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The object oriented framework-based approach is one of the most powerful ap-
proaches to incremental development. In this paper we report on our experiences
in applying the framework-based approach to the domain of genetic algorithms. Al-
though different genetic algorithm (GA) systems have much in common with each
other, each such system is typically designed and implemented from scratch. Our
goal was to design an OO framework that included those aspects that are common to
different GA systems, with individual GA systems being implemented as applications
on top of this framework. We show how such an incremental approach to implement-
ing GA systems not only leads to code reuse but also to reuse of the effort involved
in reasoning about the behavior of such systems. We also discuss how the XML-
documentation mechanism of C# can be used to generate precise documentation for
frameworks.

1 INTRODUCTION

An object-oriented (OO) framework [4] is essentially a set of abstract and concrete
classes that collaborate in a precise manner to provide a common framework on
which a range of applications can be built. The collaboration is in the form of
key methods, referred to as template methods in the design patterns literature [6],
that direct the flow-of-control and call appropriate methods, these being the hook
methods, of various classes. In order to implement a complete application on such a
framework, the application developer provides definitions for the hook methods that
implement behavior appropriate to the particular application; a different developer
could produce a different application by providing an alternate set of definitions
for the hook methods. Thus the framework implements behavior that is common
to the various applications that may be built on it, and the individual application
enriches the common behavior as appropriate to the particular application by defin-
ing the hook methods appropriately. If the framework provides the right hooks, an
entire new application can be developed with just the incremental effort involved in
designing a new set of definitions for the hook methods.
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In this paper we report on our experiences in using the framework-based approach
to the domain of genetic algorithms [9, 14, 15]. Genetic algorithms (GA) have been
developed for a variety of domains [3, 7, 10, 16]. Although different GA systems have
much in common with each other, indeed it is this commonality that characterizes
them as GA systems, typically each such system is designed and implemented from
scratch. Our goal was to design an OO framework that included the common aspects
of GA systems, with individual GA systems being implemented as applications
on this framework. But mere code reuse is not the main point of frameworks.
More important is the reuse of the common behavior embedded in the framework’s
design. Or to put it somewhat differently, the approach makes it possible to reuse,
in understanding the behavior of each application built on the framework, the effort
that has gone into understanding the behavior built into the framework. Therefore,
the second important aspect of our work was to reason about our GA framework, and
see how the resulting specifications can be reused when understanding the individual
applications built on the framework.

The main contributions of this paper may be summarized as follows:

• It presents a GA framework as a case-study in the use of the framework-based
approach; and presents a simple example GA system built on this framework.

• It shows how the framework based approach makes it possible not only to
build related applications in an incremental manner, but also to specify and
understand the behavior of such applications incrementally.

• It reports on our experiences with using the XML-documentation mechanisms
of the C# compiler to provide precise documentation for frameworks.

We should stress that with respect to genetic algorithms, our paper does not
break any new ground; the GA we build as an ‘application’ on our framework is
fairly simple. However, a GA-expert who uses our framework should be able to
experiment with new genetic algorithms easily since the framework will allow him
or her to focus on whatever is new or unique to the algorithm in question and ignore
those aspects that are common to all GAs. Indeed, that is precisely the point of
using a framework.

The paper is organized as follows: The next section provides background on GAs
and summarizes the main issues in reasoning about frameworks and applications.
Section 3 presents the design of our framework; the key classes are described along
with specifications of the most interesting methods; and we discuss the type of
precise documentation we use for the framework. Section 4 presents a simple GA
application built on our framework, and shows how we can reason about its behavior
incrementally from the behavior of the framework. The final section summarizes our
work and provides some pointers to future work.
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2 BACKGROUND AND MOTIVATION

Genetic Algorithms

In essence, a genetic algorithm works as follows: The program maintains a population
of individuals where each individual represents a potential solution to the problem
at hand. The program goes through a series of iterations. In each iteration, the
fitness of each individual is evaluated using some appropriate measure and a new
population formed by selecting the fitter individuals. Some members of the new
population may undergo transformations by means of “genetic” operations such as
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Figure 1: Structure of Genetic Algorithms

mutation (a unary transformation) and crossover (a binary transformation), giving
the population for the next generation; this continues for a number of iterations, after
which the program typically converges to a good, or even near-optimal, solution.
Because of the similarity to natural selection and evolution in biological systems,
individuals are also referred to as chromosomes. Pictorially, the structure of such
algorithms may be represented [5] as in Figure 1. In [14], Michalewicz presents the
code for a genetic algorithm with instructions on which sections of the code have
to be replaced to implement other GA systems. As is widely recognized in the OO
community, this type of code reuse by “cutting-and-pasting” can lead to serious
problems due to unanticipated interactions between the new code and the old code.

