[
JoURrRNAL oF OBJECT TECHNOLOGY

Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Educator’'s Corner: An OO Application
that introduces Heuristic Algorithm
Design

Dr. Richard Wiener, University of Colorado, Colorado Springs, U.S.A.

| shall wear the hat of columnist from time-to-time. This series of columns is aimed at
fellow educators both within and outside the University. Although the subject area
addressed by the column may not be directly involved with object technology, an object-
oriented approach to problem solving will be featured.

This first column demonstrates how one might wish to introduce the subject of heuristics
in teaching algorithm design. To stimulate student interest in this subject, | have chosen
a problem familiar to most students — the game of MasterMind™ (registered trademark
of Pressman Toy Company). Master Mind was invented in 1970-71 by Mordecai
Meirowitz, an Israeli Postmaster. Over 55 million games have been sold worldwide
since its release in 1972.

The challenge is to design an algorithm that forms the basis of an application program
that allows the computer to guess the human user’s secret code with the fewest number
of guesses. In this case the application program shall be constructed using Java 1.3.1
running on an Apple Macintosh under OS X. Since this is a new platform for me (most
of my work has been done on a Windows 2000 platform) | shall comment, whenever
appropriate, on the tools available under this platform.

1 A REVIEW OF MASTER-MIND

The user must first construct a secret code consisting of a sequence of four colors chosen
from red, blue, yellow, green, white and orange. In our context, the application program
(using the heuristic algorithm) must “guess” the user’s code through a series of steps. At
each step, the program produces a 4-tuple of colors. The user must then input a score
associated with the program’s 4-tuple. The scoring is performed as follows: for each
color in the 4-tuple the program produces that is identical in color and position to the
user’s secret code, the user uses a red peg to score that hit. For each color the program
produces that is the same as one of the user’s colors but is not in the correct position, the
user uses a white peg to score that hit. Once the user completes the scoring of the
program’s 4-tuple, the program produces a new 4-tuple which the user then scores. This
process continues until the program produces a 4-tuple that exactly matches the user’s

Cite this article as follows: Richard Wiener: Educator’'s Corner: An OO Application that introduces
Heuristic Algorithm Design, in Journal of Object Technology, Vol. 1, No. 2, July-August 2002,
pages 63-78. http://www.jot.fm/issues/issue 2002 07/column6

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_07/column6

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

secret code in both colors and positions. In this final case, the user uses 4 red pegs to
indicate that the application program has succeeded in “guessing” the secret code.

“Guessing” the user’s secret code when playing the actual game by hand is non-
trivial, since there are 1296 possible 4-tuples that can form the basis for the secret code.
In 1993, Kenji Koyama and Tony W. Lai calculated that the best strategy uses an average
of 4.340 moves.

2 THE HEURISTIC ALGORITHM

The heuristic algorithm that shall be used in the application program appears on the
website of Radu Rosu (http:/www.unc.edu/~radu/mm/MMS.html).

After an arbitrary initial guess, the algorithm produces a random series of 4-tuples
until the first is found that is consistent with all the user’s previous scores. So instead of
utilizing deep analysis and mathematics, the algorithm uses total randomness. The
simplicity of the algorithm makes it appealing. In addition, we shall see that this simple
algorithm requires an average number of guesses close to 4.6, not too far away from the
optimum strategy that requires an average of 4.340 guesses.

The Development Platform, relevant tools and porting Java software

As indicated earlier, the Java application that implements and demonstrates this heuristic
approach to playing MasterMind™ was developed on an Apple Macintosh under OS X.
JBuilder 6 Enterprise Version was used as the main development tool both for project
management and to assist in the production of the GUI. As is known from my review of
JBuilder 6 that appeared in the previous issue of JOT (co-authored with Dave
Neuendorf), I believe that this Java development tool is of superb quality. It works
exactly the same under OS X as under Windows.

To port an earlier version of this application from my PC to the Macintosh, I utilized
an important tool, Dave 3.1.1 manufactured by Thursby Software Systems -
www.thursby.com. This tool provides complete connectivity between the Apple
Macintosh (the new kid on my block) and my existing PC local area network. Without
this tool the value of the Macintosh would be significantly reduced.

