

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

How to cite this article: E. García-Roselló et al: Design principles for highly reusable concurrent
object-oriented systems, in Journal of Object Technology, vol. 1, no. 1, May -June 2002, pages
107-123, http://www.jot.fm/issues/issue_2002_05/article3

Design principles for highly reusable
concurrent object-oriented systems

Emilio García-Roselló, José Ayude, J. Baltasar García Pérez-Schofield,

Manuel Pérez-Cota

Computer Sciences Department of University of Vigo, Spain

Abstract

Designing a concurrent object oriented language isn’t an easy task. After many years of
research, the merging of concurrency and object oriented paradigms hasn’t been
achieved in a totally satisfactory way. Although recent models have partly solved
important problems such as the inheritance anomaly, they do still present limitations
due to the lack of reusability and adaptability. Approaches based on separation of
concerns appear to point to the development of models which achieve effectively those
requirements. In this essay we argu e that the establishment of orthogonal design
principles should be useful in this respect, as it was in other fields of object systems
research. We‘ll propose these principles basing on well-known principles of design of
programming languages and orthogonal persistence. In order to show the adequacy of
these principles, we present CoJava, a model based on the separation of concurrent
and functional aspects by means of their implementation in different component classes
and their composition at runtime. CoJava has been designed applying our principles to
offer a high degree of orthogonality, which results in better reusability than previous
models.

1 INTRODUCTION

Concurrent programming is a powerful paradigm to build software that makes a more
efficient use of hardware, and that can execute many activities concurrently. But
concurrent programming isn’t easy (Hoare, 1985; Andrews, 1991). Concurrent threads
executing on the same resources could lead to undesired situations as deadlocks,
livelocks, or data inconsistencies. These situations are more probable as the number of
concurrent processes grows, thus making developers often limit potential concurrency in
software design to avoid excessive complexity. Furthermore, classical concurrent
languages have clearly separated abstractions for concurrency and data, thus limiting very
much reusability of developped software (Lopes, 1997; Bergmans, 1994).

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/article3

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Object-oriented paradigm seems a priori especially well suited to solve these
problems. In this paradigm a program is a collection of objects that represent physical or
conceptual entities of the real world. Each one could be seen as an autonomous agent
being able to handle potentially concurrent requests. Since objects are concurrent by
nature, they make easier it to identify tasks that can be executed in parallel, thus
simplifying concurrent software design (Agha, 1990). What is more, object-orientation
allows a potentially high degree of reusability (Meyer, 1996).

During more than a decade of active research in this field, many concurrent object-
oriented languages (COOL’s) have been proposed1. But despite these advantages which
theoretically should have made the merging of concurrent and object-oriented paradigms
easy, this integration hasn’t been satisfactorily implemented until now. Although recent
models managed to partly avoid the problem of the inheritance anomaly (Matsuoka &
Yonezawa, 1993), they do still present an important lack of reusability (Papathomas et al,
1997; Sánchez et al. 1998).

In this work we describe the approximation we’ve followed in our attempt to set
some guidelines to design a COOL that overcomes these problems. To undertake this
work, we decided to establish some principles of orthogonal concurrency as design
principles to build object-oriented systems that integrate concurrency in a way that offers
high reusability and adaptability. We’ll show that thanks to these principles, we have
been able to design a COOL, named CoJava, which effectively achieves the separation of
the concerns that describe object functionality and concurrency, thus offering higher
reusability than previous proposed COOL’s. We have also verified that considering
concurrency as a monolithic concern hinders a good design. Therefore, we’ll show that
orthogonal concurrency principles should be complemented with an additional principle
of separation of concurrency concerns.

The remainder of this article is structured as follows: first, the principles of
orthogonality are presented and then discussed. Finally, CoJava is presented as an
example of the application of these principles, and theoretical conclusions about
experiences of this application are discussed.

1 Surveys can be found in Philippsen (2000), Papathomas (1995), or Holmes (1999) among others.

A proposal of orthogonal concurrency principles

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

2 A PROPOSAL OF ORTHOGONAL CONCURRENCY
PRINCIPLES

In programming languages design the fact is well accepted that expressive power and
reusability of a language is directly related with separation of the concepts it includes and
with availability of powerful composition rules to combine them. Several authors have
pointed out this general orthogonality principle in different aspects of language design,
like Strachey (Strachey, 1967) and later Tennent (Tennent, 1977) who formulated the
design general principles of correspondence, abstraction and data type completeness. This
can also be seen in works on concurrent (Wegner, 1987; Nierstrasz 1993; Papathomas,
1995) or persistent (Atkinson & Morrison, 1995) object-oriented languages design.

