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Abstract 

Designing a concurrent object oriented language isn’t an easy task. After many years of 
research, the merging of concurrency and object oriented paradigms hasn’t been 
achieved in a totally satisfactory way. Although recent models have partly solved 
important problems such as the inheritance anomaly, they do still present limitations 
due to the lack of reusability and adaptability. Approaches based on separation of 
concerns appear to point to the development of models which achieve effectively those 
requirements. In this essay we argu e that the establishment of orthogonal design 
principles should be useful in this respect, as it was in other fields of object systems 
research. We‘ll propose these principles basing on well-known principles of design of 
programming languages and orthogonal persistence. In order to show the adequacy of 
these principles, we present CoJava, a model based on the separation of concurrent 
and functional aspects by means of their implementation in different component classes 
and their composition at runtime. CoJava has been designed applying our principles to 
offer a high degree of orthogonality, which results in better reusability than previous 
models.

1 INTRODUCTION 

Concurrent programming is a powerful paradigm to build software that makes a more 
efficient use of hardware, and that can execute many activities concurrently. But 
concurrent programming isn’t easy (Hoare, 1985; Andrews, 1991). Concurrent threads 
executing on the same resources could lead to undesired situations as deadlocks, 
livelocks, or data inconsistencies. These situations are more probable as the number of 
concurrent processes grows, thus making developers often limit potential concurrency in 
software design to avoid excessive complexity. Furthermore, classical concurrent 
languages have clearly separated abstractions for concurrency and data, thus limiting very 
much reusability of developped software (Lopes, 1997; Bergmans, 1994). 
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Object-oriented paradigm seems a priori especially well suited to solve these 
problems. In this paradigm a program is a collection of objects that represent physical or 
conceptual entities of the real world. Each one could be seen as an autonomous agent 
being able to handle potentially concurrent requests. Since objects are concurrent by 
nature, they make easier it to identify tasks that can be executed in parallel, thus 
simplifying concurrent software design (Agha, 1990). What is more, object-orientation 
allows a potentially high degree of reusability (Meyer, 1996). 

During more than a decade of active research in this field, many concurrent object-
oriented languages (COOL’s) have been proposed1. But despite these advantages which 
theoretically should have made the merging of concurrent and object-oriented paradigms 
easy, this integration hasn’t been satisfactorily implemented until now. Although recent 
models managed to partly avoid the problem of the inheritance anomaly (Matsuoka & 
Yonezawa, 1993), they do still present an important lack of reusability (Papathomas et al, 
1997; Sánchez et al. 1998). 

In this work we describe the approximation we’ve followed in our attempt to set 
some guidelines to design a COOL that overcomes these problems. To undertake this 
work, we decided to establish some principles of orthogonal concurrency as design 
principles to build object-oriented systems that integrate concurrency in a way that offers 
high reusability and adaptability. We’ll show that thanks to these principles, we have 
been able to design a COOL, named CoJava, which effectively achieves the separation of 
the concerns that describe object functionality and concurrency, thus offering  higher 
reusability than previous proposed COOL’s. We have also verified that considering 
concurrency as a monolithic concern hinders a good design. Therefore, we’ll show that 
orthogonal concurrency principles should be complemented with an additional principle 
of separation of concurrency concerns. 

The remainder of this article is structured as follows: first, the principles of 
orthogonality are presented and then discussed. Finally, CoJava is presented as an 
example of the application of these principles, and theoretical conclusions about 
experiences of this application are discussed. 

                                                                 
1 Surveys can be found in Philippsen (2000), Papathomas (1995), or Holmes (1999) among others. 



 
 
A proposal of orthogonal concurrency principles 
 
 
 
 

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109 
 

2 A PROPOSAL OF ORTHOGONAL CONCURRENCY 
PRINCIPLES 

In programming languages design the fact  is well accepted that expressive power and 
reusability of a language is directly related with separation of the concepts it includes and 
with availability of powerful composition rules to combine them. Several authors have 
pointed out this general orthogonality principle in different aspects of language design, 
like Strachey (Strachey, 1967) and later Tennent  (Tennent, 1977) who formulated the 
design general principles of correspondence, abstraction and data type completeness. This 
can also be seen in works on concurrent (Wegner, 1987; Nierstrasz 1993; Papathomas, 
1995) or persistent (Atkinson & Morrison, 1995) object-oriented languages design. 

The latter is an especially outstanding example. In order to integrate persistence in 
such a way that the resulting system would offer high software consistency, productivity, 
reusability and adaptability, orthogonal design of this aspect was investigated and some 
principles were defined, which specify the features a system should show to be 
considered orthogonally persistent (Atkinson & Morrison, 1995). The benefits of the 
definition of these principles in the persistence field are evident, since they have 
established a universally accepted framework to construct orthogonal and highly reusable 
persistent object-oriented systems.  

