

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Mahesh Dodani: Objects are for Wimps: Real Developers Need S.O.S., in Journal of Object
Technology, Vol. 1, No. 2, July-August 2002, pages 55-61.
http://www.jot.fm/issues/issue_2002_07/column5

Objects are for Wimps: Real Developers
Need S.O.S.
Mahesh H. Dodani, IBM Global Services, U.S.A.

1 WHAT’S HAPPENING TO SOFTWARE DEVELOPMENT?

The shift from business-to-consumer (B2C) applications to business-to-business (B2B)
integration applications has posed new requirements on software development. To
address these requirements many new development paradigms have emerged. Real
developers are faced with a wide array of technologies, tools, methods, and techniques,
and have to decide which ones are important. The primary indicators point to
“specifications” and (web) “services” as the new wave of approaches that need to be the
foundation of every developer along with the well established Object Oriented approach.
This article discusses these new requirements, and provides real developers guidance on
making Specifications, Objects and Services part of their skill repertoire.

The first wave of e-business was all about B2C applications. This wave was
characterized by a move from heavy GUI client applications to the “thin-client” model,
and the move of application and business logic from the client to the server. Object
Oriented principles (including encapsulation, polymorphism, and inheritance),
programming model (especially the separation of interface from implementation), best
practices (incuding design patterns and Model-View-Controller framework), and methods
(use case driven and agile methods) provided the foundation for developing these
applications. In addition, many “standards” were born during this time to support the
need for portability, interoperability, and maintainability. Many touted e-business as
being driven by these “standards”, including TCP/IP for sharing resources across a
network, HTML and HTTP for standard presentation and communication over the
internet, XML for portable structured documents and data on the web, and Java for “write
once, run everywhere” portable code.

The maturity of the OO approach along with this “specification” movement is best
embodied in the Java2 Enterprise Edition (J2EE) component model which defines a set of
specifications (http://java.sun.com/j2ee) for implementing and deploying enterprise
applications. J2EE defines both client side (applets, application clients) and server side
(servlets, Java Server Pages (JSPs) and Enterprise Java Beans (EJBs)) components as
Java objects. It defines common distributed services include naming and directory

http://www.jot.fm
http://java.sun.com/j2ee
http://www.jot.fm/issues/issue_2002_07/column5

 OBJECTS ARE FOR WIMPS: REAL DEVELOPERS NEED S.O.S.

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

(JNDI), connecting to data stores (JDBC), security, and transactions (JTA and JTS),
along with remote communication between components (RMI/IIOP) and messaging
(JMS.) Finally, J2EE facilitates its components to be used in the MVC framework where
EJBs embody the business logic (model), JSPs deal with the presentation (view), and
servlets handle the interaction (controller). Note however that this J2EE model is very
oriented towards developing B2C applications focusing on interfaces, tight client-server
“conversation” coupling, and using a mostly synchronous communication.

The bursting of the “dot com” bubble has led us to the “second wave” of e-business.
The basic realization in this second wave is that e-business is all about integration –
integrating applications in the distributed enterprise, and business to business integration.
The requirements of these integration applications include:

• Loose coupling between applications.
• Applications able to communicate regardless of endpoint implementation (i.e.

platform, operating system, programming language, object model.)
• Mostly asynchronous communication between applications.
• Just-in-time application integration within and across enterprises.
• Interfaces for applications published and accessible.

Are distributed OO technologies and principles capable of handling these requirements?
The handling of integration requirements through another set of specifications on top of
the distributed OO technologies (e.g. J2C and JMS) and the focus on extending B2C
applications is not sufficient. What is needed is a completely different approach, that
tackles the need in an integral fashion. Enter web services and the service oriented
architecture for integrating applications.
Web Services: Web Services are self-describing, self-contained, modular applications
that have to be described, published, found, bound, invoked and composed. Web services
conform to a service oriented architecture as summarized in Figure 1.

Fig. 1: The Service Oriented Architecture

What’s Happening to software Development?

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 57

As shown in the figure, service providers create application functions that are
available on disparate implementation platforms as web services and describe them using
a standard definition language. These services are published in a service registry.
Service requestors who need a particular type of service search the service registry and
find the desired service. Once a service is found the requestor and the provider of the
service negotiate to access and invoke the service.