One important point not explicit in Fig. 1 is that the selection operation involves
the notion of ‘parents’ that are combined to produce ‘children’ who form the new
population. This will be clear in our framework. Thus while pictures such as Fig.
1 convey an intuition for the underlying structure, the framework captures it fully
and formally. And, of course, it ensures that we do not have to repeatedly code this
common structure as part of each GA’s implementation.

Framework and application behavior

The standard approach to reasoning about an OO system is to use precise specifi-
cations in the form of pre- and post- conditions for each operation of each class C
of the system. The pre-condition of an operation specifies the condition that must
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be satisfied at the time the operation is invoked; it may involve the values of any
arguments that the operation receives, as well as the values of any of the attributes
of C. The post-condition similarly tells us what conditions will be satisfied by the
values of the arguments and the attributes of C when the operation finishes. And,
in the case of operations that return a result, it also provides information about the
result. The pre- and post-condition specifications embody the principle of Design by
Contract (DBC) [12]: If the client satisfies her part of the contract, that of ensuring
the pre-condition of the operation at the time of the call to the operation, then (and
only then) the service provider guarantees his part of the contract, that of ensuring
the post-condition at the time the operation finishes.

Let us now see how this applies when reasoning about frameworks and applica-
tions. Let F be a framework and A an application built on it. Suppose h() is a
hook method, i.e., a method of a class C of the framework and that h() is redefined
in A in the corresponding derived class D. As part of the specification of F , we
would have established suitable pre- and post-conditions for1 C.h(); and when rea-
soning, in F , about the behavior of any template method t() that invokes h(), we
would have appealed to this F -level specification of h(). In order to ensure that this
reasoning about the behavior of t() remains valid in A, we must require that D.h()
satisfies this F -level specification of h() since, in A, it is D.h() that t() will invoke.
In other words, we must require D as well as other classes in the application A to
be behavioral subtypes [11] of their respective base classes.

But this, by itself, is not sufficient. The reason we redefined h() in A is so that it
will exhibit behavior that is tailored to the needs of A, rather than just the generic
behavior implemented in its framework-level definition. More important, and the
whole point of the framework-based approach, is that template methods such as t()
that invoke h() will also, as a result of the redefinition of h(), exhibit appropriate
application-specific behavior although they (the template methods) themselves are
inherited unchanged from the framework. Correspondingly, we need to be able to
reason about this application-specific behavior of t(). And in doing this, we should
not have to go back to the code of the framework2. To be able to do this, we must
include suitable additional information in the F -level specification of t() beyond
what is normally contained in the pre- and post-conditions of t(), so that when A is
built, we can arrive at the corresponding A-specific behavior of t() by ‘plugging-in’
the behavior of the hook methods as (re-)defined in A, into this F -level specification
of t().

What additional information do we need concerning the behavior of t() to be
able to arrive at its A-specific behavior? In a typical application, we introduce new
attributes in the derived classes defined in the application and redefine the hook
methods so that they manipulate these new attributes appropriately. Therefore,

1We use the standard notation C.h() to refer to the method h() defined in C. Similarly D.h()
will refer to the h() defined in the derived class D.

2In some cases the framework code may not even be available as for example in the case of a
framework that was purchased from a software vendor.
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when t() invokes these hook methods in A, the execution of t() will also affect
these new attributes, the precise effects being dependent on which particular hook
methods it invokes, in what order, how many times, and with what argument values.
Hence it is this information about these hook-method invocations that we need to
include in the specification of t(). One possible approach [2, 17] to doing this is
in terms of a trace or sequence that records these invocations. While this works,
the resulting specifications are rather unwieldy and complex. So in the next section
we will use a more ‘programmer-friendly’ notation to express this information. As
we will see, given a specification for t() that includes this additional information,
we will be able, once A is designed and the richer behaviors of the hook methods
specified, to plug these richer behaviors into the F -specification of t() to arrive at
the A-specific behavior of t() without having to reanalyze its code.