The latter is an especially outstanding example. In order to integrate persistence in
such a way that the resulting system would offer high software consistency, productivity,
reusability and adaptability, orthogonal design of this aspect was investigated and some
principles were defined, which specify the features a system should show to be
considered orthogonally persistent (Atkinson & Morrison, 1995). The benefits of the
definition of these principles in the persistence field are evident, since they have
established a universally accepted framework to construct orthogonal and highly reusable
persistent object-oriented systems.

But curiously, a clear attempt to do the same in object-oriented concurrency research
has not been taken. This is even more surprising when we consider that orthogonality of
concurrent and object-oriented mechanisms has been clearly identified as a requisite to
achieve reusab ility (Wegner, 1987; Nierstrasz, 1993; Papathomas, 1995). Also, it is easy
to establish a parallelism between persistence and concurrency, as both are widely
considered as non- functional aspects, thus separable from functionality (Hürsch & Lopes,
1995; Kiczales et al, 1997). Its no-separation leads to tangling between code that
implements functionality and that one which implements these other aspects into the
class, thus seriously hindering its reusability. The problem has been coined as inheritance
anomaly (Matsuoka & Yonezawa, 1993). In fact, several COOL’s have been
implemented on the basis of separating concerns, like Dragoon (Atkinson et al, 1992),
Composition Filters (Bergmans, 1994) or D-language (Lopes, 1997) recognizing the
convenience of considering concurrency widely orthogonal to functionality. But it isn’t
until very recently that this similarity between persistence and concurrency has been
considered – aiming at studying if solutions from one field can be applied to the other
(García Roselló et al, 2001; Ayude, 2001).

Basing on the arguments and works previously described, we propose the definition
of orthogonal concurrency principles which serve as unified guidelines to design highly
reusable concurrent object-oriented languages. These principles are as follows:

• Principle of concurrency independence : the form of a program is independent
of the concurrent behaviour of objects it manipulates.

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

• Principle of data type orthogonality: all objects should be allowed to have any
permitted concurrent behaviour, irrespective of their type.

• Principle of concurrency identification: the identification of the concurrent
behaviour of an object is orthogonal to the universe of discourse of the system,
and therefore it can’t be related to the type system.

In short, to approach to orthogonal concurrency, a system should support the programmer
to describe concurrency with minimal information, and this information has to be clearly
separated from functional code, as happens in orthogonally-persistent systems (Atkinson
& Morrison, 1995).

An object system that shows all these principles is considered orthogonally
concurrent. It’s clear that any system that adheres to these principles would present a high
degree of reusability and expressive power. It’s also clear that if a model fails in one of
these principles, it will almost certainly fail in some way in all the others, since they are
closely related. Next we are describing each one of these principles and their implications
in COOL’s design.

Principle of concurrency independence

This principle states that a program has to look the same independently of concurrency.
That implies orthogonal management of all objects whether its concurrent behaviour. It’s
certainly the most important of the principles, since it can clearly improve reusability,
while it’s also the most difficult to achieve. In fact, this principle claims for total
transparency of concurrency in a system. Several COOL’s have partly approached to this
aim. For example ABCL/1 (Yonezawa et al. 1987) or Sina (Bergmans, 1994) have an
homogeneous model of active objects. Java// (Caromel et al, 1998) and Mentat
(Grimshaw, 1993) implement a transparent asynchronous call mechanism. But it’s clear
that, unlike persistence or distribution, where quite total transparency could be achieved,
concurrency require some explicit code, particularly in defining synchronization policies.
These policies cannot always be infered from the need of data integrity (i.e. a policy that
priorizes some method calls above others). That implies that no COOL can have a totally
transparent syncronization mechanism.

Homogeneous models of active objects, even if clearly more orthogonal, have the
problem of being very inefficient. That’s why many COOL’s have been designed basing
of an heteroge nous model, allowing the programmer to determine when an object has an
active or passive behaviour. Efficiency is an argument frequently used to not implement
full orthogonality, for example in persistent systems (i.e. Cooper & Wise, 1996), and it’s
clear that in this case it’s even more justified.

As it could be seen, this principle has some clear limitations in its practical
application. However we don’t see that as a lack of validity, because these principles are
abstract design guidelines that shouldn’t be influenced by practical limitations. It will be
the responsibility of system designers to achieve an agreement between them and other
considerations as efficiency requirements, hardware availability, etc.

A proposal of orthogonal concurrency principles

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

Principle of data type orthogonality

The principle of data type orthogonality should be understood as claiming for all objects
as first-class objects with regard to concurrency.That is, all objects should be allowed to
have all range of supported concurrent behaviours, irrespective of their type. The
relevance of this principle in achieving more reusability is clear, as it allows a simple
adaptation of any functionality to changing concurrent needs.

