—

JOURNAL OF OBJECT TECHNOLOGY

Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

The start of an Eiffel standard

Bertrand Meyer, ETH/ISE

The launching of the JOT provides a welcome opportunity to resume the Eiffel column
that ran for many years in JOOP from 1998 (edited first by Rock Howard from whom I
took over in 1998). It will run pretty much like its predecessor, with a mix of contributions
by guest columnists and by me, and a mix of topics — from language matters to
methodological issues of object-oriented software construction to reports on industry
projects — that I hope will be of interest not only to Eiffel users but also to many others.

A NEW TECHNICAL GROUP AT ECMA

On June 6 and 7 0f 2002 the first meeting of the new technical group TC39/TG4 of ECMA
— Eiffel language standardization — took place in Ziirich. This is an important
development for everyone interested in Eiffel and a fitting subject for this first JOT
column. I will explain what the ECMA effort is about, how it will proceed, and what it
means for the Eiffel community.

First, why a standard? Part of the answer is obvious: with the growth of Eiffel usage
in corporate environments, the existence of an international standard is a strong signal to
the management of companies benefiting from Eiffel that the technology is here to stay
and that the various suppliers of compilers and other tools provide compatible offerings.

This is the political and commercial advantage. In the Eiffel case we also see a
technical advantage: stabilizing the technology and resolving any remaining
inconsistency or ambiguity. By bringing together the best experts in the use of Eiffel
technology, who have applied it to many successful projects and gained deep insights into
what matters for large-scale development, we hope to get the language to a state where all
users will be comfortable with all of its features.

The effort is expected to last from eighteen months to two years, with about four
meetings a year. The meetings will alternate between Europe and the US, with probably
at least one in Australia. The convener of the group is Christine Mingins from Monash
University in Melbourne (no connection with the last remark, of course) and the
organizations represented at the first meeting included Axa Rosenberg (USA), CALFP
Bank (France/UK/ USA, currently as observer), Enea Data (Sweden), ETH (Switzerland),
ISE (USA), Loria (France), Monash (Australia). We expect a number of other companies
to join in future meetings.

Cite this article as follows: Bertrand Meyer: The Start of an Eiffel Standard, in Journal of Object
Technology, Vol. 1, No. 2, July-August 2002, pages 95-99. http://www.jot.fm/issues/issue_2002
07/column8

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_07/column8

b

ECMA

THE START OF AN EIFFEL STANDARD §

Why choose ECMA for this effort? Based in Geneva, ECMA is a standards organization with a
more than 40 years’ history and many prestigious computer hardware and software standards to
its credit. The name used to be an acronym, but ECMA doesn’t expand it any more since it is
no longer just European; it’s still definitely about the Computer industry, but certainly not just
for Manufacturers. So it’s just ECMA. What distinguishes it from many other standard bodies
is that it remains an Association of companies, collaborating to define effective standards. In
contrast, the national standard bodies — ANSI in the US, DIN in Germany, AFNOR in France
and many others — have an open policy which enables any interested party to participate in a
standard. ECMA is different: while it welcomes comments from the public, it’s a membership
organization, intended to enable members to produce working standards quickly and effectively,
with a minimum of bureaucratic hassle. Both models have their merits, but we like ECMA
because its standards efforts are run in a goal-oriented, business-like manner. This seems just
right for the Eiffel community, which needs to avoid political disputes and produce an excellent
standard in as short a time as is realistic.

The idea of an ECMA group came from Emmanuel Stapf from ISE who has been active
since early 2001 on the ECMA Technical Group that standardized the Common Language
Infrastructure (CLI), that is to say, the basic specification of the Microsoft .NET technology.
Emmanuel and I enjoyed the quality of the work performed by that group, and it seemed that
the setup would be ideal for an Eiffel group. We were gratified that in a meeting in Redmond in
March 2002 ECMA accepted our proposal to form a new committee for that purpose, TG4, part
of Technical Committee 39 (originally “scripting languages”, although this is just for historical
reasons), and that the Secretary-General of ECMA, Jan van den Beld, was highly supportive
from the start. Jan indeed attended the Ziirich meeting where he was instrumental in getting the
group going by briefing it on ECMA practices, procedures and advice — not to mention hosting
a memorable dinner in a unique “Whisky Museum” not far from the city.

ECMA standards enjoy wide respect, as evidenced by the existence of a “fast-track” status
enabling them to become International Standards Organization (ISO) standards without going
through the usual channel of national bodies.

At this time, and in this industry, it would seem that electronic communication suffices to
achieve a standard. The ECMA process applies a different view: while it extensively relies on
the Internet — each Technical Group has a discussion group and a Web site, all documents are
kept in FTP archives, and considerable work proceeds electronically between meetings — it
insists on members physically getting together at regular intervals. The .NET (CLI) effort, run
briskly with the intent of completing the process in a year, had one meeting every two months
and a phone conference in-between; for Eiffel the pace will be a little less frantic, but not much.
The general expectation is that to have a serious effect on the process you must attend most
meetings. Clearly, this implies a taxing travel schedule, too taxing for some people. But the
result is that the members are truly committed and that meetings, well prepared by electronic
exchanges, can be very productive since people have met each other many times before and can
get right down to solving the toughest issues.

926 JOURNAL OoF OBJECT TECHNOLOGY VoL. 1, No. 2

§ TIME TO BE SMART /

On that count the Eiffel group seemed from the first meeting to be in just the right mood.
All the members are experienced Eiffel developers with years of practice, some with one or
more Eiffel compiler implementations behind them. Whenever a language issue came up, there
wasn’t much need for background explanation; everyone was almost immediately on the same
wavelength. This doesn’t mean everything will run smoothly; there will be more than enough
opportunities for heated debates. But at least we won’t waste much time getting everyone to a
good level of understanding, because everyone is already there. Most importantly, the compiler
writers share a desire to remove any remaining incompatibility between their implementations.
All this bodes well for the success of the process.

For more information about ECMA see their Web site at http://www.ecma.ch, which also
indicates how your company can become a member to participate in the Eiffel standard.

TIME TO BE SMART

It is widely recognized that a standard definition process is an opportunity to stabilize and codify
proven practices, not the time to engage in new designs. TG4 will follow this rule, but we feel
we can afford to be a bit bolder than the usual standards committee. Because the group members
are so keenly aware of Eiffel-related issues, we feel that we shouldn’t waste opportunities to
improve the existing language design if we see some. This confidence is buttressed by several
characteristics of the group and of Eiffel:

* The Eiffel community has always been particularly conservative in its approach to
language evolution. While many languages originally designed at about the same time as
Eiffel have changed dramatically, Eiffel still remains close to the original variant. In
particular Eiffelists have always hated “featurism”: there is still just one kind of loop. The
changes and extensions that did appear over the years have always been justified by a high
signal-to-noise ratio: significant increase of expressive power (the signal) at minimal
addition to the overall complexity of the edifice (noise). These ideas are imprinted in the
minds of the group’s participants and we feel — I hope rightly — that we are immune to
the usual lures of design-by-committee.

* Both compiler writers and application developers are strongly represented in the group. No
language feature will be adopted for good until it has been successfully integrated in a
compiler and used in applications.

* The Eiffel community, and the members of the standards group in particular, have a strong
sense of quality. If we see a better way to do something, we won’t release a standard with
an inferior solution just because it’s what was used in the past. This is the other side of the
Eiffeslists’ conservatism: they are not religious about compatibility; in the past they have
accepted changes as long as they were justified, announced with sufficient lead time, and
supported by conversion tools.

* Finally, the ECMA process provides insurance against changes getting out of control. In a
completely public process where anyone can propose an extension, the only choice, to
avoid meltdown, is to apply a drastic no-innovation policy. With a small group of experts
who share a basic outlook, we can afford to be more open, while never lowering our guard
against the creeping specter of featurism.

VoL. 1, No. 2 JOURNAL OoF OBJECT TECHNOLOGY 97

[

http://www.ecma.ch

b

At this stage, almost no issue has been barred from consideration. In particular, there is a strong
sense that we can find a good way to reconcile covariance with full static typing, a problem that
has been a source of criticism for years. Some of the other open issues include multiple generic
constraints, merging manifest arrays and manifest tuples, generalizing free operators. Some
correspond to practices that have already been implemented by compilers, often because they were
present in recent publications [2] [3]; others result from proposals by the group members, often
following from discussions that have been pursued for years on Eiffel newsgroups and forums.