3 GA FRAMEWORK

Our GA framework consists of four classes, Chromosome, ChromosomePopulation,
GAFController, and GAReporter. The main hook methods are in the Chromosome

class. This is to be expected since the key differences between one GA and another
are the differences in the behaviors of their respective chromosome types. When
building a new GA, most of the work will consist of (re)defining Chromosome’s hook
methods. GAFController contains the key template method, runGA(), that im-
plements the evolutionary algorithm common to all GAs. ChromosomePopulation

is used to represent the evolving population. GAReporter allows the framework to
report the results of the algorithm; this class’s methods may also be redefined in the
application, allowing us to customize the reports for the particular application. We
focus on Chromosome and GAFController3.

Chromosome class

The Chromosome class appears4 in Fig. 2. Fitness is a get-only property corre-
sponding to the fitness of the individual in question. It is declared abstract since
the precise details of how the fitness value is computed will obviously depend on the
particular type of chromosome and hence will be defined in the application. Simi-
larly, the Mutate() operation which (very likely, probabilistically) will modify the
chromosome object will also be defined in the application.

3Due to space limitations, here we will only discuss select portions of our framework and one
of the applications we have built using it. Full details, including the complete C# code and
documentation are available from http://www.cis.ohio-state.edu/∼hallstro/GAF

4In our presentation in this paper, we do not always strictly abide by the style guidelines[1] of
C#, mostly in the interest of reducing white-space; thus we typically do not put a single “{” on a
line by itself, preferring instead to move it to the end of the previous line. In the code that is on
the web site, we do obey the guidelines.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 193

http://www.cis.ohio-state.edu/$sim $hallstro/GAF


INCREMENTAL DEVELOPMENT USING OBJECT ORIENTED FRAMEWORKS: A CASE STUDY

public abstract class Chromosome {
public abstract double Fitness

{ get; }
public abstract void Mutate();

public abstract ChromosomePair CrossOver(Chromosome cOther);

public abstract override String ToString();

public virtual bool AreInOrder(Chromosome cOther)

{ return(true); }
}

Figure 2: Chromosome Class

CrossOver() is a key operation of GAs involving combining two “parent” chro-
mosomes to obtain two “child” chromosomes; cOther is the other chromosome object
which will be ‘crossed-over’ with the current chromosome object to obtain the chil-
dren chromosomes. This too will be defined in the application since how children
chromosomes are created from parents depends on the particular GA. ToString()
returns a representation of the current chromosome to be used by GAReporter to
print out information about the chromosomes; the string representation of a chro-
mosome object will of course depend on the type of the chromosome, so this also is
an abstract operation. The final operation AreInOrder() allows us to compare two
chromosome objects to see if they are ‘in-order’ based, possibly, on their fitnesses.
This operation will also, typically, be defined in the derived class of the applica-
tion, but we have provided a default definition here which always returns true, i.e.,
declares any two chromosomes to be in-order.

Consider the specification for this class. Consider Fitness. Since different appli-
cations will likely provide quite different definitions for the associated get operation
which, for ease of reference in the discussion, we will refer to as getFitness, it
would seem that the framework-level specification of this method should impose no
conditions on it. But there is one condition that does make sense: that it not change
the chromosome in any way. In other words, the state of the chromosome after a
call to this method should be the same as before the call:

post.Chromosome.getFitness ≡ (self = self@pre) (1)

In our post-conditions5, we use the @pre notation of OCL [18] to refer to the value
of the particular variable at the time the method was invoked. So (1) tells us that
self, the chromosome’s state6, is the same when the method finishes as when it
started. Indeed, one could argue that the get associated with any property of any
class should meet a requirement such as (1). But it may be unwise to impose such
a blanket requirement since there might be situations where it is appropriate for

5We usually omit pre-conditions if, as in this case, they are trivial, i.e., true.
6self is the Smalltalk term for the ‘current’ object; it is the same as this in C# but self seems

more descriptive so we use that.
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a get to change the state of the object. This requires further experience with the
notion of properties. One possible compromise might be to require it at the level of
the conceptual specification of the class but not at the level of the concrete model.