For example, the most of the COOL’s allow to define an active class from any other
class. That can be made through multiple inheritance as in Eiffel// (Caromel, 1990), or
simply using a class modifier as in sC++ (Petitpierre, 1998). But many COOL’s aren’t so
orthogonal with regard to synchronization. That’s particularly true for that one based on
an heterogeneous model. In those COOL’s the most habitual approach is support only the
combinations active+synchronized and passive+unsynchronized objects. Moreover, once
a class has been characterized as active, it isn’t possible to define a passive one basing on
it. These are clear violations of data type orthogonality principle.

COOL’s having an homogenous model don’t have this problem, as all objects are
active and synchronized.

Principle of concurrency identification

This principle states that identification of the concurrent behaviour of an object has to be
orthogonal to the universe of discourse of the system. Therefore this implies that
concurrent behaviour can’t be related to the type system. The reason of this principle is to
avoid interference between concurrent and functional features and thus improve
reusability. If type system and concurrency aren’t largely independent in a model, it’s
quite sure that its reusability would be weakened. For example, active or passive versions
of the same functionality couldn’t be of the same type, thus not totally substitutable in a
method call, forcing to write redundant code.

In object-oriented models, that means for example that inheritance couldn’t be used
as mechanism to provide concurrency to an object. Several existing models violate this
rule. For example, in some models an object must inherit from a special class to be active
or synchronized as in Eiffel// (Caromel, 1990) or the proposal of Karaorman & Bruno
(Karaorman & Bruno, 1993). This have a reuse problem: active classes must have to be
defined as subtypes of passive ones in order to reuse defined classes, without any
semantical reason which justifies it. Other models use a language keyword as a kind of
class modifier to define it as active, as in Mentat (Grimshaw, 1993) or Charm++ (Kale &
Krishnan, 1993). Although inheritance is not directly used, the same problem arises
because this mechanism prevents from freely substituting active and passive versions of a
class.

The same problem exists with synchronization. Any COOL we know offers totally
orthogonal identification as synchronization is implemented into class, and thus
considered part of the class type. Proposals as Composition Filters (Bergmans, 1994) or
D-Language (Lopes, 1997) have the advantage of being based on mechanisms orthogonal

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

to object-oriented features, therefore they show very high orthogonal identification of
synchronization. But it’s not complete, since in both of them we have to define different
subtypes in order to combine the same functionality with different synchronizations.

Orthogonality of concurrent concerns

Initially we considered that these principles established a framework useful and thorough
enough to help in the design of highly reusable COOL’s. But when used to design our
concurrent language CoJava, soon it was clear that concurrency was reluctant to fit to
these principles when applied to it as a monolithic concern. That can also be deducted
from the previous exposition of each principle. For example, it’s relatively easy to
orthogonalize interaction between objects by means of mechanisms like wait-by-
necessity that make asynchronous calls transparent to the language. The same is true for
activity, as demonstrate homogeneous models where functionality is orthogonal to active
behaviour of objects, but in this case practical issues make quite mandatory implementing
languages with an heterogeneous model. Synchronization is, in turn, impossible to
completely orthogonalize, as it can require explicit code, but it’s at least possible to
implement it in such a way that fulfils data type orthogonality and identification
principles. Also, we have to pay attention to models that combine several concerns, as for
example those that only allow active objects to be synchronized.

This distinction between several concurrent aspects, that is interaction, activity and
synchronization, isn’t new. Papathomas (1995) or Kafura&Lavender (1993) already make
it in their taxonomy of COOL’s, distinguishing between an animation model, an
interactive model and a synchronization model. Even in classical non object-oriented
concurrent systems we can distinguish between different mechanisms for these three
concerns. Orthogonality of these concerns in the sense of Wegner (1987) can be argued,
as there are examples of languages that implement some of them but not the other ones.
But until now there isn’t any work about the convenience of separating these concerns in
COOL’s design, since attention has been centered on separating synchronization from
functionality.

Therefore, we argue that is important to establish a principle of separation of
concurrent concerns as follows:

• Principle of orthogonality of concurrent concerns : concurrency can be
considered as formed by the orthogonal concerns of activity, interaction and
synchronization.

Therefore, in the design of a concurrent system, these concerns should be keep in mind as
separated aspects, and the principles of orthogonal concurrency previously stated could
(and should) be applied to each one. This should lead to define separate and orthogonal
mechanisms implementing each concern, which clearly provides higher reusability.

