

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

Cite this column as follows: Anthony J. H. Simons: The Theory of Classification, Part 1:
Perspectives on Type Compatibility, in Journal of Object Technology, vol. 1, no. 1, May-June
2002, pages 55-61, http://www.jot.fm/issues/issue_2002_05/column5

The Theory of Classification

Part 1: Perspectives on Type
Compatibility

Anthony J H Simons, Department of Computer Science, University of Sheffield

1 INTRODUCTION

This is the first article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. The object-oriented notion of classification has for long
been a fascinating issue for type theory, chiefly because no other programming paradigm
has so sought to establish systematic sets of relationships between all of its types. Over
the series, we shall seek to find answers to questions such as: What is the difference
between a type and a class? What do we mean by the the notion of plug-in compatibility?
What is the difference between subtyping and subclassing? Can we explain inheritance,
method combination and template instantiation? Along the way, we shall survey a
number of different historical approaches, such as subtyping, F-bounds, matching and
state machines and seek to show how these models explain the differences in the
behaviour of popular object-oriented languages such as Java, C++, Smalltalk and Eiffel.
The series is titled "The Theory of Classification", because we believe that all of these
concepts can be united in a single theoretical model, demonstrating that the object-
oriented notion of class is a first-class mathematical concept!

In this introductory article, we first look at some motivational issues, such as the
need for plug-in compatible components and the different ways in which compatibility
can be judged. Reasons for studying object-oriented type theory include the desire to
explain the different features of object-oriented languages in a consistent way. This leads
into a discussion of what we really mean by a type, ranging from the concrete to the
abstract views.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/column5

 THE THEORY OF CLASSIFICATION, PART 1: PERSPECTIVES ON TYPE COMPATIBILITY

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

2 COMPONENTS AND COMPATIBILITY

The eventual economic success of the object-oriented and component-based software
industry will depend on the ability to mix and match parts selected from different
suppliers [1]. In this, the notion of component compatibility is a paramount concern:

• the client (component user) has to make certain assumptions about the way a
component behaves, in order to use it;

• the supplier (component provider) will want to build something which at least
satisfies these expectations;

But how can we ensure that the two viewpoints are compatible? Traditionally the notion
of type has been used to judge compatibility in software. We can characterise type in two
fundamental ways:

• syntactic compatibility - the component provides all the expected operations (type
names, function signatures, interfaces);

• semantic compatibility - the component's operations all behave in the expected
way (state semantics, logical axioms, proofs);

and these are both important, although most work published as "type theory" has
concentrated on the first aspect, whereas the latter aspect comes under the heading of
"semantics" or "model checking". There are many spectacular examples of failure due to
type-related software design faults, such as the Mars Climate Orbiter crash and the
Ariane-5 launch disaster. These recent high-profile cases illustrate two different kinds of
incompatibility.

In the case of the Mars Climate Orbiter, the failure was due to inadequate
characterisation of syntactic type, resulting in a confusion of metric and imperial units.
Output from the spacecraft's guidance system was re-interpreted by the propulsion system
in a different set of measurement units, resulting in an incorrect orbital insertion
manoeuvre, leading to the crash [2]. In the case of the Ariane 5 disaster, the failure was
due to inadequate characterisation of semantic type, in which the guidance system
needlessly continued to perform its pre-launch self-calibration cycle. During launch, the
emission of larger than expected diagnostic codes caused arithmetic overflow in the data
conversion intended for the propulsion system, which raised an exception terminating the
guidance system, leading to the violent course-correction and break-up of the launcher
[3]. This last example should be of particular interest to object-oriented programmers,
since it involved the wholesale reuse of the previously successful guidance software from
the earlier Ariane 4 launcher in a new context.

Degrees of Strictness and Sophistication

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 57

3 DEGREES OF STRICTNESS AND SOPHISTICATION

How strictly must a component match the interface into which it is plugged? In Pascal, a
strongly-typed language, a variable can only receive a value of exactly the same type, a
property known as monomorphism (literally, the same form). Furthermore, types are
checked on a name equivalence, rather than structural equivalence basis. This means
that, even if a programmer declared Meter and Foot to be synonyms for Integer, the
Pascal type system would still treat the two as non-equivalent, because of their different
names (so avoiding the Martian disaster). In C++, typedef synonyms are all considered to
be the same type and you would have to devise wrapper classes for Meter and Foot to get
the same strict separation.

Furthermore, all object-oriented languages are polymorphic (literally, having many
forms), allowing variables to receive values of more than one type.1 From a practical
point of view, polymorphism is regarded as an important means of increasing the
generality of an interface, allowing for a wider choice of components to be substituted,
which are said to satisfy the interface. Informally, this is understood to mean supplying
at least those functions declared in the interface. However, the theoretical concept of
polymorphism is widely misunderstood and the term mistakenly applied, by object-
oriented programmers, variously to describe dynamic binding or subtyping. The usage
we shall adopt is consistent with established work in the functional programming
community, in that it requires at least a second-order typed lambda calculus (with type
parameters) to model formally [4]. However, we must lay more foundations before
introducing such a calculus.