The underlying technologies supporting web services need to be platform and
implementation neutral, and are therefore specified in XML. The core technologies
include

• Simple Object Access Protocol (SOAP) is the XML based messaging
specification that defines the message envelope content, the encoding rules for the
data types, and conventions for defining requests and responses. SOAP is vendor
neutral, and can support any language, programming model, and platform.
Implementations of SOAP exist in Java, Perl, C/C++, and C#.

• Web Services Definition Language (WSDL) is the XML based description of a
web service as a group of ports which are in turn defined by associating a network
address with a reusable binding. Each binding defines a group of operations (port
type) that is associated with a protocol. Each operation in turn is defined in terms
of messages and types. WSDL facilitates the abstract definition of web services to
be separated from their concrete implementations.

• The Universal Description, Discovery and Integration (UDDI) specifications
define a way to publish and discover information about Web services. The core
component of the UDDI is the UDDI business registration, an XML file used to
describe a business entity and its Web services, and which are used to provide
white pages (service provider), yellow pages (business categories), and green
pages (technical binding information.)

What kind of applications will be built using web services? Primarily, the focus will be
on integration – starting from integrating applications within the enterprise (happening
now), moving to integrating the entire supply chain (in the next 6 months to a year), to a
complete dynamic e-business (in 2-3 years.) However, with web services several new
opportunities emerge, including the “pay as you go” subscription based pricing model
(e.g. IBM’s e-business on demand e-utility model http://www-1.ibm.com/services/
ondemand/index_flash.html) and the emerging area of grid computing (http://
www.globalgridforum.org/)

It is important to note that web services are at their infancy – specifications are still
evolving, (competing) standards are being defined, critical enterprise issues (including
scalability, performance, security, etc.) have to be defined and implemented, and best
practices, frameworks, and design patterns have to be developed and used. Follow their
evolution through the standards bodies involved including W3C
(http://www.w3.org/2002/ws/), OASIS (http://www.oasis-open.org/committees/wsia/),
WS-I (http://www.ws-i.org/), and the community portal http://www.webservices.org/

http://www-1.ibm.com/services/ondemand/index_flah.html
http://www.globalgridforum.org/
http://www.w3.org/2002/ws/
http://www.oasis-open.org/committees/wsia/
http://www.ws-i.org/
http://www.webservices.org/

 OBJECTS ARE FOR WIMPS: REAL DEVELOPERS NEED S.O.S.

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

2 SKILLS IN THE BRAVE NEW WORLD

What skills are needed in this brave new world? Here is a summary of the core skills
needed for each participant in the service oriented architecture:

For the Service Provider:

• Discover and access an existing web services for use in building new web services
using UDDI to find the web service, WSDL to understand how to access the web
service, and SOAP to actually use the web service.

• Create a new web service which includes a WSDL based definition and the actual
implementation of the web service. There are several approaches including a
"green field" approach where the web service application and web service
interface are built from "scratch", a bottom-up approach where a web service
interface is built on an existing application, and a top-down approach where an
implementation to an existing service interface is built.

• Deploy a web service to an application server which includes configuring the
server to run the web service and installing the web service on the application
server.

• Test a web service to validate its behavior which requires the development of a
client proxy for the web service, and test clients that can use the proxy to invoke
the web service. Testing should also validate that the web service can be searched
for in the registry, the binding information is sufficient to allow a client to access
the web service, and that the web service can be invoked from various clients.

• Publish a web service by registering it (along with the WSDL) into a UDDI
service registry.

For the Service Requestor:

• Discover existing web services using the UDDI based services provided by a
service registry.

• Access existing web services in many ways including via static binding (i.e. no
run-time registry lookup), build-time dynamic binding (i.e. by generating a
service proxy and allowing the proxy to locate a specific implementation), and
run-time dynamic binding (i.e. the client environment will dynamically generate,
build, and execute a specific implementation).

For the Service Broker:

Skills in the Brave new world

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 59

• Establish a UDDI registry for web services. Both private and public registries are
feasible. Public registeries have additional stringent requirements for ensuring that
all the information in the public registries are in synch. Visit http://www.uddi.org
for more details of how to set up a registry.

• Allow clients to perform basic operations on the UDDI registry, including
publishing to a UDDI registry, searching a UDDI registry, and deleting from a
UDDI registry.