It could be argued that even these concerns aren’t totally monolithic. For example,
synchronization has been divided in several subconcerns by some authors (i.e. Holmes,
1999; Bader & Elrad, 1998). Of course, that’s absolutely legitimate and perfectly

A proposal of orthogonal concurrency principles

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

combinable with our principles. Orthogonalization can be applied recursively, but, as
argues Morrison (1979) some of the consequences of following this course can lead to
complications. At each decomposition stage the designer has to make a decision. The
orthogonalization can either be ignored on some other constraint, for example
implementation efficiency, or else he has to live with the consequences. Anyway, the
process must end at some point, commonly when a balance between advantages and
limitations has been reached.

Basing on the existing work on COOL’s, we argue that the orthogonalization level
we propose here is the more widely agreed, thus offering a good mixing of reusability,
expresivity and abstraction for most general-purpose languages. If the designer considers
convenient to decompose some of the proposed concurrent concerns he can do it. The
proposed principles of orthogonal concurrency remain valid and appliable to each
considered concern.

For example, as it’ll be explained in the next section, when designing our COOL
CoJava, we decided to decompose synchronization concern in two orthogonal
subconcerns in order to achieve reusability of synchronization policies.

3 DESIGNING AN ORTHOGONALLY CONCURRENT SYSTEM:
COJAVA

To verify the usefulness of the proposed principles, we used them in the design of a
COOL called CoJava. Therefore, CoJava has these features:

1. The following aspects are taken as orthogonal in the language: functionality,
activity, interaction and synchronization. Furthermore, synchronization is
considered as a composite concern of both an implementation-depent and an
implementation- independent aspects (Bader & Eldar, 1998; holmes, 1999). This
point will be further explained in more detail.

2. The language supports a separate description of the different aspects of an object
at the conceptual level, and their composition at runtime.

3. Active and passive objects are allowed, as well as intraobject concurrency. Any
type of object is allowed to be active or passive, in a per-instance basis.

4. Synchronization policies are generic, reusable, and can be combined with any
type of object, without restriction.

5. Interaction between objects is transparently managed by means of a wait-by-
necessity mechanism.

6. Only functionality of an object determines its type.
Feature (1) is based on the principle of orthogonality of concurrent concerns. Features
(2), (3), (4) and (6) allows to fulfill data type orthogonality as well as concurrency
identification principles, as it’ll be detailed later. Feature (5) points to independency
principle applied to the interaction concern. Obviously, feature (3) prevents from totally

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

fulfil independency principle for the ac tivity aspect, as CoJava follows an heterogeneous
model. As it has been previously explained, this can be justified by efficiency reasons.

Therefore, CoJava has a high compliance with the design principles previously
explained. In fact, as far as we know, it fulfils these principles better than any other
COOL with the exception of the activity aspect, more orthogonal in homogeneous
models. In the next sections we’ll show how this design has been implemented in a
language, describing CoJava’ syntax. We’ll also show how it offers a high reusability
thanks to its orthogonal design.

The CoJava language

CoJava has been implemented as an extension of Java (Gosling, 1996), extending it in
two ways: (1) it provides a sublanguage that allows description of synchronization
policies, based on synchronization and mapping classes, and (2) a sublanguage for
creating objects by means of compositions of the behavioural aspects defined in the
language.

Separation of concerns in CoJava is supported by the existence of three separate
kinds of classes, each one with its corresponding base class, which allow to define the
semantics of each one of the aspects considered as independent in the model:

• FunClass classes, derived from Object base class, are functional classes, which
correspond to the classes in a classical class-based language such as Java or
C++.

• SyncClass classes, derived from SyncClass base class, are classes where we
define synchronization restrictions. As we will show later, another kind of class
called MapClass exists to compose synchronization with functionality.

• WrapperClass classes, derived from WrapperClass base class, which define an
active/passive behaviour.

Every object in CoJava is composed of a functional component, a wrapper component,
and an ordered set of synchronization components. This shortlist is specified when the
object is created. For example, the following code would create an object with a
functional component instantiated from the Buffer class, the active behaviour
corresponding to Active wrapper class, and the synchronization defined in BufferSync
class:

Buffer A;
A= new Buffer() with wrapper Active synchronized by
{BufferSync};

It can be seen that it is the functional class that determines the type of the object.
Therefore in CoJava the objects with the same functional type are manipulated in the
same way, and totally interchangeable as parameters in a method call, independently of
their active/passive behaviour or synchronization.

Designing an orthogonally concurrent system: CoJava

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

The activity component or wrapper can not accede directly the functionality of the
object. Therefore, it’s generic and composable with any functional and synchronization
classes.