A simple approach to interface satisfaction is subtyping. This is where an object of
one type may safely be substituted where another type was expected [5]. This involves
no more than coercing the supplied subtype object to a supertype and executing the
supertype's functions. The coerced object then behaves in exactly the same way as
expected. An example of this is where two SmallInt objects are passed to an Integer plus
function and the result is returned as an Integer. The function originally expected
Integers, but could handle subtypes of Integer and convert them. Note that no dynamic
binding is implied or required. Also, a simply-typed first-order calculus (with subtyping)
is adequate to explain this behaviour.

We shall call the more complex, polymorphic approach subclassing. This is where
one type is replaced by another, which also systematically replaces the original functions
with new ones appropriate to the new type. An example of this is where a Numeric type,
with abstract plus, minus, times and divide, is replaced by a Complex type, having
appropriately-retyped versions of these (as in Eiffel [6]). Rather than coerce a Complex
object to a Numeric, the call to plus through Numeric should execute the Complex plus
function. Also, there is an obligation to propagate type information about the arguments

1 Beware object-oriented textbooks! Polymorphism does not refer to the dynamic behaviour of objects
aliased by a common superclass variable, but to the fact that variables may hold values of more than one
type in the first place. This fact is independent of static or dynamic binding.

 THE THEORY OF CLASSIFICATION, PART 1: PERSPECTIVES ON TYPE COMPATIBILITY

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

and result-type of Complex's plus back to the call-site, which needs to supply suitable
arguments and then know how to deal with the result. In a later article, we shall see why
this formally requires a parametric explanation.

To summarise so far, there are three different degrees of sophistication when judging
the type compatibility of a component with respect to the expectations of an interface:

• correspondence: the component is identical in type and its behaviour exactly
matches the expectations made of it when calls are made through the interface;

• subtyping: the component is a more specific type, but behaves exactly like the
more general expectations when calls are made through the interface;

• subclassing: the component is a more specific type and behaves in ways that
exceed the more general expectations when calls are made through the interface.

Certain object-oriented languages like Java and C++ practise a halfway-house approach,
which is subtyping with dynamic binding. This is similar to subtyping, except that the
subtype may provide a replacement function that is executed instead. Adapting the
earlier example, this is like the SmallInt type providing its own version of the plus
function which wraps the result back into the SmallInt range. Syntactically, the result is
acceptable as an Integer, but semantically it may yield different results from the original
Integer plus function (when wrap-around occurs). The selection mechanism of dynamic
binding is formally equivalent to higher-order functional programming [7], in which
functions are passed as arguments and then are dynamically invoked under program
control. So, languages with apparently simple type systems are more complex than they
may at first seem.

4 CONCRETE AND ABSTRACT TYPES

How can we explain the behaviour of languages such as Smalltalk, C++, Eiffel and Java
in a consistent framework? Our goal is to find a mathematical model that can describe
the features of these languages; and a proof technique that will let us reason about the
model. To do this, we need an adequate definition of type that will allow reasoning about
syntactic and semantic type compatibility. This brings into question what we mean
exactly by a type.

Bit-Interpretation Schemas

There are various definitions of type, with increasing formal usefulness. Some
approaches are quite concrete, for example a programmer sometimes thinks of a type as a
schema for interpreting bit-strings in computer memory, eg the bit-string 01000001 is 'A'
if interpreted as a Character; but 65 if interpreted as an Integer. This approach is
concerned more with machine-level memory storage requirements than with formal
properties necessary to reason about types.

Concrete and Abstract Types

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 59

Model-Based and Constructive Types

An afficionado of formal methods (such as Z [8], or VDM) likes to think of types as
equivalent to sets: x : T ⇔ x ∈ T.

This is called the model-based approach, in which the notion of type is grounded in
a set-theoretic model, that is, having type (x : T, "x is of type T") is equivalent to set
membership (x ∈ T, "x is a member of set T") All program operations can be modelled
as set manipulations. The constructive approach [9] also translates a program into a
simpler concrete model, like set-theory, whose formal mathematical properties are well
understood.

Concrete approaches have their limits [10], for example, how would you specify an
Ordinal type? You merely want to describe something that is countable, whose elements
are ordered, but not assert that any particular set "is" the set of Ordinals. The set of
Natural numbers: Natural = {0, 1, 2...} is too specific a model for Ordinal, since this
excludes other ordered things, like Characters, and the Natural numbers are subject to
further operations (such as arithmetic) which the Ordinals don't allow (although strictly
the set-theoretic model only enumerates the membership of a type and does not describe
how elements behave).