3 SO HOW DO YOU GET S.O.S?

Almost all of the training organizations (both academic and industrial) are still focused in
the distributed OO “camp”, and very few have started to address SOS skills. Most
training organizations do provide orthogonal tracks in developing XML skills, and some
even have made the connection in combining XML and Java skills. However, the focus
of the XML skills is primarily at addressing “presentation”, i.e. the use of XML to
represent information and using XSL to transform the information so it can be presented
in a style that is appropriate to the device (e.g. web browsers, wireless phones, and
voice.) There exists training targeted at message oriented middleware, which usually
cover XML as the basis for the messages that need to be transported. So, how do you get
SOS? Well, the answer depends on where you are as shown below.
Distributed Object Developers: You should have solid object skills, and need to
concentrate on strengthening your specification skills and building your services skills.
You should have a good foundation in specification skills as you are required to use well
defined interfaces to build distributed applications. The skill that you need to build on top
of this foundation is the ability to design a (document based) specification, and then build
an implementation for the defined interface. The first step in developing these skills is to
get a solid foundation in XML and its related technologies, and programming using XML
and Java (or your language of choice.) After acquiring these core skills, you can move to
building your web services skills. The primary focus of your skills will be on
understanding the underlying technologies (SOAP, WSDL, and UDDI) and using these
technologies in the context of the tasks that you need to perform (as defined above.) Note
that building the programming skills will be very dependent on the development
environment (including language, component model, and tools) that you choose to build
your skills on. For example, a J2EE based development environment would require that
you understand how to use the Java API for XML (JAX) based specifications for
integrating web services with J2EE applications (http://www.jcp.org
/aboutJava/communityprocess/review/jsr109). The main problem that you will face in
building up your skills will be on how to design distributed objects so that they can be
used as or in conjunction with web services. The main concern is that web services are
not “objects”, so an initial approach of simply mapping a distributed object into a web

http://www.uddi.org
http://www.jcp.org/aboutJava/communityprocess/review/jsr109

 OBJECTS ARE FOR WIMPS: REAL DEVELOPERS NEED S.O.S.

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

service will not lead to a well-designed web service. Furthermore, the current OO
methods and best practices (patterns, frameworks, etc.) do not apply very well to building
web services. Unfortunately, since web service technology is still in its infancy, a lot of
the work in building appropriate methods and best practices is ongoing and not well
established yet. Note, however, that distributed objects and web services are
complementary. So, you need to develop a good understanding of both worlds, and know
how to use them in conjunction with each other. So, for example, when you have
designed a web service, you will implement it using distributed objects.

Document-Oriented or Message-Oriented Developers: You should have solid skills in
designing and manipulating documents, messages, and specifications primarily using
XML and its related technologies. You can start building your web services skills by
mastering the underlying technologies (SOAP, WSDL, and UDDI) and using these
technologies in the context of the tasks that you need to perform (as defined above.) Most
likely, you will rely on your core XML skills to build interfaces to and wrap existing
applications so that they can be used as web services. The main problem you will face is
in composing and integrating various applications together into a web service. You will
need to get very good support from the underlying tools to help you in the “wrappering”
and integration process, e.g. develop skills in using the technologies and tools for
supporting web service development from http://www.alphaworks.ibm.com/webservices
which includes support for wrappering and integration of web services.
Academic Institutions: The most recent computer science curriculum proposal from
IEEE and ACM http://www.computer.org/education/cc2001/final/index.htm paves the
way for finally establishing an OO based curriculum. The key for academic institutions
adopting SOS is to evolve the proposed model to incorporate “document-oriented” XML
based concepts and skills at the same introductory core level as “object-oriented” Java
based concepts and skills are handled. The next step is to extend the coverage within each
of the applicable intermediary courses (especially in the compressed and web-based
approach) from component-based distributed object applications to service-based
distributed integration applications, and from B2C to B2B applications. The advanced
courses can support coverage of handling dynamic e-businesses, managed business
processes, and the standards/specification process.

http://www.alphaworks.ibm.com/webservices
http://www.computer.org/education/cc2001/final/index.htm

So how do you get S.O.S?

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 61

About the author

Mahesh Dodani is an e-business architect with IBM Global Services.
His primary interests are in helping enterprises transfrom themselves
from their current environment into being an e-business. He can be
reached at dodani@us.ibm.com.

mailto:dodani@us.ibm.com

