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Tool modeling

Tools are modeled using the built-in class Tool, which possesses the attribute
ToolName. The following statement defines a tool EditTool with the name WORD97.

EditTool is a Tool(“WORD97”);

When the tool EditTool is used, WORD97 will be invoked for developers to use.

Schedule and budget modeling

Schedules and budgets are modeled using the built-in classes Schedule and Budget,
which are generally used to limit activities. A schedule is defined using the following
syntax:

schedule_name is a Schedule(deadline);

For example, the statement Analysis_schedule is a
Schedule(“2001/12/31”); defines a schedule Analysis_schedule with the
deadline December 31, 2001.

To define a budget limit, the following syntax is used:

budget_name is a Budget(maximal available budget);

For example, the statement Analysis_budget is a Budget(200); defines a
budget Analysis_budget with a maximal available budget of US$ 200.

Activity modeling

Activities assigned to a role are specified in a role class (see section 3.2). Nevertheless,
role classes cannot model activity sequence and synchronization. The proposed language
models that sequence and synchronization in the Process class, inside which related
activities and their sequence and synchronization are modeled as a task (i.e., an operation
of the Process class). As shown in grammar 3 of Figure 9, there is one start task as
the entry point of the program. There are also other tasks, in which each task models one
P-activity diagram of the high level process model.

Various statements are provided for tasks (grammars 11 and 12). Among them, those
for describing concurrent activities, activity synchronization, and activity communication
are the most important. The proposed language provides concurrency block to describe
concurrent activities and activity synchronization, and provides event statements for
activity communication (grammar 13). The concurrency block and event statements are
described below.

Low Level Process Language

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 149

1. Concurrency block. Concurrency block models concurrent activities and their
synchronization. The block has the following syntax:

concurrent {

statement block 1;
statement block 2;
. . .

}
next_statements;

The above block depicts that the statement blocks statement block 1,
statement block 2, and so on are concurrently enacted. Note that statements
inside statement block 1 and statement block 2 are executed
sequentially. The above block also depicts that the statements
next_statements can be enacted only when the statement blocks statement
block 1, statement block 2, and so on have been finished. That is, the
concurrent activities should be synchronized before the enactment of
next_statements.
Concurrency block can also be used to model multiple developers in developing
the same product concurrently. For example, the following concurrency block
depicts that the developers analyst1 and analyst2 concurrently develop the
product subSpec by performing the activity EditSpec. In this case, the analysts
should cooperate on the development.

concurrent {

analyst1.EditSpec(req, subSpec);
analyst2.EditSpec(req, subSpec);

}

2. Event statements. Event statements model activity communication. We offer two
event statements, namely signaling and waiting for events. Example 3 depicts the
communication between the analysis and design activities. Statements in the
example depict that when a specification is produced by the Analysis activity,
the SpecProduced event is signaled (i.e., the flag SpecProduced is set TRUE).
With this, the waitfor statement in the Design activity will detect the event and
triggers the design activity to develop a design document.

Example 3. Activity communication

class Process {
start() {
Event SpecProduced = FALSE;
. . . .
concurrent {

Analysis(. . . .);
Design(. . . .);

}

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

. . . .
}

Analysis(. . . .) {
. . . .
// Develop a specification here
signal SpecProduced;
. . . .

} // end of Analysis

Design(. . . .) {
. . . .
waitfor SpecProduced;
// Develop a design document for the specification here
. . . .

} // end of Design
. . . .
} // end of Process class

Relationship modeling

Relationships are defined by instantiating relationship classes. The proposed language
provides the following built-in relationship classes:

1. The class PartOf establishes decomposition relationships between a product and
its sub-products. It can be instantiated using the following syntax:

sub-product PartOf product;

2. The class ResponsibleFor establishes responsibility relationships between
developers and products. It can be instantiated using the following syntax:

developer ResponsibleFor product;

3. The class BoundTo establishes binding relationships between tools and products.
It can be instantiated using the following syntax:

product BoundTo tool;

Exceptions and their handlers

Exceptions and their handlers are specified inside the start operation of the Process
class (see the “ExceptionBlock” in grammars 3 and 14). For example, the following
statements define an exception RequirementChange and its handler:

Low Level Process Language

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 151

exception RequirementChange {

// suspend all the current work
allDevelopers halt;
// change the requirement document
analyst1.ChangeReq();
// restart the process
. . . .