The synchronization in CoJava has been considered as two different concerns. One
of them deals with defining necessary mutual exclusions between methods with regard to
their concurrent execution. From now, we’ll better call them restrictions, to avoid
misunderstandings. These restrictions are implementation-dependent, as they derive from
a concrete implementation of the class. A change in this implementation can lead to
changes in these restrictions, even if functionality, that is, class interface, has remained
unchanged. Therefore, we considered that these restrictions have to be defined as part of
functional class.

The other aspect of synchronization is implementation- independent. For example, a
priorities-based policy doesn’t depend of any particular implementation of a functional
class. In fact, such a synchronization policy could be applied to any functional class.
Furthermore, if we consider the data type orthogonality principe, it should be potentially
generic, to be applied to any data type, and thus reusable. But the synchronization
component deals with the problem of having to refer to methods of the functional class.
So, in order to support its genericity, we have chosen to create an intermediate mapping
class which acts as a connector between synchronization an functional classes.

Thus, in CoJava, SyncClass are abstract classes defining synchronization. In a
SyncClass we can define abstract states and abstract methods. An abstract method could
have some preconditions to its execution, normally based on some of the defined abstract
states, as well as preactions if necessary. Subclasses of a SyncClass may be defined,
thereby creating synchronization SyncClass hierarchies. However, as they are abstract
classes, SyncClass may not be directly instantiated neither included as object’s
component. For this purpose we have to use MapClass classes. MapClass are in charge of
the establishment of a correspondence between the abstract states and methods of a
synchronization class and concrete methods of the functional class. This separation of
synchronization and functionality is somewhat similar to the proposed one in Dragoon
(Atkinson et al, 1992), but with important differences. In CoJava it is permitted to
construct synchronization class hierarchies, which in turn is totally forbidden in Dragoon.
Also, in Dragoon mapping between abstract and concrete methods is carried out inside
the functional class, but in CoJava we use a separated class, the MapClass, which can be
composed at runtime with a functional class. This prevents programmers from having to
define a subclass of a functional class in order to include the required synchronization for
a specific situation. As we have been discussing, this solution based on subclassing
derives from a lack of orthogonality and a loss of reusability, as appends in Dragoon,
Composition Filters or D-Language, for example. CoJava avoids this problem thanks to
separating mapping in different kind of classes. In this way, it provides total
polymorphism to the synchronization class, as it may be composed with different
functionalities by simply defining the adequate mapping class.

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

SyncClass base class has two data members, which are CurrentCall and Queue. This
allows to accede to the data of the current call and the waiting calls queue for the object.
This MetaObject Protocol allows us to define relatively complex synchronization policies
(Caromel, 1990; Caromel et al, 1998).

A simple example in CoJava

In order to illustrate the main features of CoJava, we will now present a typical example,
consisting on the implementation of a bounded buffer which is acceded concurrently by a
producer and a consumer.

We define the functional class Buffer which implements a buffer based on an array
of limited size, and the generic synchronization class BoundedContainer for a bounded
container. The BufferSync class maps the generic synchronization class over the
functional class:

FuncClass Buffer{
 Incompatible methods{
 put={put, get};
 }
 private Integer[] buffer=new Object [4];
 private Integer P=new Integer(0);

 public void put(Object X){
 buffer[P]=X;
 P++;
 }

 public Object get(){
 P--;
 return buffer[P];
 }

 public Boolean empty(){
 return (P==0);
 }

 public Boolean full(){
 return (P==buffer.length);
 }

 public Integer size(){
 return P;
 }
}

Designing an orthogonally concurrent system: CoJava

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117

SyncClass BoundedContainer{
 abstract states={empty, full};
 abstract methods={push, pop};

 preconditions{
 (!full) for push;
 (!empty) for pop;
 }
}

MapClass BufferSync maps BoundedContainer over Buffer{
 states map{
 full=full();
 empty=empty();
 }

 methods map{
 push=put();
 pop=get();
 }
}

A very simple program which implements the use of this buffer as a passive object with
the above mentioned synchronization by a producer and a consumer could look like this:

Buffer B= new Buffer() with wrapper Passive synchronized by
{BufferSync};
Consumer C= new Consumer () with wrapper Active synchronized
by {}; //void synchronization
Producer P= new Producer () with wrapper Active synchronized
by {};/ /void synchronization

while (true){
 B.put(P.getObject());
 C.putObject(B.get());
}

Note that despite the appearance of “sequentiality” of the code, concurrency is achieved
because the calls to the active objects are asynchronous, and so both the producer and the
consumer will only stop if the buffer gets filled up or empty respectively, or due to the
wait-by-necessity mechanism provided that they obtain a reference to an object which
may be not yet available. A sequential version of the program might be obtained by
simply turning the active wrapper of either the producer or the consumer into a passive
one, albeit in this case it would not be logical to use a buffer to communicate them, as it
would never contain more than one element.