When we define getFitness in the application, we will have to show, as required
by behavioral subtyping, that it satisfies (1). Thus, although in the framework we
have not defined getFitness, its framework-level specification gives guidance to
the application developer about the conditions that its definition in the application
must satisfy if the framework is to function as intended.

Consider next the CrossOver() method. This too is abstract since the details of
how we ‘crossover’ or combine two parent chromosomes to arrive at two child chro-
mosomes depends on the particular GA and hence will be defined in the application.
But at the framework level we can specify some conditions that this method must
necessarily satisfy:

pre.Chromosome.CrossOver(c2) ≡ (typeof(self) = typeof(c2))
post.Chromosome.CrossOver(c2) ≡

[(self = self@pre) ∧ (c2 = c2@pre) ∧
(typeof(result.1) = typeof(self)) ∧ (typeof(result.2) = typeof(self))] (2)

The pre-condition requires that the argument c2 be the same type as the self object.
The post-condition asserts that neither the self object nor c2 is modified, and that
the (runtime) types of the two results returned are the same as that of self. The
specifications of the other methods of Chromosome are similar and we omit them.
In Section 3.3, we will see how the XML-documentation mechanism of C# can be
used to generate documentation for frameworks, consisting of such specifications.

GAFController class

The GAFController class appears in Figure 3. This class, and in particular the
RunGA() method, is the one that “drives” the entire application. Many frameworks
have a similar structure. currPop contains the current population. gaRptr is used
for producing reports at various points during the evolution. RunGA() invokes vari-
ous methods of GAReporter at the start and end of the entire run, and at the start
and end of each “generation”. By redefining these methods in the application, these
reports can be customized to the needs of the particular application. Our concep-
tual model of GAFController consists of a sequence of chromosomes to represent
the current population and a conceptual reporter object which will be a sequence of
reports.

Consider SelectParents(). This method, to be defined in the application, is
used to choose “parents” from the current population. The parents may be chosen
on the basis of fitness or other considerations, depending on the particular GA
application. In the specification (3), cP denotes the sequence of chromosomes that
is the current population and gAR denotes the reporter component of the conceptual
model.
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public abstract class GAFController {
protected ChromosomePopulation currPop; // current population;

protected GAReporter gaRptr; // object for generating reports;

public GAFController(GAReporter gaRptr) { this. = gaRptr; }
// Constructor.

protected abstract void InitPopulation(); // Initializes currPop;

protected abstract ChromosomePair SelectParents();

// Returns a pair of chromosomes from currPop;

// must not alter currPop;

protected virtual void SetNewPopulation(

ChromosomePopulation cChildren) { currPop = cChildren; }
// Sets currPop to the next generation.

final public void RunGA(int nn); // Should NOT be overridden.
/* nn is number of generations the ‘‘evolution’’
should run for.
RunGA() initializes currPop by calling
InitPopulation(). Then goes through nn iterations
of ‘‘evolution’’. In each iteration, it replaces
the current population with a new population,
using SelectParents(), Chromosome.CrossOver(),
Chromosome.Mutate(), and SetNewPopulation() to create
new population. Code omitted. */

public ChromosomePopulation FinalPopulation

{ get { return(currPop); } } // Returns the final population.

}

Figure 3: GAFController Class

post.GAFController.SelectParents() ≡
[(cP = cP@pre) ∧ (gAR = gAR@pre) ∧ (result1 ∈ cP) ∧ (result2 ∈ cP)] (3)

This asserts that SelectParents() does not change the GAFController object,
and both chromosomes in the result are from the current population (“∈” denotes
set membership). Note that this specification may be too strong. It would not
allow the GA application developer to, for example, define this method to record,
in gAR, information about the individuals selected as parents. We could allow this
by weakening (3). The flip side of weakening the specs of the hook methods is that
it would reduce the degree of reasoning reuse.

InitPopulation() is easily specified and we omit this spec. Next consider
SetNewPopulation(). The default implementation simply sets currPop equal to
cChildren. But more complex GAs are easy to imagine; for example, set the
current population to be the union of some elements of currPop and some elements
of cChildren, possibly based on the fitnesses of the individuals in question. Such
behaviors are allowed by (4); indeed, (4) even allows us to introduce entirely new
individuals that are not
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post.GAFController.SetNewPopulation(childP) ≡
[(childP = childP@pre) ∧ (length(cP) > 0) ∧ (gAR = gAR@pre)] (4)

in either cP@pre nor in childP, into the current population. If we want to forbid
such behavior, we can do so by adding a clause such as

(cP ⊆ cP@pre ∪ childP)

to this post-condition. This will ensure that each element that is in cP when this
method finishes must have been in cP at the start of the method or in childP (or
both).

Finally we turn to RunGA(). RunGA() works as follows: It first initializes the
population. Then goes through nn iterations of “evolution”. In each, it replaces
the current population with a new population; it also uses appropriate methods of
GAReporter to produce reports at the start and end of each generation.

In each iteration, RunGA() produces the new population as follows: Use
SelectParents() to select parents; use Chromosome.CrossOver() to “cross-over”
parents to generate two children; use Chromosome.Mutate() to possibly “mutate”
the children; add the children to a temporary population, created at the start of
the iteration; repeat until the number of children is the same as the count of the
current population; at the end of the iteration, use SetNewPopulation(), with the
temporary population just created, to obtain the “next generation”.

As we saw in Section 2, in order to allow us, at the application-level, to arrive at
RunGA()’s richer behavior resulting from the redefinitions of these hook methods in
the application, RunGA()’s specification must provide information about these calls
and about how cP and gAR will be modified on the basis of the results of these calls.
We do this by specifying the tPost (for “template-post-condition”) of this template
method. Essentially, tPost.RunGA() gives us information not only about the final
values of cP and gAR but also the calls to hook methods that RunGA() makes during
its execution.

tPost.runGA(nn) ≡
(length(cP) = length(cP@pre)) ∧ (5.1)
〈 InitPopulation(); gAR.InitRpt(nn, cP);
for (i = 1, . . . , nn) do NextGen();
gAR.FinalRpt(nn, cP); 〉 (5.2)

NextGen() ≡
〈 gAR.BeginNewGenRpt(cP);
int k := currPop.Count;
ChromosomePopulation childPop = 〈〉;
for (i = 1, . . . , k/2) do

{ ChromosomePair parnts = SelectParents();
ChromosomePair children = parnts1.CrossOver(parnts2);
children1.Mutate(); children2.Mutate();
childPop.AddChromosomes(children1, children2); (5.3)

SetNewPop(childPop); gAR.EndNewGenRpt(cP); 〉 (5)
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The first clause, (5.1), simply states that the population size is the same as at the
start of RunGA. The rest of the specification is enclosed in angle brackets (“〈〉”) to in-
dicate that this part uses our ‘programmer-friendly’ notation to specify information
about calls to hook methods. The first line of this part states that the first two hook
methods that RunGA() will invoke are initPopulation() and initRpt() respectively (the
latter being on the object gAR).

In the next line, we use a ‘macro’ notation. The macro NextGen(), specified in
(5.3), captures the structure of hook method calls that RunGA() makes when going
through one ‘generation’. Thus (5.2) asserts that the calls to InitPopulation() and
InitRpt() are followed by nn instances of the structure specified in the NextGen()
macro, followed finally by the invocation of FinalRpt() (on gAR). (5.3) gives us
the structure of NextGen(): This consists of a call to BeginNewGenRpt(), followed
by initialization of the ‘loop counter’ k to the Count value of the current population
(Count being a property of the ChromosomePopulation class that gives us the size
of the population in question), followed by a sequence of k/2 instances of the fol-
lowing: invoke SelectParents(), invoke CrossOver() on the parent chromosomes
returned by SelectParents() to get the children, invoke Mutate() on each child,
then use AddChromosomes() to add these to the new generation; and finally invoke
SetNewPop() to update the current population with the new generation, childPop.