} // end of exception “RequirementChange”\

Mapping

The mapping between the high level UML-based diagrams and the low level process
language is tabulated in Table 1. From the table, one can see that the mapping is clear.
Therefore, transforming high level diagrams into a process program is straightforward.
This facilitates process program development.

High level UML-based diagram Low level process language
 constructs constructs

role class

tool class

budget class

schedule class

software product class

relationship

activity

concurrent activities and
activity synchronization

activity communication

exception

P-class
diagram

P-activity
diagram

role class

tool class

budget class

schedule class

product class

relationship classes

Operations of the
” Process” class

concurrency block

Waiting for and signaling events

exception block

Table 1. Mapping between high level diagrams and low level language

4 EXAMPLE

A process to analyze and design a system is used as an example. Suppose that the system
is decomposed into two sub-systems. Activities of the process are shown in the upper
portion of Figure 10. Flow of the activities is sketched in the lower portion of the figure,

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

where arrows dictate activity sequence. Activities that are not linked by arrows can be
enacted in parallel. For example, “a” and “b” can be enacted in parallel. Moreover,
conditions are marked on the lines.

a: The developer “analyst1” edits the sub-specification “subSpec1”.
b: The developer “analyst2” edits the sub-specification “subSpec2”.
c: The developer “specReviewer1” verifies “subSpec1”.
d: The developer “specReviewer2” verifies “subSpec2”.
e: The developers “specReviewer1” and “specReviewer2” verify the entire system specification.
f: The developers “analyst1” and “analyst2” change the entire system specification.
g: The developers “designer1” edits the sub-design document “subDesign1”.
h: The developers “designer3” edits the sub-design document “subDesign2”.
i: The developers “designReviewer1” verifies “subDesign1”.
j: The developers “designReviewer3” verifies “subDesign2”.
k: The developers “designReviewer1” and “designReviewer2” verify the entire design document.
l: The developers “designer1” and “designer2” change the entire design document.

a

b

c

d

e

g

h

i

j

f l

k

verify failed

verify passed

verify passed

verify failed

verify failed verify failed

verify passed

verify passed

verify passed

verify passed

verify passed

verify failed

verify failed

end of process

verify passed

Figure 10. Process used in the example

start of process

After analyzing and designing the process, the P-class diagram (Figure 11) and the P-
activity diagrams (Figures 12 through 14) are obtained. Figure 12 shows the top level P-
activity diagram, in which the activity “Analyze and design subsystem 1” and
“Verification” are further decomposed into the P-activity diagrams as shown in Figures
13 and 14, respectively. Moreover, the activity “Analyze and design subsystem 2” are
decomposed into a P-activity diagram similar to that in Figure 13. Note that the exception
“Requirement change” is also modeled in Figure 12.

The diagrams are then used to implement the process program as shown in
APPENDIX I, in which classes are defined first, followed by activities specified in the
Process class. Each operation in the Process class models a P-activity diagram. The
P-activity diagram in Figure 12 is modeled as the “start” operation, which is the entry
point of the process program. That operation concurrently starts the following three
activities (which are further decomposed): AnalyzeAndDesignSubsystem1,
AnalyzeAndDesignSubsystem2, and Verification. Each of those activities is then
modeled as an operation of the class Process. To improve the readability of the process
program, unimportant details have been replaced by “· · ·”.

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 153

DesignDocument

file_text
file_class
file_fun
file_dynamic

create
edit
verify

Specification

file_text
file_class
file_fun
file_dynamic

create
edit
verify

DependOn

Analyst

Designer

case_tool

ResponsibleFor
ResponsibleFor BoundTo

BoundTo

Document

DocName
ProjectName

Requirement

FileName

create
edit

DependOn

Figure 11. P-class diagram

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Exit

Start

Figure 12. Top level P-activity diagram

Analyze and design subsystem 1 Analyze and design subsystem 2 Verification

Requirement change

Requirement change

Change requirement

Analyst.ChangeReq

Analyze
and design
subsystem 1

Exit

Edit subSpec1

Analyst.EditSpec

Verify subSpec1

SpecReviewer.VerifySpec

Edit subDesign1

Designer.EditDesign

Verify subDesign1

DesignReviewer.VerifyDesign

subSpec1Produced

passed
subDesign1Produced

passed

Figure 13. P-activity diagram for “Analyze and design subsystem 1”

failed
passed

passed

failed

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 155

Verification

Verify specification

SpecReviewer.VerifySpec

Verify design document

DesignReviewer.VerifyDesign

Edit specification

Analyst.EditSpec

Edit design document

Designer.EditDesign

subSpec1Produced
and

subSpec2Produced

subDesign1Produced
and

subDesign2Produced

Exit

passed

passed

failed

failed

Figure 14. P-activity diagram for “Verification”