Any claim that Java software runs “as-is” on all platforms is not true. After porting
the Window’s version to the Macintosh, it was quickly evident that many of the labels
above and on buttons did not fit properly. The default fonts used on each platform are
different. Fortunately, this is the only area that required fine tuning.

64 JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

http://www.unc.edu/~radu/mm/MMS.html
http://www.thursby.com

The Application

3 THE APPLICATION

The application is modeled using 5 classes:

MasterMindApplication: The usual “main driver” found in many GUI
applications.

MasterMindPanel: An extension of the standard JPanel component. This class is
used to hold the game image and supports the graphical images of pegs for
scoring and playing.

Row: This class forms the model of a 4-tuple of color objects. Random row
objects can

be created and their scores computed.

MasterMindUI: The usual user interface class that contains a MasterMindPanel
object as well as the game control buttons and output messages.

Global: Contains and supports a globally accessible random number object.

Listing 1 contains the details of class Row.
Listing 1 — Class Row

import java.util.*;
i mport java.awt.*;

/'l Models a row in Masterm nd
public class Row {

/'l Fields

private Color [] elenents = new Col or[4];
private int exactMatches, col or Matches;
private final Color [] colors =
{Col or.red, Color.blue, Color.yellow,
Col or.white, Color.green, Color.orange};

/1l Constructors
public Row (Col or pl, Color p2, Color p3, Color p4)

el ements[0] = pl;
el ements[1] = p2;
el ements[2] = p3;
el ement s[3] = p4;

/'l Helps create a statistically sound random sequence

for (int i = 0; i < 20000; i++) {
A obal . rnd. next Doubl e() ;
}

}
public Row () {}

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY

65

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

!/ Commands

/** Sets values of fields exactMatches and col or Mat ches */

public void conputeScore (Row anot her Row) {

}

this.reset Score();

/'l Create two local arrays
Color [] receiver = new Col or[4];
Color [] parameter = new Col or[4];
for (int index = 0; index < 4; index++) {
recei ver[index] = elenments[index];
par anet er[i ndex] = anot her Row. el enent s[i ndex] ;

}

/1 Find matchups
for (int index = 0; index < 4; index++) {
if (receiver[index] == paraneter[index]) {
exact Mat ches++;
/'l Renove match fromreceiver and paraneter
recei ver[index] = null;
paraneter[index] = null;

}

/1 Find the same color with no matchup
for (int index = 0; index < 4; index++) {
if (receiver[index] != null) {
I/l Is receiver[index] in paraneter array
bool ean found = fal se;

for (int i =0; !found & i < 4; i++) {
if (receiver[index] == paraneter[i]) {
paraneter[i] = null;

col or Vat ches++;
found = true;

public void generat eRandonRow () {

}

for (int index = 0; index < 4; index++) {
int color = d obal.rnd. nextlnt(6);
el ement s[index] = colors[color];

public void setMatches (int nmatches) {

}

exact Vat ches = mat ches;

66

JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

The Application

public void setSaneCol or (int sameColor) {
col or Mat ches = saneCol or;
}

/'l Queries

public int matches () {
return exact Mat ches;

}

public int sameCol or () {
return col or Mat ches;

}
public bool ean saneScore (Row ot her) {
return exact Mat ches == ot her. exact Vat ches &&
col or Mat ches == ot her. col or Mat ches;
}

public Color pl () {
return el ements[0];
}

public Color p2 () {
return el ements[1];
}

public Color p3 () {
return el ements[2];
}

public Color p4 () {
return el ements[3];
}

public String toString () {
return pl().toString() + p2().toString() + p3().toString() +
p4().toString();

}

private void resetScore () {
exact Vat ches = O;
col or Mat ches = O;

Listing 2 presents some of the details of class MasterMindPanel.
Listing 2 — Class MasterMindPanel

i mport java.awt.*;