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

The classical example of the addition of a get2() method to the Buffer class, which in
our case simply removes two values from the buffer and returns the second one, could be
implemented in CoJava by extending the previously defined classes:

FuncClass Buffer2 extends Buffer{
 Incompatible methods{
 get2={put,get,get2};
 }

 public Object get2(){
 P=P-2;
 return buffer[P];
 }

}

SyncClass BoundedContainer2 extends BoundedContainer{
 abstract states={half};
 abstract methods={pop2};
 preconditions{
 (half) for pop2;
 }
}

MapClass BufferSync2 extends BufferSync{
 states map{
 half=(size()>=2);
 }
 methods map{
 pop2=get2();
 }
}

Note in these examples the clear-cut separation of concerns and the high degree of
reusability of synchronization code obtained in CoJava, due to its genericity and
extensibility. Mapping classes prevent the inclusion of synchronization code of any kind
in the functional class, or code that depends on functionality in the synchronization class,
promoting the independence of both components.

The use of the MOP allows us to implement policies which are more difficult to
convey by just bearing in mind the object’s states. For example, let us suppose a
container object with read and write methods. Due to its implementation, readings can be
performed concurrently, but writings require an exclusive access to the object. A naïve
synchronization could lead to an inanition of the calls to write method if there is a
continuous flow of read calls. The implementation of a FIFO policy would avoid this

Designing an orthogonally concurrent system: CoJava

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

problem, but it cannot be defined with abstract states. On the other hand, it’s easy to
implement it using both the reified call and the waiting queue of the object as variables:

SyncClass FIFO {
 abstract methods={anymethod};

 boolean accept(){
 return (CurrentCall=Queue.oldestCall());
 }

 preconditions{
 (accept) for anymethod;
 }
}

As we can see, the synchronization policy defined here is quite simple but expressive,
and in this case does not require any abstract states. We must also point out that the fact
of some methods requiring exclusive access is not reflected in the synchronization class,
as it depends exclusively on the implementation of functionality, which takes charge of
determining this concern. Thus, this same synchronization class would be valid in order
to impose a FIFO policy on any functional class regardless of its restrictions derived from
a particular implementation.

Implementation of CoJava runtime

For this first implementation of CoJava runtime, we extensively based on reflective
facilities of Java language. The use of metalevel programming and reflection for
implementing the separation and integration of concerns has been widespread (Aksit et al,
1996; Hürsch & Lopes, 1995; Kiczales et al, 1997). In CoJava, the creation of an object
at the base level implies the creation of three objects at the metalevel, each one
corresponding to an object component, which are communicated by means of a
MetaObject Protocol (MOP). Access to each object comes through a proxy defined on the
metalevel, which reifies the calls to object’s methods. Each reified call is transferred to
the wrapper object of the metalevel. The wrapper uses the information contained in the
metaobject corresponding to the synchronization component in order to decide when a
call can be served. As previously noted, the MOP is accessible in a limited way to the
programmer by means of the instance variables CurrentCall and Queue of the
synchronization classes, which allow access to the reified call being evaluated as well as
to the queue of reified waiting calls.

4 CONCLUSIONS

In this paper, we have proposed the definition of some orthogonal concurrency principles
as a way to establish a useful framework for the design of object-oriented concurrency

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

models which offer a high degree of reusability and avoid problems like inheritance
anomaly. With this aim, we have proposed four principles, based on well-known
principles and works of programming languages design, orthogonal persistence and
separation of concurrent concerns.

We have presented the CoJava model, whose design is based on the proposed
principles. Therefore CoJava shows high concurrency independency, total data type
orthogonality and a mechanism of concurrency identification orthogonal to the type
system. Thanks to this, CoJava achieves higher reusability than previous COOL’s
proposals, avoiding completely inheritance anomaly. Therefore, we think that usefulness
of our principles as helpful design guidelines for COOL’s has been shown. We must also
point out that CoJava model fulfils the adaptability requirements for COOL’s defined by
Sánchez et al. (1998).

5 RELATED WORK

Object-oriented concurrency has been a fertile field of research since the late 80’s. A
good survey can be found in Philippsen (2000). Some authors have suggested principles
or guidelines for COOL’s design. For example, Caromel (1990), Papathomas (1992),
Bergmans (1994), Meyer (1996) or Lopes (1997). But those works focused very much on
pragmatic decisions, more than on well-established design principles. For example,
among other considerations, Papathomas argues that a COOL must be able to implement
the administrator pattern (Gentleman, 1981). Caromel and Meyer defend a sequential
object model in order to simplify design and better reuse code from not-concurrent
applications. Both Bergmans and Lopes base their proposals on the separation of
concerns principle, but they don’t clearly specify how to apply it in the language design,
and anyway they also include as design principles an efficient implementation and the
convenience of extending an existing language.