5 CONCLUSIONS

This article proposes a process modeling language, which is composed of high level
UML-based diagrams and a low level process language. The high level diagrams can be
used to analyze and design processes. This facilitates process program development. The
diagrams are composed of P-activity diagrams and a P-class diagram. P-activity diagrams
model activities, activity sequence, activity synchronization, and exceptions. The P-class
diagram models products, roles, tools, schedules, budgets, and their relationships. The
objet-oriented low level process language models processes as process programs.
Between the two levels is a mapping, which facilitates transforming the high level
diagrams into a process program. This further facilitates process program development.

To develop the process program of a process using the proposed modeling language,
the process is first analyzed and designed. The results obtained are represented in P-
activity diagrams and a P-class diagram. The diagrams are then transformed into a
process program by referring to the mapping mentioned above. The proposed process
modeling language offers the following features:

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

1. It facilitates process program development by providing high level UML-based
diagrams and a clear mapping between the high level diagrams and the low
level process language.

2. It models all necessary process components including products, developers,
activities, activity sequence and synchronization, exceptions and their
handlers, tools, schedules, budgets, and relationships among process
components.

6 ACKNOWLEDGMENT

This research is sponsored by the National Science Council in Taiwan under Grant
Number NSC89-2213-E-259-012. Special thanks are given to Professor Jen-Yen Chen in
Department of Computer Science and Information Engineering, National Central
University, Taiwan for his valuable comments.

REFERENCES

[Bandinelli93] Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi, “Software
Process Model Evolution in the SPADE Environment”, IEEE
Transactions on Software Engineering, vol. 19, no. 12, pp.1128-1144,
Dec. 1993.

[Belkhatir94] N. Belkhatir and W. L. Melo, “Supporting Software Development Process
in Adele 2”, The Computer Journal, vol. 37, no. 2, pp. 621-628, 1994.

[Booch96] Grady Booch, Object-oriented Analysis and Design with Applications, 2nd
ed., The Benjamin/Cummings Publishing Company, 1996.

[Chen97] Jen-Yen Jason Chen, “CSPL: An Ada95-like, Unix-based Process
Environment”, IEEE Transactions on Software Engineering, vol. 23, no.
3, pp. 171 - 184, March 1997.

[Chou00] Shih-Chien Chou and Jen-Yen Jason Chen, “Process Program
Development Based on UML and Action Cases, Part 1: the Model”,
Journal of Object-Oriented Programming, vol. 13, no. 2, pp. 21-27, 2000.

[Doppke98] John C. Doppke, Dennis Heimbigner, and Alexander L. Wolf, “Software
Process Modeling and Execution within Virtual Environments”, ACM
Transactions on Software Engineering and Methodology, vol. 7, no. 1
pp.1-40, Jan. 1998.

[Feiler93] Peter H. Feiler and Watts S. Humphrey, “Softawre Process Development
and Enactment: Concepts and Definitions”, in Proceedings of the 2nd

References

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 157

International Conference on Software Process, pp.28-40, Los Alamitos,
Calif., 1993.

[Fowler97] Martin Fowler and Kendall Scott, UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

[Garg96] Pankaj K. Garg and Mehdi Jazayeri, Process-Centered Software
Engineering Environments, p. 17, IEEE Computer Society Press, 1996.

[Heimann97] Peter Heimann, Carl-Arndt Krapp, and Bernhard Westfechtel, “Graph-
Based Software Process Management”, International Journal on Software
Engineering and Knowledge Engineering, vol. 7, no. 4, pp.431-455, 1997.

[Iida93] Hajimu Iida, Kei-ichi Mimura, Katsuro Inoue and Koji Torii, “Hakoniwa:
Monitor and Navigation System for Cooperative Development Based on
Activity Sequence Model”, in Proceedings of the 2nd International
Conference on the Software Process, IEEE Computer Society, pp. 64-74,
1993.