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY

67

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

i mport javax.swi ng.*;
i mport java.awt.event.*;
inmport java.util.~*;

public class Master M ndPanel extends JPanel {

/'l Fields

/'l 1mage of Master Mnd Gane - Digital photo of gane
private | mage master M ndGnel nage;

/'l Coordinates of peg holes

private Point [] peg = {new Point (0, 0),
new Point (74, 512),
/1 ..details onmtted
new Point (178, 157),
new Poi nt (222, 160)};

/'l Coordinates of pin holes for scoring
private Point [] pin = {new Point (0, 0),
new Poi nt (238, 529),
new Poi nt (258, 532),
Il ..details omtted
new Poi nt (259, 156),
new Poi nt (278, 159)};

/'l Used by paint Conponent for rendering peg or pin
private Color [] pinSelected = new Col or[33];
private Color [] pegSel ected = new Col or[33];

private int peglndex;
private int pinlndex;

/' Constructor
public MasterM ndPanel () {
mast er M ndGanel nage =
Tool ki t. get Def aul t Tool kit (). getlnage("MasterM nd. gif");
Medi aTr acker tracker = new Medi aTracker (this);
tracker. addl mage(mast er M ndGanel nage, 0);
try {
tracker.wait Forl D(0);
} catch (InterruptedException ex) ({
System out. println(ex);
}

}

public void pai nt Conponent (G aphics g) {
super . pai nt Conponent (g) ;
g. drawi mage(nmast er M ndGanel mage, 0, 0, this);
int dianeter = 23;

68

JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

The Application /

for (int j =1; j <=32; j++) {
if (pegSelected[j] !'= null) {
g.drawArc(peg[j].x, peg[j].y, dianeter, dianeter, O,
360) ;

Col or pegCol or = pegSel ected[j];

g. set Col or (pegCol or);

g.-fill Arc(peg[j].x, peg[j].y, dianeter, dianeter, O,
360) ;

}
}
di aneter = 11;
for (int j =1; J <=32; j++) {
if (pinSelected[j] !'= null) {
g.d;awArc(pin[j].x, pin[j].y, dianmeter, dianmeter, O,
360) ;
Col or pinColor = pinSelected[j];
g. set Col or (pi nCol or);
g.fiIIArc(pingj].x, pin[j].y, dianmeter, dianeter, O,
360) ;

}

public void drawPeg (Color color, int row, int col) {
pegl ndex = (row - 1) * 4 + col;

public void drawPi n(Col or color, int row, int col) {
pinlndex = (row - 1) * 2 + col;
}

public void setPinColor(Color color, int index) {
pi nSel ect ed[i ndex] = col or;
}

public void setPegCol or(Color color, int row, int col) {
pegSel ected[(row - 1) * 4 + col] = color;
}

public bool ean pinColor (int index) {
return pinSelected[index] !'= null;
}

public Color [] pinsSelected () {

return pinSel ect ed;
}

The constructor handles the task of downloading the image from a .gif file. This .gif file
was produced by taking a digital photo of the real game. The points defined in the peg

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY 69

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

and pin arrays were obtained tediously by hand since the digital image was off-center.
The paintComponent method is automatically activated whenever the GUI requires
refreshing such as in response to a resize event or re-validate event. As is typical in Java,
graphics-based messages are transmitted through a Graphics object .

Listing 3 presents some of the details of class MasterMindUI. All the event handlers are
present in this class including the logic for the decision about which pin hole the user has
selected using either a left or right mouse click.

Listing 3 — Class MasterMindUI

i mport java.awt.*;

i mport java.awt.event.*;
i mport javax.swi ng.*;
import java.util.*;

public class MasterM ndU extends JFrane {

/'l Fields
private Row [] board = new Row 10]; // Holds the gane board
private int rowNunmber = 0;
private Row code = new Row();
private Row newRow,
private MasterM ndPanel inmagePanel ;
private Color [] userCode = new Color[4]; // For scoring
/1 verification

/I Coordinates of scoring pegs
private Point [] scoringPeg =
{new Point (0, 0), new Point(248, 557), new Point (266, 557),
/1 ..Details onmtted
new Poi nt (284, 204), new Point (265, 182), new Point (284, 185)};