However, it seems clear that even if the principles we have proposed in this work
aren’t explicitly defined until now, the majority of the proposed models that attempt to
join concurrent and object-oriented paradigms have commonly used mechanisms that in
fact improve concurrency orthogonality in some way, in order to reach a higher degree of
reusability, simplicity and transparency to the user. In fact, inheritance anomaly can be
easily seen as a lack of orthogonality between concurrency and inheritance mechanisms
(Nierstrasz, 1993), and in the same way proposed solutions would try to reach higher
orthogonality. For example mechanisms like wait-by-necessity (Caromel, 1990) or
homogeneous models (i.e. Yonezawa et al, 1987) contribute to higher orthogonality
making synchronization of asynchronous calls transparent to programmer. Furthermore,
the separation of concerns paradigm of software engineering, which was successfully
used in some of the most recently proposed COOL’s (Bergmans, 1994; Lopes, 1997;
Bader & Elrad, 1998; Holmes, 1999) is a concept strongly related to orthogonality: it
involves the identification of orthogonal components, and the definition of mechanisms
to support its description separately and its later composition (Hürsh & Lopes, 1995).

Related work

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 121

REFERENCES

[Agh90] Agha G.: Concurrent Object-oriented programming, Communications of the
ACM, 33:125-141.

[Aksi96] Aksit M., Tekinerdogan B., Bergmans L. : Achieving adaptability through
separation and composition of concerns. In Special Issues in Object oriented
programming, Mühlhaüser M. (ed.), Workshop reader of the ECOOP’96,
Linz, Austria.

[Andr91] Andrews G. R. : Concurrent Programming: Principles and Practice.
Benjamin/Cummings Publishing.

[Atki92] Atkinson C., Crespi-Reghizzi S., Di Maio A., Goldsack S.: Behavioural
Inheritance: themes and variations. In Workshop on object-based
concurrency and reuse, ECOOP’92, Uthrecht, 1992.

[Atki95] Atkinson M., Morrison R. : Orthogonally Persistent Object Systems.VLDB
Journal, 4:319-401.

[Ayud01] Ayude J.: Ortogonalidad de la Concurrencia en Modelos de Concurrencia
Orientados a Objetos. Ph.D. Thesis, Department of Computer Sciences,
University of Vigo.

[Bade98] Bader A., Elrad T.: Adaptative Arena. Language constructs and architectural
abstractions for concurrent object-oriented systems. In Proceedings of the
Internatoinal Conference on Parallel and Distributed Systems - ICPADS
1998. IEEE Comp. Soc., Los Alamitos, CA, USA,. p 599-606.

[Berg94] Bergmans L. M. J.: Composing Concurrent Objects: Applying Composition
Filters for the Development and Reuse of Concurrent Object-Oriented
Programs. Ph.D. dissertation, University of Twente, Netherlands.

[Caro90] Caromel D.: Programming Abstractions for Concurrent Programming. In
Proceedings of the 2nd Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific’90), pp245-253.

[Caro98] Caromel D., Klauser W.,Vayssière J.: Towards Seamless Computing and
Metacomputing in Java. Concurrency Practice and Experience, 10:1043-
1061.

[Coop96] Cooper T.B., Wise M.: Critique of Orthogonal Persistence. In Proceedings of
International Workshop on Object Oriented Operating Systems,
IWOOOS’96.

[Garc01] García Roselló E., Ayude Vázquez J., García Perez-Schofield B., Pérez Cota
M.: Using orthogonal concurrency principles to effectively separate concerns
in COOL’s design. In Proceedings of the 8th IEEE Congreso Internacional de
Investigación en Ciencias Computacionales. November 28-30, 2001 —
Colima, Mexico

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

[Gent81] Gentleman W.M.: Message passing between sequential processes : the reply
primitive and the administrator concept. Software-practice and experience
11:435-466.

[Gosl96] Gosling J.: The Java language specifications. Addison-Wesley,
Massachussets.

[Grim93] Grimshaw A.S.: Easy to use object-oriented parallel programming. IEEE
Computer, 26:39-51.

[Hoar85] Hoare C. A. R.: Communicating Sequential Processes. Prentice Hall.

[Holm99] Holmes D.: Synchronisation Rings: ComposableSynchronisation for Object -
Oriented Systems. Ph.D. dissertation Macquarie University, Sydney,
Australia.

[Hürs95] Hürsch W.L., Lopes C.V.: Separation of concerns. Technical report
NU-CCS-95-03, Northeastern University, Boston, USA.

[Kafu93] Kafura D. G., Lavender R. G.: Concurrent Object -Oriented Languages and
the Inheritance Anomaly. In Parallel Computers: Theory and Practice, T. L.
Casvant, P. Tvrdik, and F. Plasil (eds), IEEE Press.

[Kale93] Kale L.V., Krishnan S.: Charm++: a portable concurrent object oriented
system based on C++. In Proceedings of OOPSLA’93, 8th Annual
Conference on Object Oriented Programming Systems, Languages and
Applications, pp:91-109, Washington, Sep 28- Oct 1. ACM SIGPLAN
Notices 28(10).

[Kara93] Karaorman M.: Introducing concurrency to a sequential language .
Communications of the ACM. 37: 103-116.

[Kicz97] Kiczales G., Lamping J., Mendhekar A., Maeda C., Videira Lopes C.V.,
Loingtier J.M., Irwin J.: Aspect-Oriented Programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP’97),
Finland.

[Lope97] Lopes C.V.: D: A language framework for distributed programming. Ph.D.
dissertation, College of Computer Science of Northeastern University, USA.

[Mats93] Matsuoka S., Yonezawa A.: Inheritance anomaly in object-oriented
concurrent programming languages. In Research directions in concurrent
object-oriented programming languages. Agha G., Wegner P., Yonezawa A.
(eds.) MIT press.

[Meye96] Meyer B.: Object oriented software construction, 2º ed. Prentice-Hall.

[Morr79] Morrison, R.: On the development of algol. Ph.D. Dissertation. Department of
Computational Science, University of St Andrews, UK.

Related work

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 123

[Nier93] Nierstrasz O.: Composing active objects. The next 700 concurrent object-
oriented languages. In Research directions in Object-based concurrency,Agha
G., Wegner P., Yonezawa A. (eds), MIT Press.

[Papa95] Papathomas M.: Concurrency in object-oriented programming languages. In
Object oriented software composition, Nierstrasz O. & Tsichritzis D. (eds),
Prentice-Hall.

[Papa97] Papathomas M., Hernández J., Murillo J.M., Sánchez F.: Inheritance and
Expressive Power in Concurrent Object-Oriented Languages. In Proceedings
of Langages et Modèles à Objets '97, Ducournau R. & and Garlatti S. (Eds.),
Hermes. Roscoff (France).

[Peti98] Petitpierre C.: Synchronous C++: A language for interactive applications.
IEEE computer, Sep. 1998 pp:65-72.

[Phil00] Philippsen, M.: A survey of concurrent object-oriented languages.
Concurrency: practice and experience 12:917-980.

[Sánc98] Sánchez F., Hernández J., Murillo J.M., Pedraza. E.: Run-time adaptability of
synchronization constraints in COOLs. Paper presented in II Workshop on
Aspect Oriented Programming, ECOOP’98, Bruselles, Belgium.

[Stra67] Strachey, C.: Fundamental Concepts in Programming Languages. Oxford
University Press, Oxford.

[Tenn77] Tennent, R.D.: Language Design Methods Based on Semantic Principles.
Acta Informatica 8:97-112.

[Wegn87] Wegner P.: Dimensions of object-based language design. In Proceedings of
OOPSLA’87, Orlando (USA), ACM SIGPLAN Notices, 22:168-182.

[Yone87] Yonezawa A., Shibayama E., Takada T. and Honda Y.: Modelling and
Programming in an Object-Oriented Concurrent Language – ABCL/1. In
Object-Oriented Concurrent Programming, A. Yonezawa and M. Tokoro
(eds.), MIT Press, Cambridge.

About the authors

Emilio García-Roselló is associate lecturer at the Department of Informatics of the
University of Vigo. His research work, together with the other authors, is mainly centered
on reusability and component-oriented software engineering. He can be reached at
erosello@uvigo.es .
José Ayude is associate lecturer at the Department of Informatics of the University of
Vigo. He recently got his Ph.D. with a thesis on COOL’s reusability concerns. He can be
reached at jayude@uvigo.es .

 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

J. Baltasar García Pérez-Schofield is associate lecturer at the Department of
Informatics of the University of Vigo. His research work is mainly centered on object
persistence. He’s currently working on the schema evolution support for the persistent
environment Barbados. He can be reached at jbgarcia@uvigo.es .
Manuel Pérez-Cota is chair professor at the Department of Informatics of the University
of Vigo. He heads a research group on object-oriented software engineering and he has
many publications about this issue. He can be reached at mpcota@uvigo.es .