Syntactic and Existential Abstract Types

A type theorist typically thinks of a type as a set of function signatures, which describe
the operations that a type allows. This characterises the type in a more abstract way, by
enumerating the operations that it allows. The Ordinal type is defined as:

Ordinal = ∃ ord . {first: → ord; succ: ord → ord}
in which ∃ ord can be read as "let there be an uninterpreted set ord", such that the
following operations accept and return elements from this (as yet undefined) set. Ordinal
is then defined as the type providing first and succ; and we don't care about the
representation of ord. This approach is variously called syntactic, since it is based on
type signatures, or existential, since it uses ∃ to reveal the existence of a representation,
but refuses to qualify ord any further.

Although syntactic types reach the desired degree of abstraction away from concrete
models, they are not yet precise. Consider that the following faulty expressions are still
possible:

succ('b') = first() = 'a' - an undesired possibility;
succ(1) = 1 - another undesired possibility;

This is because the signatures alone fail to capture the intended meaning of functions.

 THE THEORY OF CLASSIFICATION, PART 1: PERSPECTIVES ON TYPE COMPATIBILITY

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Axioms and Algebraic Types

A mathematician considers a type as a set of signatures and constraining axioms. The
type Ordinal is fully characterised by:

Ordinal = ∃ ord . {first: → ord; succ: ord → ord}
∀x : Ordinal . (succ(x) ≠ first()) (1)
 ∧ (succ(x) ≠ x) (2)

This form of definition is known as an algebra. Formally, an algebra consists of: a sort
(that is, an uninterpreted set, ord, acting as a placeholder for the type); and a set of
functions defined on the sort (first, succ), whose meaning is given by axioms. The two
axioms (1) and (2), plus the logical rule of induction, are sufficient to make Ordinal
behave in exactly the desired way. But how do the axioms work? Let us arbitrarily label:
x = first().

• From (1), succ(x) ≠ first(), so we know succ(x) is distinct from x; let us choose
another arbitrary label: y = succ(x).

• From (2) succ(y) ≠ y; from (1) succ(y) ≠ x, so we know succ(y) is distinct from x
and y; let us therefore label: z = succ(y) = succ(succ(x)).

• From (2) succ(z) ≠ z; from (1) succ(z) ≠ x; but could succ(z) = y? Although
there is no ground axiom that instantly forbids this, induction rules it out, because:

by substitution of y and z, we get: succ(succ(succ(x))) = succ(x)
by unwinding succ, we get: succ(succ(x)) = x, which is false by (1),
so succ(z) is also distinct; and so on...

Once the algebra is defined, we can disregard the sort, which is no longer needed, since
every element of the type can now be expressed in a purely syntactic way:

first(); succ(first()); succ(succ(first())); ...
The algebraic definition of Ordinal says exactly enough and no more [11]; it is both
more abstract than a concrete type - it is not tied to any particular set representation - and
is more precise - it is inhabited exactly by a monotonically-ordered sequence of abstract
objects.

5 CONCLUSION

We are motivated to study object-oriented type theory out of a concern to understand
better the notion of syntactic and semantic type compatibility. Compatibility may be
judged according to varying degrees of strictness, which each have different
consequences. Likewise, different object-oriented languages seem to treat substitutability
in different ways. As a preamble to developing a formal model in which languages like

Conclusion

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 61

Smalltalk, C++, Eiffel and Java can be analysed and compared, increasingly abstract
definitions of type were presented. The next article in this series builds on the foundation
laid here and deals with models of objects, methods and message-passing.

REFERENCES

[1] B J Cox, Object-Oriented Programming: an Evolutionary Approach, 1st edn.,
Addison-Wesley, 1986.
[2] Mars Climate Orbiter Official Website, http://mars.jpl.nasa.gov/msp98/orbiter/,
September 1999.
[3] J L Lions, Ariane 5 Flight 501 Failure, Report of the Inquiry Board,
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html, July 1996.
[4] J C Reynolds, Towards a theory of type structure, Proc. Coll. sur la
Programmation, New York; pub. LNCS 19, Springer Verlag, 1974, 408-425.
[5] L Cardelli and P Wegner, On understanding types, data abstraction and
polymorphism, ACM Computing Surveys, 17(4), 1985, 471-521.
[6] B Meyer, Object-Oriented Software Construction, 2nd edn., Prentice Hall, 1995.
[7] W Harris, Contravariance for the rest of us, J. of Obj.-Oriented Prog., Nov-Dec,
1991, 10-18.
[8] J M Spivey, Understanding Z: a Specification Language and its Formal
Semantics, CUP, 1988.
[9] P Martin-Löf, Intuitionistic type theory, lecture notes, Univ. Padova, 1980.
[10] J H Morris, Types are not sets, Proc. ACM Symp. on Principles of Prog. Langs.,
Boston, 1973, 120-124.
[11] K Futatsugi, J Goguen, J-P Jouannaud and J Messeguer, Principles of OBJ-2,
Proc. 12th ACM Symp. Principles of Prog. Langs., 1985, 52-66.

About the author
Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk

