

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

Cite this column as follows: James Odell: Objects and Agents Compared, in Journal of Object
Technology, vol. 1, no. 1, May-June 2002, pages 41-53,
http://www.jot.fm/issues/issue_2002_05/column4

Objects and Agents Compared
James Odell, Independent Consultant

Just how different—or the same—are objects and agents? Some developers consider
agents to be objects, except with more bells and whistles. Then, there are those who
see agents and objects as different even though they share many things in common.
Both approaches, however, envision using objects and agents together in the
development of software systems. In other words, objects and agents are two distinct
notions—each having its own particular place in software development. The important
point here is that the agent-based way of thinking brings a useful and important
perspective for system development, which is different from—while similar to—the
object-oriented way. This paper discusses some of the differences and similarities
between agents and objects and lets you decide which viewpoint you want to choose.

1 EVOLUTION OF PROGRAMMING APPROACHES

Figure 1 illustrates one way of thinking about the evolution of programming languages.
Originally, the basic unit of software was the complete program where the programmer
had full control. The program’s state was the responsibility of the programmer and its
invocation determined by the system operator. The term modular did not apply because
the behavior could not be invoked as a reusable unit in a variety of circumstances.

�����
�����	

���

��������������
�����	

���

�����	�
�����	

���

����������
�����	

���

�����	����
����	�
����

���	����

����
��	��

����
�����	���� ������� ��	��

!"����	�
�
���	��

!"����	�

!"����	�
!"����	�
�#�$$��

!"����	� ������	�

�����	� �����	�

������	�

������	�

Figure 1 — Evolution of programming approaches [1].

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/column4

 OBJECTS AND AGENTS COMPARED

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

As programs became more complex and memory space became larger, programmers
needed to introduce some degree of organization to their code. The modular
programming approach employed smaller units of code that could be reused under a
variety of situations. Here, structured loops and subroutines were designed to have a high
degree of local integrity. While each subroutine’s code was encapsulated, its state was
determined by externally supplied arguments and it gained control only when invoked
externally by a CALL statement. This was the era of procedures as the primary unit of
decomposition.

In contrast, object orientation added to the modular approach by maintaining its
segments of code (or methods) as well as by gaining local control over the variables
manipulated by its methods. However in traditional OO, objects are considered passive
because their methods are invoked only when some external entity sends them a message.

Software agents have their own thread of control, localizing not only code and state
but their invocation as well. Such agents can also have individual rules and goals,
making them appear like “active objects with initiative.” In other words, when and how
an agent acts is determined by the agent.

Agents are commonly regarded as autonomous entities, because they can watch out
for their own set of internal responsibilities. Furthermore, agents are interactive entities
that are capable of using rich forms of messages. These messages can support method
invocation—as well as informing the agents of particular events, asking something of the
agent, or receiving a response to an earlier query. Lastly, because agents are autonomous
they can initiate interaction and respond to a message in any way they choose. In other
words, agents can be thought of as objects that can say “No”—as well as “Go.” Due to
the interactive and autonomous nature of agents, little or no interation is required to
physically launch an application. Van Parunak summarizes it well: “In the ultimate
agent vision, the application developer simply identifies the agents desired in the final
application, and the agents organize themselves to perform the required functionality."
[1] No centralized thread or top-down organization is necessary since agent systems can
organize themselves.

2 AGENTS ARE AUTONOMOUS

Since a key feature of agents is their autonomy, agents are capable of initiating action
independent of any other entity. However, such autonomy is best characterized in
degrees, rather than simply being present or not. To some degree, agents can operate
without direct external invocation or intervention.

Dynamic Autonomy

Autonomy has two independent aspects: dynamic autonomy and nondeterministic
autonomy. Agents are dynamic because they can exercise some degree of activity. As

Agents are Autonomous

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 43

illustrated in Fig. 2, an agent can have some degree of behavior from being simply
passive to entirely proactive.