THE START OF AN EIFFEL STANDARD §

A STANDARD AND A BOOK

The current language reference, the book “Eiffel: The Language™ [1], known as ETL-1, is more
precise than most programming language descriptions. In particular, its “validity rules”, which
explain under what conditions a construct is legal — stating, for example, type constraints —,
are all of the “if and only if” kind. It is easy to tell programmers some of what they may not do,
for example assigning a real value to an integer variable. All language specifications do that. It
is far more delicate to say “if your construct satisfies the following rules, then you may use it
and I promise that any conforming compiler will accept it”. That’s the “if”” part of “if and only
if” and it requires a thorough job on the part of the language definition, to cover all possible
cases. Here is an example of a validity rule, defining when the Inheritance part of a class is valid:

Parent rule CHPR

The Inheritance clause of a class D is valid if and only if it meets the
following two conditions:

1 « In every Parent clause for a class B, B is not a descendant of D.
2 « If two or more Parent clauses are for classes which have a common

ancestor 4, D meets the conditions of the Repeated Inheritance
Consistency constraint for 4.

Names in green, such as Inheritance, denote syntactic constructs, here the inheritance clause of a
class. The first clause means that you cannot specify a parent for a certain class if this would
introduce a cycle in the inheritance hierarchy. (An equally rigorous definition preceding this rule
states that a “descendant” of a class means a direct or indirect heir — formally, the class itself or,
recursively, a descendant of one of its heirs.)The second clause refers to another rule of the same
style, which governs the case of repeated inheritance, the so-called “diamond structure™:

o

/<‘>\

D

Repeated inheritance: (direct) (indirect)

98 JOURNAL OoF OBJECT TECHNOLOGY VoL. 1, No. 2

[

§ A STANDARD AND A BOOK /

This enables you to know exactly what you may and may not do; in other languages you often
have to having to chase the manual for various interdictions, never being quite sure a certain
usage is right until you have tried it with a compiler. S

Eiffel’s syntax is defined in a similarly rigorous way; the semantics is also precise although
less formal for obvious technical reasons. This style, which has been refined and improved for
the ongoing work on the next edition ETL-3 [3], paves the way for the standard.

A book, of course, is not a standard; ETL tries to be several things at once — tutorial,
reference, programmer’s guide — and the standard should only include a very small subset of
this information, the dry description of the language’s universally agreed properties. Since so
much work is going into ETL-3, however, it would be unpleasant and inefficient to proceed
separately on the two efforts.

So the general idea is to start from the book as the repository of basic information, and rely
on automatic text processing tools to produce the first version of the standard. This is already
the case in ETL-3, where a whole set of appendices (syntax reference, full language reference)
are produced automatically through extraction of specially marked “formal” paragraphs from
the main text. In the first parts of the book these paragraphs — syntax, validity constraints such
as the one shown above, semantics — appear in the midst of explanations and examples; in the
appendices they are repeated alone. (The designers of FrameMaker must be acknowledged here
for providing sophisticated tools to support this automatic extraction and update process.)

The big push, in this approach, is to avoid redundancy — to achieve reuse. The same
arguments that lie behind reuse of software in the Eiffel method suggest the reuse of formal parts
in the language description. As we continue to discuss, document and tune the language in the next
months, it would be a pity to have to update two or more texts; as in software, redundancy doesn’t
just mean more work, it also raises the prospect of divergence and contradictions.

Standards have their own formating rules and publishing constraints. At some point the
reference appendices will have to take a life of their own and wean themselves from ETL-3 to
become an ECMA standard. This should happen as late as possible in the process, when all the
technical issues have been settled. Until then, we hope to have many illuminating discussions and
use the opportunity to produce the best possible language standard, and the best possible language.

REFERENCES

[11 Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1991 (first printing), 1992 (second
printing with corrections).

[2] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

[3] Bertrand Meyer: Eiffel: The Language, 3rd edition, work in progress at http://www.inf.ethz.ch/
personal/meyer/ongoing/etl/, user name Talkitover, password etl3.

About the author

Bertrand Meyer is Professor of Software Engineering at ETH Ziirich and scientific advisor of
ISE (Santa Barbara).

VoL. 1, No. 2 JOURNAL OoF OBJECT TECHNOLOGY 99

http://www.inf.ethz.ch/personal/meyer/ongoing/etl/