/'l Assorted graphi cal conponent objects, not shown

/'l Constructor and initialization nmethod not shown

private void this_nousedicked (MuseEvent e) {
int error = 3;
for (int i =1; i <= 32; i++) {
if ((e.getX() >= scoringPeg[i].x - error &%
e.get X() <= scoringPeg[i].x + error) &&
e.getY() >= scoringPeg[i].y - error &%
e.getY() <= scoringPeg[i].y + error) {
int row= (i - 1) / 2 + 1;
int col =i %2 =17?1: 2
Col or pinCol or;
i f (imagePanel.pinColor(i)) {
pi nColor = null;

70 JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

The Application /

} else {
pi nCol or =
SwingUtilities.isLeftMuseButton(e) ? Col or
red : Col or.white;

i mgePanel . dr awPi n(pi nCol or, row, col);
i magePanel . repaint ();
i mgePanel . set Pi nCol or (pi nCol or, i);

}

private void newGane () {
/1 Advance the random nunber generat or
for (int i =0; i < 50000; i++) {
A obal . rnd. next Doubl e() ;
}

rowNunber = 0;

/1l Cear all pegs and pins
for (int j =1; j <= 32; j++) {
i mgePanel . set Pi nCol or (null, j);

for (int r =1;, r <= 8; r++) {
for (int ¢ =1; ¢ <= 4; c++) {
i mgePanel . set PegCol or (null, r, c¢);
}

magePanel . repai nt () ;

magePanel . set PegCol or (Col or.red, 1, 1);
magePanel . set PegCol or (Col or.red, 1, 2);
magePanel . set PegCol or (Col or. blue, 1, 3);
magePanel . set PegCol or (Col or. bl ue, 1, 4);
magePanel . repai nt () ;

/'l Choose from anong 6 random starting configurations

nt choice = @ obal.rnd. nextInt(6) + 1;

/1 Details not shown

board[0] = newRow;

private void enterScore () {

/'l Get range of pinsSelected to query
int row = rowNunber + 1;

int endl ndex = row * 4;

int startlndex = endl ndex - 3;

int matches = O;

int sane = O;

Color [] pinsSel ected = i magePanel . pi nsSel ect ed() ;
for (int i = startlindex; i <= endlndex; i++) {
if (pinsSelected[i] == Color.red) {

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY 71

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

mat ches++;

} else if (pinsSelected[i] == Color.white) {
sanme++;

}

/'l Verify that user has entered correct score
newRow. conput eScor e(new Row(user Code[0], user Code[1],
user Code[2], userCode[3]));
if (matches != newRow. nat ches() ||
same ! = newRow. saneCol or ()) {
JOpt i onPane. showvessageDi al og(t hi s,
"Incorrect score entered.");
return;

}
if (newRow == null) {
return;

newRow. set Mat ches(mat ches) ;
newRow. set SaneCol or (sane) ;
boar d[rowmNunber] = newRow;,
if (matches == 4) {
JOpt i onPane. showvkessageDi al og(t hi s,
"I't took the computer " + (rowNumber + 1)
" guesses.");

codeFi el d1. set Text ("")
codeFi el d2. set Text ("");
codeFi el d3. set Text ("");
codeFi el d4. set Text ("");
return;

}

/* Generate a randomrow that satisfies all the previous board
scores entered by the user.
*/
int counter = O;
bool ean al | RowsMat chScore = true;
do {
count er ++;
newRow = new Row();
newRow. gener at eRandonRow() ;
al | RowsMat chScore = true;
for (int r = 0; allRowsMatchScore &&
r <= rowNunber; r++) {

/* Value of internal fields exactMtches and
col or Mat ches set for newRow object based on board[r]

*/

newRow. conput eScore(board[r]);

/* Returns true if existing scores for board[r] are the
same as those just conputed for newRow based on
board[r].