For example, paint booths were experimentally treated as agents at GM. Here,
information about an unpainted car or truck coming down the line is posted in an
automated form that is accessible to all paint booths. When a paint booth nears
completion of it current job, it basically says, "Hmmm, I'm running out on work, I'll look
over at the jobs posted."If the booth is currently applying the color of paint required by an
upcoming job, it will bid more for the job than a booth having a different color. Other
bidding criteria could include how easy or important the job is. In a top-down planned
"push-through" world, if one booth malfunctions the plan would require immediate
recomputing; with bottom-up "pull-through" paint booth agents, there are other booths to
pick up the bidding slack at a moment's notice. [2]

��������	
���

� �
� ����

�
��

�
��

�

�

�
��

�
�

��������	

	�����	

��	������	 ��	��	��	�

������

���

���

����
����

��������
�����

�� �����
�����

������	

�����������
�����

��������
������

Figure 2 — Two aspects of autonomy (based on collaborative

work with Van Parunak).

Agents can react not only to specific method invocations but to observable events

within the environment, as well. Proactive agents will actually poll the environment for
events and other messages to determine what action they should take. To compound this,
in multiagent systems agents can be engaged in multiple parallel interactions with other

 OBJECTS AND AGENTS COMPARED

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

agents—magnifying the dynamic nature of agents. In short, an agent can decide when to
say "go."

Objects, on the other hand, are conventionally passive—with their methods being
invoked under a caller's thread of control. The term autonomy barely applies to an entity
whose invocation depends solely on other components in the system. However, UML
and Java have recently introduced event-listener frameworks and other mechanisms for
allowing objects to be more active. In other words, objects are now capable of some of
the dynamic capability of agents.

Unpredictable Autonomy

Agents may also employ some degree of unpredictable (or nondeterministic) behavior.
When observed from the environment, an agent can range from being totally predictable
to completely unpredictable (Fig. 2). For example, an ant that is wandering around
looking for food can appear to be taking a random walk. However, once pheromones or
food are detected, its behavior becomes reasonably predictable. In contrast, it is difficult
to predict which GM paint station will paint which vehicle. The behavior of a shopping
agent might be highly unpredictable. Giving it criteria for a gift, will not predict exactly
which gift it will choose. In fact, the agent might return empty handed because it did not
find any gifts that match the criteria. In other words, the agent can also say "no."1

Conventional objects do not have to be completely predictable. However, the typical
usage and direct support with OO languages tends toward a more predictable approach.
For instance, when a message is sent to an object, the method is predictably invoked.
Yes, an object may determine whether or not to process the message and how to respond
if it does. However, in common practice if an object says no, it is considered an error
situation; with agents, this is not the case.

Usually, object classes are designed to be predictable in order to facilitate buying and
selling reusable components. Agents are commonly designed to determine their behavior
based on individual goals and states, as well as the states of ongoing conversations with
other agents. While OO implementations can be developed to include nondeterministic
behavior, this is common in agent-based thinking.

Agent behavior can also be unpredictable because the agent-based approach has a
more “opaque” notion of encapsulation. First, the requested behaviors that an agent
performs may not even be known within an active system. This is a clear distinction from
object systems, because current OO languages only let you ask an object what interfaces
it supports. Since the programmer needs to have some idea what interface to ask for, this
makes coding difficult. In OO, there is no provision in current languages for an object to
"advertise" its interfaces. In contrast, an agent can employ other mechanisms, such as

1 The FIPA agent standards organization states that all agents must be able to handle all messages that they
receive. Here, an agent may choose various actions, such as respond in a manner of its choosing, decide
that the request is outside of its competency, ignore the message because it is not well formed, or just refuse
to do it on various grounds.

Agents are Autonomous

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45

publish/subscribe, protocol registration, “yellow page,” “green page,” and “white page”
directories. Another common mechanism provides specialized broker agents to which
other agents can make themselves known for various purposes but are otherwise unlisted
to the rest of the agent population.

Second, the underlying agent communication model is usually asynchronous. This
means that there is no predefined flow of control from one agent to another. An agent
may autonomously initiate internal or external behavior at anytime, not just when it is
sent a message [3]. Asynchronous messaging and event notification are part of agent-
based messaging systems, and agent languages need to support parallel processing.
These are not part of the run-of-the-mill OO language. Those that require such
functionality in an OO system typically layer these features on top of the object model
and OO environment. Here, the agent model explicitly ties together the objects (data and
functionality) with the parallelism (execution autonomy, thread per agent, etc.).
According to Geoff Arnold of Sun Microsystems, “Just as the object paradigm forced us
to rethink our ideas about the proper forms of interaction (access methods vs. direct
manipulation, introspection, etc.), so agents force us to confront the temporal implications
of interaction (messages rather than RMI, for instance).”

�������

������
�	
������	

������
�	��������	

�	��

���������	

���	��

������ ������	
Figure 3 — Degrees of interaction.

3 AGENTS ARE INTERACTIVE

Interaction implies the ability to communicate with the environment and other entities.
As illustrated in Fig. 3, interaction can also be expressed in degrees. On one end of the
scale, object messages (method invocation) can be seen as the most basic form of
interaction. A more complex degree of interaction would include those agents that can
react to observable events within the environment. For example, food-gathering ants
don’t invoke methods on each other; their interaction is indirect, through direct physical
effects on the environment. And finally in multiagent systems, agents can be engaged in
multiple, parallel interactions with other agents. Here, agents can act as a society.

One method per message

An object’s message may request only one operation, and that operation may only be
requested via a message formatted in a very exacting way. The OO message broker has
the job of matching each message to exactly one method invocation for exactly one
object.

 OBJECTS AND AGENTS COMPARED

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Agent-based communication can also use the method invocation of OO. However,
the demands that many agent applications place on message content are richer than those
commonly used by object technology. While agent communication languages (ACL) are
formal and unambiguous, their format and content vary greatly. In short, an agent
message could consist of a character string whose form can vary yet obeys a formal
syntax, while the conventional OO method must contain parameters whose number and
sequence are fixed. Theoretically, this could be handled with objects by splitting the
world into two portions: one including messages for which we have conventional
methods, another including messages that we send as strings.

To support string-based messages in an OO language, you could either anticipate
every possible variation by supplying a specialized method for each or use a general
utility AcceptCommunicativeString method. The AcceptCommunicativeString method,
then, could cover the multitude of services that an object might handle. However, with
just a single method, the underlying services would not be part of the published interface.
In the traditional OO environment, such an environment would be both boring and not
very forthcoming. In agent-based environments, agent public services and policies can
be made explicit through a variety of techniques (described earlier).

Agent communicative languages

Since we may wish to send a message to any (and every) agent, we need the expressive
power to cover all desired situations—including method invocation. Therefore, an agent
communication language is necessary for expressing communications among agents—
and even objects. The ACL syntax could be specially crafted for each application.
However, the lack of standardization would quickly result in a tower of Babel. Here, two
applications could have difficulty interacting with one another; for an entire organization,
it would be totally impractical. Standard ACL formats, then, would be desirable. Two
of the most popular general purpose ACLs are KQML and the FIPA ACL. These ACLs
communicate agent speech acts, specify ontologies, and participate in discussion patterns
called protocols.

Conversations and long-term associations

Another way in which agent interaction can be more than just method invocation is that
agents can be involved in long-term conversations and associations. Agents may engage
in multiple transactions concurrently, through the use of multiple threads or similar
mechanisms. In an agent-messaging environment, each conversation can be assigned a
separate identity. Additionally, either a unique message destination or a unique identifier
can be used to sort out the threads of discourse. Conventional OO languages and
environments have difficulty supporting such a requirement, directly or indirectly. It
should be mentioned that objects could be used for the elements of agent conversation—
including the conversation itself. In other words, agents can employ objects for those
situations requiring entities with little autonomous or interactive ability.

Agents are Interactive

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47

Third-party interactions

Geoff Arnold has considered the question of third party interactions which are very hard
for strongly typed object systems to handle. Here, two patterns come to mind. The first
involves a broker that accepts a request and delegates it to a particular service provider
based on some algorithm that is independent of the type of service interface (e.g., cost,
reachability). The second involves an anonymizer that hides the identity of a requester
from a service provider. Models based on strong typing, such as CORBA, RMI, and Jini,
cannot easily support these patterns.

4 PHILOSOPHICAL DIFFERENCES

Two key areas that can differentiate the agent-based approach from traditional OO are
autonomy and interaction. However, there are other ways in which agents may seem to
differ from objects. The list below describes some underlying concepts that agent-based
systems can employ. None are universally used by agents: active object systems may use
them as well. Furthermore, no agent system is required to use any of them.

• Decentralization Objects can be thought of as centrally organized, because an
object's methods are invoked under the control of other components in the system.
Yet, some situations require techniques that are decentralized and self-organized.
For example, classical ballet requires a high degree of centralization called
choreography, while at the other extreme the processes of nature involve a high
degree of individual direction. However, most businesses require a balance of
standardized procedures and individual initiative: one extreme or the other would
be detrimental to the business. Supply-chain systems can be planned and centrally
organized when the business is basically stable and predictable. In unstable and
unpredictable environments, supply chains should be decentralized and self-
organized (an option not supported by commercial supply-chain systems today).
Agent-based environments can employ both centralized and decentralized
processing. While agents can certainly support centralized systems, they can also
provide us with the ultimate in distributed computing.

• Multiple and dynamic classification In OO languages, objects are created by a
class and, once created, may never change their class or become instances of
multiple classes (except by inheritance). Agents can provide a more flexible
approach. For example, a particular agent can be a person, employee, spouse,
landowner, customer, and seller all at the same time or at different times. When
the agent is an employee, that agent has all the state and procedural elements
consistent with being an employee. If the agent is terminated from his or her job,
the employment-related state and procedural elements are now longer available to
the agent. Whether employed or not, the agent is still the same entity—it just has
a different set of features. The ability to express roles and role changes is not new
to OO. However, most OO languages do not directly support this mechanism

 OBJECTS AND AGENTS COMPARED

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

(even though UML does). Furthermore, agents might play different roles in
different domains. When you go to work, you play the employee role. When you
return home, you change roles—for example, playing the spouse role. OO
languages do not directly support such domain-dependent mechanisms that are
necessary for agent-based environments. The single-class OO approach is
efficient and reliable; the multiple and dynamic approach provides flexibility and
more closely models our perception of the world. Agents can use either approach;
the choice belongs to the system designer.

• Instance-level features The features possessed by each object are defined by its
class—a benefit enjoyed by agents as well. However, each agent may also
acquire or modify its own features, i.e., features that are not defined at the class
level, but at the individual agent (or instance) level. In other words, if an
individual agent has the ability to learn, it can change its own behavior—
permitting it to act differently that any other agent. If an agent can change itself,
it can add (as well as subtract) features dynamically. For example, with genetic
programming software, agents are created genetically. Here, each parent
contributes some portion of an offspring agent's genetic string—much in the same
way that occurs in nature. This approach is particularly popular in one area of
agent-based systems known as artificial life. (Artificial life is the study of man-
made systems that exhibit the behavioral characteristic of natural living systems.
It models life-as-we-know-it within the larger picture of life-as-it-should-be.)

• Small in impact [1] Both objects and agents can be described as slim or fat,
small grained or large grained. Additionally, in systems with large numbers of
agents or objects, each can be small in comparison with the whole system.
However, an individual agent can have less impact on a system than an object.
For example, each ant is an almost negligible part of the entire ant colony. As a
result, the behavior of the whole tends to be stable despite performance variations
or the death of any single agent. In an agent-based supply chain, if a supplier or a
buyer is lost, the collective dynamics can still dominate. If an object is lost in a
system, an exception is raised.

• Small in time Naturally occurring agent systems can forget. Ant pheromones
evaporate; our own memories can fade. Even the death of unsuccessful organisms
in an ecosystem is an important mechanism for freeing up resources for better
adapted organisms. Such analogies work for both agent-based and object-oriented
software systems. With agents, such comparisons are a natural part of the
approach.

• Small in scope Animals can usually sense only their immediate vicinity. In spite
of this restriction, they can generate effects that extend far beyond their own
limits. For example, an ant can sense a trail of pheromones only when its path
intersects with the pheromone trail. Despite the ant’s ignorance of the vast
pheromone network laid out by all the other ants, ant colonies work. In other
words, it is not necessary—in fact, not feasible—for every agent to know
everything. Instead of being omniscient and omnipotent, large agent-based

Philosophical Differences

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49

systems are local sensing and acting. Objects, too, employ this analogy to some
extent because objects generally only interact with other objects linked to them.
Also, objects using integrated databases can programmed to access databases
having only local knowledge. So, while being restricted to local knowledge is not
a new concept, with agents the notion is commonly used.

• Emergence The interaction of many individual agents can give rise to secondary
effects where groups of agents behave as a single entity. For example, ant
colonies, flocks of birds, and stock markets have emergent qualities. Each
consists of individual agents acting according to their own rules and even
cooperating to some extent. Yet, ants colonies thrive, birds flock, and markets
achieve global allocations of resources—all without a central cause or an overall
plan. Agents can possess just a few very simple rules to produce emergence. In
fact, when constructing agent-based systems, starting out with simple agents is
important, because emergence is then easier to understand and harness. More
complexity can be added over time to avoid being overwhelmed. Since traditional
objects do not interact without a higher level thread of control, emergence does
not usually occur. As more agents become decentralized, their interaction is
subject to emergence—either positive or negative. This phenomenon is both the
good news and bad news for large multiagent systems.

• Analogies from nature The autonomous and interactive character of agents
more closely resembles natural systems than do objects. Since nature has long
been very successful, identifying analogous situations to use in agent-based
systems is sensible. For example, agents can die when they lack supportive
resources. In supply-chain manufacturing, when a manufacturing-cell agent
cannot operate profitably, it dies of "malnutrition." Furthermore, another
manufacturing cell could come by and scavenge useful bits from the newly dead
cell.
Agents can exhibit properties of parasitism, symbiosis, and mimicry. They can
participate in "arms races" where agents can learn and outdo other agents. Agents
can participate in sexual (and asexual) reproduction that can incorporate
principles from Darwinian and Lamarckian evolution. Agent societies can exhibit
political and organizational properties—whether they are organized, anarchic, or
democratic. In short, nature can provide a rich trove of ideas for multiagent
system design.

 OBJECTS AND AGENTS COMPARED

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

5 TOWARDS THE COEXISTENCE OF AGENTS AND OBJECTS

It is tempting to assert: "An agent is an object that...."—completing the phrase in a variety
of ways. Jeff Bradshaw [4] refers to agents as "objects with an attitude" in the sense of
being objects with some additional behavior added, for instance, mobility, inference, etc.
Here, we are using objects as a generic modeling or abstraction mechanism,
independently of whether agents are implemented as objects (using object-oriented
programming techniques).

The viewpoint might help resolve the problem of multiple kinds of agents. In a
sense, we could view the maximal agent as potentially having all behaviors found in the
agent attributes list, and that degenerate forms of agents are those containing fewer than
all properties. In this view, objects are agents without these extra agent attributes. This
helps explain how agents might literally be "objects with an attitude." Taking this view,
considering agents that use agent communication languages as having the ability to "just
say no" to message requests, we can view objects as degenerate agents that always do as
they are told.

One can now simultaneously argue that agents are objects and that agents are
different from objects. These extra agent capabilities could be added to objects but then
they would become agents. The nice thing, then, is we have a path for treating agents and
objects the same in models and both as first class model elements. For example, we
could distinguish agents that communicate natively as agent-oriented and objects that
encapsulate and simulate native agent capabilities as agent-based, in comparison to the
traditional, similar distinction between object-oriented and object-based.
However are some of the challenges that confront us in the area of trying to understand
the relationship of objects to agents [5]:

• We know how to wrap legacy code and data with an object wrapper so the legacy
code and date can participate in object message passing. Can we do the same
thing with code, data (and objects), e.g., wrap them in an agent wrapper so they
can communicate as agents? Or do we need to add qualitatively more to turn
legacy code into agents? One example of a place where this is important is in
agent services. There seem to be useful services like registration, logging,
persistence, transactions, matchmaking (trading), administration, replication,
security, and many more that agents and agent systems would benefit from. Can
we just straightforwardly use object services for these? How important is it to
wrap these in agent wrappers to permit them to communicate via an agent
communication language (ACL)? Is there value in these middleware services
having autonomy?

• Can we really add additional features to objects so they become agents? This is
consistent with the general view that we progress computer science by adding and
packaging useful capability first to climb to abstract data types, then to objects,

Towards the coexistence of agents and objects

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51

eventually to agents. It is pretty clear that we added distribution and persistence
to objects already. We can similarly add mobility to objects to get mobile objects
and most mobile agents are just that. Information agents are generally active
objects in a network that implement database-like functions to aggregate data.
Traders exist in both the object and agent worlds, playing the same roles. The
puzzling cases come when we add agent belief and goal systems, inference,
learning, evolution, and ontologies. There does not seem to be an object correlate
for these, not yet, at any rate.