[Jaccheri93] Maria Letizia Jaccheri and Reidar Conradi, “Technoques for Process
Model Evolution in EPOS”, IEEE Transactions on Software Engineering,
vol. 19, no. 12, pp.1145-1156, Dec. 1993.

[Perry91] D. E. Perry, “Policy-Directed Coordination and Cooperation”, in
Proceedings of the 7th Software Process Workshop, Yountville, CA, pp.
111-113, Oct. 1991.

[Peuschel92] B. Peuschel and W. Schafer, “Concepts and Implementation of Rule-based
Process Engine”, in Proceedings of the 14th International Conference on
Software Engineering, pp. 262-279, 1992.

[Sutton95] S.M. Sutton Jr., D. Heimbigner and L.J. Osterweil, “APPL/A: A Language
for Software Process Programming”, ACM Transactions on Software
Engineering and Methodology, vol. 4, no. 3, pp. 221-286, 1995.

About the author

Shih-Chien Chou received a Ph. D. degree from the Department of
Computer Science and Information Engineering, National Chiao Tung
University, Hsinchu, Taiwan. He is currently an associated professor in
the Department of Computer Science and Information Engineering,
National Dong Hwa University, Hualien, Taiwan. His research interests
include software engineering, process environment, software reuse, and

information flow control. He can be contacted through the e-mail address
scchou@mail.ndhu.edu.tw.

mailto:scchou@mail.ndhu.edu.tw

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

APPENDIX:

An example process program for the analysis and design process described in section 4 is
shown here.

class Requirement extends Document {

// attributes below
TextFile: ReqFile;
Tool: EditTool;
// constructor
Requirement(String dName, String pName, String fName, String
eTool) {

DocName = dName;
// initialize files and tools used by the product
ProjectName = pName;
ReqFile is a TextFile(fName);
EditTool is a Tool(eTool);
ReqFile BoundTo EditTool;

}

change(Analyst analyst1) {

analyst1 develops thisProduct;
}

}

class Specification extends Document {

// attributes
. . . .
Specification(String dName, String pName, String tFile,

String nFile, String eTool, String dTool) {
// initialize files and tools used by the product
. . . .

}

edit(Analyst analyst1, Requirement req) {

analyst1 develops thisProduct referring to req;
}

int verify(SpecReviewer specReviewer1, Requirement

reference_docu) {
int VerificationPass;
specReviewer1 reviews thisProduct referring to

reference_docu;

APPENDIX:

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 159

input “Verification Pass? (1: pass, 0: failed)”,
VerificationPass;

return VerificationPass;
}

}

class DesignDocument extends Document {

// attributes
. . . .
DesignDocument(String dName, String pName, String tFile,

String nFile, String eTool, String dTool) {
// initialize files and tools used by the product
. . . .

}

edit(Designer designer1, Specification spec) {

designer1 develops thisProduct referring to spec;
}

int verify(DesignReviewer designReviewer1, Specification

spec) {
int VerificationPass;
designReviewer1 reviews thisProduct referring to spec;
input “Verification Pass? (1: pass, 0: failed)”,

VerificationPass;
return VerificationPass;

}
}

class Analyst extends Role {

Analyst(String ipAdd, String email, String dName,String
rName){
// initialize the attribute of an analyst
IpAddress = ipAdd;
EmailAddress = email;
DeveloperName = dName;
RoleName = rName;

}

ChangeReq(Requirement req) {

req.change(thisDeveloper);
}

EditSpec(Requirement req, Specification spec) {

spec.edit(thisDeveloper,req);
}

} // end of class Analyst

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

class SpecReviewer extends Role {
SpecReviewer(String ipAdd, String email, String dName,String

rName){
// initialize the attribute of a specification reviewer
. . . .

}

int VerifySpec(Requirement req, Specification spec){

return spec.verify(thisDeveloper,req);
}

}
class Designer extend Role {

Designer(String ipAdd, String email, String dName,String
rName){
// initialize the attribute of a designer
. . . .

}
EditDesign(Specification spec, DesignDocument designDoc) {

design.edit(thisDeveloper, spec, design);
}

}

class DesignReviewer extend Role {

DesignReviewer(String ipAdd, String email, String
dName,String rName){
// initialize the attribute of a design reviewer
. . . .