*/

al | RowsMat chScore = board[r]. saneScor e(newRow) ;

72 JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

The Application /

}
} while (!all RowsMat chScore && counter <= 50000 &&
rowNunber <= 7);
if (rowNunber >= 8 || counter >= 50000) ({
JOpt i onPane. showvessageDi al og(t hi s,

"You have an illegal entry. Gane will be stopped.");
newGane() ;
return;
}
r omNunber ++;
Col or colorl = newRow. p1();
Col or color2 = newRow. p2();
Col or col or3 = newRow. p3();
Col or col or4 = newRow. p4();

r OW++;

i mgePanel . set PegCol or(colorl, row, 1);
i mgePanel . set PegCol or(col or2, row, 2);
i mgePanel . set PegCol or(col or3, row, 3);
i mgePanel . set PegCol or (col or4, row, 4);
i magePanel . repaint () ;

/'l Several event handl er net hods not shown

The this mouseClicked event handler method considers the user to have hit a scoring hole
if the mouse click is within plus or minus 3 pixels of the center.

The heuristic algorithm that is at the heart of the application is shown in the private
enterScore method. The pertinent code is shown in boldface.

Listing 4 shows the details of class Global that makes a random number object globally
accessible.

Listing 4 — Class Global
import java.util.*;

public class d obal {
public static Random rnd = new Randon();
}

4 RUNNING THE APPLICATION ON A MACINTOSH

The OS X environment on the Macintosh makes it easy to create “clickable” applications.
A tool called MRJAppBuilder may be used to create a native Macintosh application. Its

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY 73

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

wizard walks the user through the appropriate steps. Another approach, and one that I
prefer, is to create an application .jar file that is clickable. To make the .jar file clickable,
one needs to create a manifest.txt file and use it while constructing the .jar file for the
application.

The manifest.txt file needed to make the application clickable contains the one line,
Main-Class: MasterMindApplication

From an OS X shell opened to the sub-directory containing the application files (the
ability for a Macintosh programmer to have access to a standard command shell is a
relatively new event in the history of Apple Computers — one that is long overdue and
greatly appreciated), the application is compiled using the usual

javac *java command
Next the clickable .jar file is produced from the command:
Jjar —cvfm MasterMind.jar manifest.txt *.class

The MasterMind.jar file can then be renamed simply MasterMind and double clicked to
launch it.

A screen shot of the application while running is:

74 JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

Running the Application on a Macintosh //

Use left mouse button in peg to record a perfect match,
Use right mouse button in peg to record same color,
Clicking on existing peg removes peg.

Click "Record Score” button after completing scoring.

(recora score)

Enter Secret Code (R, B, ¥, G, W, O)

R B G @Y

5 SOME STATISTICS ON THE HEURISTIC ALGORITHM

It is interesting to examine the efficiency and relative performance of this heuristic
algorithm by producing statistics that output:

1. The average number of random 4-tuples required as a function of board position
before one is accepted.
2. The average number of “guesses” that the algorithm requires.

To accomplish this we generate all possible 6* = 1296 4-tuples as secret codes and for
each determine the number of guesses required for each board position and the total
number of rows required (guesses required) before a solution is reached. We output the
average results over the 1296 games that are simulated.

VoL. 1, No. 2 JOURNAL OF OBJECT TECHNOLOGY 75

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

Listing 5 presents the details of class MasterMindStats.

Listing 5 — Class MasterMindStats

import java.util.*;
i nport java.text.*;

i mport java.awt.*;

/**

* Deternine the average nunber of guesses and the average numnber
* of 4-tuples that need to be generated as a function of row nunber.

*/

public class MasterM ndStats {

/'l Fields
private Row [] board = new Row 10]; /1 Holds the gane board
private int rowNunber = 0O;

private Row code;

public static Random rnd = new Randon();

private int total Nunber Guesses = 0;

private int [] nunberGenerated = new int[10]; // Nunber of 4-tuples
private Color [] colors = { Color.red, Color.blue, Color.yellow,

} Col or.white, Color.green, Color.orange

public static void main (String[] args) {
Mast er M ndSt at s app = new Master M ndSt at s() ;
Deci mal Format df = new Deci mal For mat (" 0. ###") ;