Documentation

An important development [8] in the C# technology is the use of XML-
documentation to provide useful information about the class; this information can
consist of precise specifications of the class’s methods. Further, while we can use
the ‘standard’ tags, we can also define new ones in a style-sheet and use these in
the documentation. If the proper ‘tags’ are defined in the style sheets, one of the
output of the C# compiler, an XML document containing all the documentation
associated with the class, can be run (in conjunction with the style sheets) through
an appropriate browser to produce very readable and informative output. We have
experimented with this in our GA framework. An example of the C# source code
that includes this type of documentation appears in Figure 4.

This piece of documentation corresponds to the method Chromosome.CrossOver()

and contains the information we saw in the specification of this method. We have
used a number of different tags here which are all defined in the associated style
sheets (we will not look at these style sheets here; they are available from the web
site mentioned previously). The resulting HTML document, viewed on a stan-
dard browser, appears in Figure 5. Documentation corresponding to two members,
CrossOver and Fitness, of the Chromosome class are shown in this figure. The
contract portions of the documentation for these two members are identical to what
we saw earlier.

One point is worth noting concerning this type of documentation. It assumes that
we have access to the source code of the classes in question, such as our Chromosome

198 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3



4 GA APPLICATIONS

/// <hookMethod mustOverride="yes"/>
/// <summary>Used to generate a new pair of chromosomes by crossing
/// over self with cOther.</summary>
/// <param name="cOther">Chromosome with which to crossover.</param>
/// <returns>The pair of chromosomes resulting from the crossover :
/// <see cref="ChromosomePair"/></returns>
/// <contract>
/// <precondition>
/// (typeof(cOther) = typeof(self))
/// </precondition>
/// <postcondition>
/// [(self = self@pre) ^
/// (cOther = cOther@pre) ^
/// (typeof(result.1) = typeof(self)) ^
/// (typeof(result.2) = typeof(self))]
/// </postcondition>
/// </contract>
public abstract ChromosomePair CrossOver(Chromosome cOther);

Figure 4: Documentation of Chromosome Class: C# Source Code (partial listing)

class. Indeed, what we have in Fig. 4 is part of the source code of that class. Clearly,
such an approach will not work if we are interested in documenting classes for which
we do not have the source with precise contracts. We will return to this question in
the final section.

4 GA APPLICATIONS

The GA literature [5, 14, 15] provides numerous examples of genetic algorithms of
varying complexities over many different domains. In this section, we will briefly
discuss one of these GAs that we have implemented as an application on top of
the framework presented in the last section. We also briefly discuss the behavioral
aspects of these applications.

Even GA

Our application is adapted from a GA presented in [15]. Here each chromosome
is a string of ten bits, i.e., a chromosome is an unsigned, ten-digit binary integer.
The goal of the GA is to ‘evolve’ from an initial population of a random collection
of twenty such integers to a population of ‘high fitness’ individuals, where fitness is
measured by the number of 1’s in the integer, with even integers being fitter than
odd integers.
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Figure 5: Documentation of Chromosome Class: The browser view

To build a new application, we have to define the appropriate derived classes
of Chromosome and GAFController. These derived classes, for EvenGA, appear
in Figures 6 and 7. EvenChromosome is straightforward. EvenGAFController

uses a variable lastIndex to remember the most recently chosen chromosome.
SelectParents() chooses two chromosomes with the probability of each chro-
mosome being chosen being proportional to its fitness, and uses lastIndex to
go through the chromosomes in a round-robin manner. Main() simply creates a
GAReporter object, an EvenGAFController object eGAF, and then applies RunGA()
(of GAFController) to it, passing 1000 as the argument to RunGA(), as the required
number of generations of evolution. RunGA(), as we saw, will initialize the popu-
lation (using the InitPopulation() defined in EvenChromosome), and go through
the specified number of generations, using the SelectParents(), CrossOver(), and
Mutate() operations defined in Figure 6 to evolve the population from one genera-
tion to the next.

Note the power of the framework-based approach. In implementing EvenGA,
all we had to do was specify how fitness of a chromosome is evaluated, how it
is mutated, how a pair of parents is ‘crossed’ to get a pair of children, and how
parents are selected. Everything else is defined in our framework and reused in the
application. Admittedly, this is a simple application but more complex GAs are
built in the same fashion.