}

int VerifyDesign(Specification spec, DesignDocument

designDoc) {
return designDoc.verify(thisDeveloper, spec);

}
}

// Activities are specified as follows:
// Each P-activity diagram is modeled as an operation of the
class “Process”
class Process {

// developers
analyst1 is a Analyst(“203.64.100.125”,

“yychuang@csie.ndhu.edu.tw”, “Y. Y.Y.Chuang”, “analyst”);
// other developers declared below, including analyst,

designer1, and so on
. . . .

// products

APPENDIX:

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 161

systemReq is a Requirement(“System requirement”, “Supermarket
system”, “systemReq.doc”, “WORD97”);

// other products declared below, including systemSpec,
subSpec1,

// systemDesign, and so on
. . . .

// part-of relationships
subspec1 PartOf systemSpec;
subSpec2 PartOf systemSpec;
subDesign1 PartOf systemDesign;
subDesign2 PartOf systemDesign;

// events, for asynchronous communication
event subSpec1Produced, subSpec2Produced, subDesign1Produced,

subDesign2Produced;

// “start” is the starting task
start() {

concurrent {
 AnalyzeAndDesignSubSystem1();
 AnalyzeAndDesignSubSystem2();
 Verification();
}

// Exception handlers
exception RequirementChange {

// suspend all the current work
allDevelopers halt;
// change the requirement document
analyst1.ChangeReq(systemReq);
// restart the process
concurrent {
 AnalyzeAndDesignSubSystem1();
 AnalyzeAndDesignSubSystem2();
 Verification();
}

} // end of exception
} // end of “start” task

AnalyzeAndDesignSubsystem1() {

int: verificationPass = 0;
while (verificationPass == 0) {
 analyst1.EditSpec(systemReq, subSpec1);
 verificationPass = specReviewer1.VerifySpec(systemReq,

subSpec1);
}
signal subSpec1Produced;

A PROCESS MODELING LANGUAGE CONSISTING OF HIGH LEVEL UML-BASED

DIAGRAMS AND LOW LEVEL PROCESS LANGUAGE

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

verificationPass=0;
while (verificationPass == 0) {
 designer1.EditDesign(subSpec1, sunDesign1);
 verificationPass = designReviewer1.VerifySpec(subSpec1,

subDesign1);
}
signal subDesign1Produced;

} // end of AnalyzeAndDesignSubSystem1

AnalyzeAndDesignSubsystem2() {
 // similar to AnalyzeAndDesignSubSystem1
}

Verification(){
 int verificationPass;
 waitfor subSpec1Produced and subSpec2Produced;
 concurrent { // two reviewers cooperate to verify the

specification

verificationPass=specReviewer1.VerifySpec(systemReq,syste
mSpec);

verificationPass=specReviewer2.VerifySpec(systemReq,syste
mSpec);

 }
 while verificationPass == 0 {// verify and edit until

verification passed
 concurrent {// if verification failed, edit the

specification
 analyst1.EditSpec(systemReq,systemSpec);
 analyst2.EditSpec(systemReq,systemSpec);
 }
 concurrent {// re-verify

verificationPass=specReviewer1.VerifySpec(systemReq,syste
mSpec);

verificationPass=specReviewer2.VerifySpec(systemReq,syste
mSpec);

 }
 } // end of while
 waitfor subDesign1Produced and subDesign2Produced;
 verificationPass=0;
 concurrent { // two reviewers cooperate to verify the

design document
 verificationPass =
 designReviewer1.VerifyDesign(systemSpec,systemDesign);
 verificationPass =

APPENDIX:

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 163

 designReviewer2.VerifyDesign(systemSpec,systemDesign);
 }
 while verificationPass == 0 {// verify and edit until

verification passed
 concurrent {// if verification failed, edit the design

document
 designer1.EditDesign(systemSpec,systemDesign);
 designer2.EditDesign(systemSpec,systemDesign);
 }
 concurrent {// re-verify
 verificationPass =

designReviewer1.VerifyDesign(systemSpec,systemDesign);
 verificationPass =

designReviewer2.VerifyDesign(systemSpec,systemDesign);
 }
 } // end of while

} // end of class “Process”