Timelnterval t = new Tinelnterval ();
t.startTimng();
/'l Generate all possible secret codes
for (int colorl = 0; colorl < 6; colorl++) {
for (int color2 = 0; color2 < 6; color2++) {
for (int color3 = 0; color3 < 6; color3++) {
for (int colord = 0; colord < 6; color4++) {
app. code = new Row(app. col ors[col or1],
app. col ors[col or 2],
app. col ors[col or 3],
app. col ors[col or4]);
/1 Always use the sane initial 4-tuple
Row newRow = new Row(Col or.red, Color.red,
Col or. bl ue, Col or. bl ue);

app. rowNunber = 0;
app. boar d[app. rowNunber] = newRow,
newRow. conput eScor e(app. code) ;

/* CGenerate a randomrow that satisfies all the
previ ous board scores.

76

JOURNAL OF OBJECT TECHNOLOGY VoL. 1, No. 2

Some statistics on the heuristic algorithm / GVL_/

x| L .
whil e (newRow. mat ches() !'= 4) {

bool ean al | RowsVat chScore = true;

i nt nunber Generated = O;

do {
newRow = new Row();
newRow. gener at eRandonRow() ;
al | RowsMat chScore = true;
for (int r = 0; allRowsMatchScore &&

r <= app.rowNunber; r++) {
newRow. conput eScor e(app. board[r]);
al | RowsMat chScore =

app. board[r] . sanmeScor e(newRow) ;

nunmber Gener at ed++;
} while (!all RowsMat chScore);
app. r owNunber ++;
app. boar d[app. rowNunber] = newRow;
newRow. conput eScor e(app. code) ;
app. nunber Gener at ed[app. r owNunber] +=
nunmber Gener at ed;

}
app. t ot al Nunber Guesses += app. rowNunber + 1;

}

}

t.endTim ng();

Systemout. println();

Systemout.println("El apsed tinme: " + t.elapsedTine() +
" seconds.");

System out. println();

System out. println("Average nunber of guesses: "
+ df . format (app. t ot al Nunber Guesses /

1296.0));
for (int i =1; i <=8; i++) {
System out. println("Average Nunber 4-tuples Generated[" +
i+ "] ="+
df . f or mat (app. nunber Generated[i] /
1296.0));

}
System out. println();

Listing 6 shows the support class Timelnterval.
Listing 6 — Class Timelnterval
/ * %

* Atimng utility class useful for timng code segnents
*/

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY 77

ff—

AN OO APPLICATION THAT INTRODUCES HEURISTIC ALGORITHM DESIGN

public class Tinelnterval {

private long startTine, endTine;

private long el apsedTine; // Time interval in mlliseconds

/1 Commands
public void startTimng() {
el apsedTine = O;
startTime = SystemcurrentTimeM I 1is();

}

public void endTi m ng() {
endTine = SystemcurrentTineM I 1is();
el apsedTine = endTine - startTine;

}

/'l Queries
publ i c doubl e el apsedTi me() {

return (doubl e) el apsedTine / 1000.0;
}

The output for a typical run is:

Elapsed time: 12.858 seconds.

Average number of guesses: 4.639

Average Number 4-tuples Generated[1] = 11.434
Average Number 4-tuples Generated[2] = 87.522
Average Number 4-tuples Generated[3] = 430.57
Average Number 4-tuples Generated[4] = 530.5
Average Number 4-tuples Generated[5] = 158.288
Average Number 4-tuples Generated[6] = 12.807
Average Number 4-tuples Generated[7] =0
Average Number 4-tuples Generated[8] =0

Complete Java sources are available for download at
http://www.jot.fm/issues/issue_2002_07/column6/Mastermind.zip

78 JOURNAL OF OBJECT TECHNOLOGY

VoL.1,No. 2

http://www.jot.fm/issues/issue_2002_07/column6/Mastermind.zip

Some statistics on the heuristic algorithm GVL_/

About the author

Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant
and software contractor whenever the possibility arises.

VvoL. 1,No. 2 JOURNAL OF OBJECT TECHNOLOGY 79