Now consider the behavior of EvenGA. First, we must check that the behav-
ioral subtyping requirements are met; for example, that the methods defined
in EvenChromosome satisfy the specifications of the corresponding methods of
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public class EvenChromosome : Chromosome {
private char[] chrDNA; // will have 10 char’s, each is ‘0’ or ‘1’

public override double Fitness {
get {

/* returns (2.0 + no. of 1’s − 2.0 if last char is 1).

Code omitted. */ };
public override void Mutate() {

/* with probability of .01, change the value

of one bit of the chromosome; */ };
public override ChromosomePair CrossOver(Chromosome cOther) {

/* returns two new chromosomes c1, c2; randomly chooses
an i, 0 ≤ i ≤ 9;
copies, into c1.chrDNA[], the values from
self.chrDNA[0...i] and cOther.chrDNA[i+1...9];
copies, into c2.chrDNA[], and from cOther.chrDNA[0...i]
and self.chrDNA[i+1...9]. */
};

}

Figure 6: EvenChromosome

Chromosome. We first define the conceptual model of EvenChromosome. This is
essentially the same as its concrete model: a sequence of 10 bits with the values as
in chrDNA[].The specification (1) of Chromosome.getFitness was:

post.getFitness ≡ (self = self@pre)

To show that EvenChromosome.getFitness satisfies this, we just need to check
that its code does not modify chrDNA[]. Similarly, Mutate() and CrossOver() of
EvenChromosome can be shown to satisfy the requirements of behavioral subtyping.

The conceptual model of GAFController was a sequence of chromosomes,
plus a reporter object. For EvenGAFController, the chromosomes must be
EvenChromosomes. In addition, the model includes lIndex, an integer whose
value is the index of the (second) even chromosome chosen by the most recent
SelectParents() operation (and −1 at the start). The mapping to the base class
model simply omits the lIndex component. With this, it is easy to check that
SelectParents() and InitPopulation() as defined in EvenGAFController do
satisfy their base-class specs. Hence the template method RunGA() will continue
to satisfy its framework-level specification.

Now consider the enriched behavior of RunGA(). First we need to consider the
richer behavior of the hook methods. One important point is that by the very na-
ture of genetic algorithms, many of the important functions are probabilistic, and
this is true of many of the (hook) methods defined in EvenGA. But standard ways
of reasoning about programs do not cater to probabilistic considerations. Stan-
dard DBC contracts can of course specify that a particular method can produce
many different results (for a given initial state and argument values) but there is no

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 201



INCREMENTAL DEVELOPMENT USING OBJECT ORIENTED FRAMEWORKS: A CASE STUDY

public class EvenGAFController : GAFController {
private int lastIndex; // last chosen chromosome; used to

// prevent repeated selection of same chromosome

protected override ChromosomePair SelectParents() {
/* From currPop (of GAFController), choose two chromosomes randomly,
with probability proportional to their fitness, starting with
chromosome at the (lastIndex+1) position in currPop, and going in a
round-robin fashion; update lastIndex and return the pair of chosen
chromosomes. */ }

protected override void InitPopulation() {
/* Initialize population to consist of 20 chromosomes with random
bit patterns in each.*/ }

static void Main(string[] args) {
GAReporter gaRep = new GAReporter();

GAFController eGAF = new EvenGAFController(gaRep);

eGAF.RunGA(1000); }
}

Figure 7: EvenGAFController

standard way for associating probabilities with the various possible results. Con-
sider the behavior of the EvenGA.SelectParents(). From the description in Fig.
6 of this method, it is clear that the method may return any two individuals from
the current population as the selected parents; and it would be easy to specify
this (indeed, this is already expressed in the framework-level specification (3) of
the method). Clearly this is inadequate. The key intuition behind methods such as
EvenGAFController.SelectParents() is as follows: preferring parents with higher
fitnesses but also allowing, with a lower probability, individuals with lower fitness
to be chosen, in conjunction with random mutations, again with very low probabil-
ity, allows the system to evolve, with high probability, a population of high fitness
individuals. This is clearly not the same as random selection of parents and random
mutations of individuals, which is what specifications such as (3) express.