• If agents are going to be widely useful and common, then how do we go from the
current state of practice where agents are in the minority and agent systems are
often closed so that agents only communicate with other agents in their own
society, to a next generation world where agent technology is comparably
dominant to object technology and other possibly related technologies. If agents
are to coexist with objects, what implementation changes can be made to add
them seamlessly into programming environments like Java of C++? Can we find
ways to piggyback agent technology onto other pervasive technologies like email,
XML, distributed objects, databases, etc.? Some of the benefits might be
scalability and immediate pervasiveness.

In some sense, the burden of getting along with other technologies is a problem for the
agent camp - the sooner we provide migration strategies, the sooner agent technology can
become more widely available and useful. A way to put the problem in perspective is,
pretend you give some application developer an agent toolkit and also conventional tools
like scripting languages. At what point will solutions commonly be developed using
many of the tools from the agent toolkit? Will they just be used when they are useful,
like other tools. For instance, inference might just be used occasionally (perhaps rarely);
trading more often; mobility in certain families of situation; and so on.

6 AGENTS VERSUS OBJECTS CONCLUSION

Agents are autonomous entities that can interact with their environments. But, are they
just objects with extra attributes or are they really an entirely different approach? And,
just how important is it to answer this question? What is important is that objects and
agents are distinct enough to treat them differently. When we design systems, we can
choose a well thought-out mixture from both approaches. In some sense, the burden of
getting along with other technologies is a problem for both the agent and object camps.

The sooner we provide migration strategies, the sooner agent technology can become
more widely available and useful. Some software developers strongly advocate
composing agents from objects—building the infrastructure for agent-based systems on
top of the kind of support systems used for OO software systems. For example, many
structures and parts of agents can be reasonably expressed as objects. These might
include agent names, agent communication handles, agent communication language

 OBJECTS AND AGENTS COMPARED

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

components (including encodings, ontologies, and vocabulary elements), and
conversation policies.

In multiagent systems, an additional layer of software components may be naturally
expressed as objects and collections of objects. This is the underlying infrastructure that
embodies the support for agents composed of object parts. For example, this might
include communication factories, transport references, transport policies, directory
elements, and agent factories.

In short, when we design systems, we can choose a well thought-out mixture from
both approaches. We can even build aggregates where agents consist of both objects and
other agents, and vice-versa. For Grady Booch, employing agents with object systems is
useful because the agent-based approach[6]:

a) provides a way to reason about the flow of control in a highly distributed system,
b) offers a mechanism that yields emergent behavior across an otherwise static

architecture, and
c) codifies best practices in how to organize concurrent collaborating objects.

BIBLIOGRAPHY

1) [Parunak, Van Dyke 1997] Parunak, H. Van Dyke, ’Go to the Ant’: Engineering
Principles from Natural Agent Systems, Annals of Operations Research, 75, 1997, pp.
69-101.

2) [Morley 1998] Morley, Dick, Cases in Chaos: Complexity-Based Approaches to
Manufacturing, Embracing Complexity, Ernst & Young Center for Business
Innovation, Boston, MA, August, 1998, pp. 97–102.

3) [Wooldridge et al 2000] Wooldridge, Michael, Nicholas R. Jennings, and David
Kinny, The Gaia Methodology for Agent-Oriented Analysis and Design, Autonomous
Agents and Multi-Agent Systems, forthcoming, 2000.

4) [Bradshaw 1997] Bradshaw, J. (ed.), Software Agents, MIT Press, Cambridge, MA,
1997.

5) [Odell 2000] Odell, James (ed.), Agent Technology, green paper, OMG Agent Special
Interest Group, OMG document agent/00-09-01, 2000.

6) Booch, Grady, private communication, 2000.

Agents versus Objects Conclusion

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53

About the author
James J. Odell is a consultant, writer, and educator in the areas of
object-oriented and agent-based systems, business reengineering, and
complex adaptive systems. He has written four books on object
orientation and has two books in progress on agent-based system
design. His website is www.jamesodell.com.

http://www.jamesodell.com