One solution would be to extend the specifications of methods to allow us to
associate specific probabilities with various results that the method may lead to.
This would be important even in the case of EvenGA.Mutate(): as indicated in
Fig. 6, this operation leaves the chromosome unchanged with a 99% probability.
Consider the following specification:

post.EvenChromosome.Mutate() ≡
[(chrDNA[] = chrDNA[]@pre : 99%) ∧
(diff(chrDNA[], chrDNA[]@pre) = 1 bit) : 1%] (6)

This asserts that there is a 99% probability that the chromosome state will be the
same as at the start of the operation; and that there is a 1% probability that the
state at the end of the operation will differ from the state at the start by 1 bit.
Developing ways to reason about probabilistic behavior will, we believe, become
increasingly important as such algorithms are more widely used.
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Once we have suitable specifications for SelectParents(), Mutate() and
other hook methods defined in EvenGA, we can proceed to ‘plug’ them into the
tPost-condition (5) of RunGA(). (5) tells us that in each generation, RunGA()

calls SelectParents() and then applies CrossOver() to the results returned by
SelectParents() to generate the children on which the Mutate() operation is ap-
plied and the resulting children added to the child generation; etc. This should let us
conclude, given appropriate specifications such as (6), that when EvenGA.RunGA()

finishes, the average fitness of the individuals in the final population will have a
range of possible values, with the higher values having higher probabilities.

The above explanation of how we arrive at the richer behavior of the template
method is admittedly informal. In [17], we have proposed a set of formal rules that
can be applied to formalize this task. But the formalism of [17] requires the speci-
fication of the template method to be in a standard form, not in the programming
language-like notation that we have used to specify runGA(). Moreover, that for-
malism does not cater to probabilistic specifications of the type we have proposed
above. These are problems for future work.

5 DISCUSSION

The goals of our work were three-fold. First, as a case study of the framework-
based approach, to apply the approach to capture the common aspects of genetic
algorithms into a framework, so that when a new GA is implemented we can build
it as an application on top of the framework rather than starting from scratch or
trying to modify an existing GA by cutting-and-pasting portions of the code. The
framework we designed and implemented seems to serve this purpose well. We have
been able to implement different GAs on top of our framework in a natural fashion.

Our second goal was to explore the issues involved in reasoning about OO frame-
works and applications built on them. The key question was whether we could
achieve the same kind of reuse in the reasoning effort as the framework-based ap-
proach allows us to achieve in the implementation effort. There were two important
issues here: First, we had to make sure that hook methods defined or redefined in
the application satisfy their framework-level specifications; this is handled by the
requirement of behavioral subtyping [11]. Second, at the framework level we had
to provide a richer specification for template methods than is possible using stan-
dard post-conditions; in particular, we had to include information about the hook
methods that the template method in question calls, and how it uses the results
of such calls, etc. We did this by using a programming-language like notation to
specify this additional information. Given such a richer specification of the template
method, we could, at the application level, plug-in the behavior of the hook meth-
ods as defined at the application level, to arrive at the application-level behavior of
the template method without reanalyzing its code. Our third goal was to use the
documentation facilities of C# to generate documentation precisely specifying our
framework as well as the applications built using it. We believe that the results,
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such as the fragment shown in Fig. 5, demonstrate the importance and usefulness
of such facilities especially in the case of frameworks.

Let us now consider the possibility of adding such specifications to classes or
frameworks that we might purchase, in compiled form (only), from a software vendor.
Meyer [13] mentions a contract wizard that exploits the meta-data information that
the C#/.NET framework provides to allow us to add class invariants and pre- and
post-conditions to existing classes whose source code may not be available. This is
very important because information about key methods such as RunGA() tends to be
provided only informally; and frameworks are often supplied only in compiled form.
If the contract wizard can be used to handle the ‘programmer-friendly’ specifications
such as (5), we will be able to use it as follows: first convert, by hand, the informal
documentation into precise specifications; next, use the contract wizard to add these
specifications to the framework. We intend to investigate the possibility of using
the contract wizard to deal with specifications such as (5).

We will conclude with a comment about our specification notation. Although the
notation used in (5) for specifying the template methods is programming-language-
like, these are specifications, not programs. In particular, they do not give us any
information about how the method manipulates its local variables, etc. In future
work, we plan to define this notation more precisely and to also make more precise
the somewhat informal technique we used in the last section for going from the
framework-level specification of a template method expressed in this notation to its
application-specific behavior.
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