But curiously, a clear attempt to do the same in object-oriented concurrency research 
has not been taken. This is even more surprising when we consider that orthogonality of 
concurrent and object-oriented mechanisms has been clearly identified as a requisite to 
achieve reusab ility (Wegner, 1987; Nierstrasz, 1993; Papathomas, 1995). Also, it is easy 
to establish a parallelism between persistence and concurrency, as both are widely 
considered as non- functional aspects, thus separable from functionality (Hürsch & Lopes, 
1995; Kiczales et al, 1997). Its no-separation leads to tangling between code that 
implements functionality and that one which implements these other aspects into the 
class, thus seriously hindering its reusability. The problem has been coined as inheritance 
anomaly (Matsuoka & Yonezawa, 1993). In fact, several COOL’s have been 
implemented on the basis of separating concerns, like Dragoon (Atkinson et al, 1992), 
Composition Filters (Bergmans, 1994) or D-language (Lopes, 1997) recognizing the 
convenience of considering concurrency widely orthogonal to functionality. But it isn’t 
until very recently that this similarity between persistence and concurrency has been 
considered – aiming at studying if solutions from one field can be applied to the other 
(García Roselló et al, 2001; Ayude, 2001).  

Basing on the arguments and works previously described, we propose the definition 
of  orthogonal concurrency principles which serve as unified guidelines to design highly 
reusable concurrent object-oriented languages. These principles are as follows: 

• Principle of concurrency independence : the form of a program is independent 
of the concurrent behaviour of objects it manipulates. 
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• Principle of data type orthogonality: all objects should be allowed to have any 
permitted concurrent behaviour, irrespective of their type. 

• Principle of concurrency identification: the identification of the concurrent 
behaviour of an object is orthogonal to the universe of discourse of the system, 
and therefore it can’t be related to the type system. 

In short, to approach to orthogonal concurrency, a system should support the programmer 
to describe concurrency with minimal information, and this information has to be clearly 
separated from functional code, as happens in orthogonally-persistent systems (Atkinson 
& Morrison, 1995).  

An object system that shows all these principles is considered orthogonally 
concurrent. It’s clear that any system that adheres to these principles would present a high 
degree of reusability and expressive power. It’s also clear that if a model fails in one of 
these principles, it will almost certainly fail in some way in all the others, since they are 
closely related. Next we are describing each one of these principles and their implications 
in COOL’s design.  

Principle of concurrency independence 

This principle states that a program has to look the same independently of concurrency.  
That implies orthogonal management of all objects whether its concurrent behaviour. It’s 
certainly the most important of the principles, since  it can clearly improve reusability, 
while it’s also the most difficult to achieve. In fact, this principle claims for total 
transparency of concurrency in a system. Several COOL’s have partly approached to this 
aim. For example ABCL/1 (Yonezawa et al. 1987) or Sina (Bergmans, 1994) have an 
homogeneous model of active objects. Java// (Caromel et al, 1998) and Mentat 
(Grimshaw, 1993)  implement a transparent asynchronous call mechanism. But it’s clear 
that, unlike persistence or distribution, where quite total transparency could be achieved, 
concurrency require some explicit code, particularly in defining synchronization policies. 
These policies cannot always be infered from the need of data integrity (i.e. a policy that 
priorizes some method calls above others). That implies that no COOL can have a totally 
transparent syncronization mechanism.  

Homogeneous models of active objects, even if clearly more orthogonal, have the 
problem of being very inefficient. That’s why many COOL’s have been designed basing 
of an heteroge nous model, allowing the programmer to determine when an object has an 
active or passive behaviour.  Efficiency is an argument frequently used to not implement 
full orthogonality, for example in persistent systems (i.e. Cooper & Wise, 1996), and it’s 
clear that in this case it’s even more justified.  

As it could be seen, this principle has some clear limitations in its practical 
application. However we don’t see that as a lack of validity, because these principles are 
abstract design guidelines that shouldn’t be influenced by practical limitations. It will be 
the responsibility of system designers to achieve an agreement between them and other 
considerations as efficiency requirements, hardware availability, etc.  
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Principle of data type orthogonality 

The principle of data type orthogonality should be understood as claiming for all objects 
as first-class objects with regard to concurrency.That is, all objects should be allowed to 
have all range  of supported concurrent behaviours, irrespective of their type. The 
relevance of this principle in achieving more reusability is clear, as it allows a simple 
adaptation of any functionality to changing concurrent needs.  

For example, the most of the COOL’s allow to define an active class from any other 
class. That can be made through multiple inheritance as in Eiffel// (Caromel, 1990), or 
simply using a class modifier as in sC++ (Petitpierre, 1998). But many COOL’s aren’t so 
orthogonal with regard to synchronization. That’s particularly true for that one based on 
an heterogeneous model. In those COOL’s the most habitual approach is support only the 
combinations active+synchronized and passive+unsynchronized objects. Moreover, once 
a class has been characterized as active, it isn’t possible to define a passive one basing on 
it. These are clear violations of data type orthogonality principle.  

COOL’s having an homogenous model don’t have this problem, as all objects are 
active and synchronized.  

Principle of concurrency identification 

This principle states that identification of the concurrent behaviour of an object has to be 
orthogonal to the universe of discourse of the system. Therefore this implies that 
concurrent behaviour can’t be related to the type system. The reason of this principle is to 
avoid interference between concurrent and functional features and thus improve 
reusability. If type system and concurrency aren’t largely independent in a model, it’s 
quite sure that its reusability would be weakened. For example, active or passive versions 
of the same functionality couldn’t be of the same type, thus not totally substitutable in a 
method call, forcing to write redundant code.  

In object-oriented models, that means for example that inheritance couldn’t be used 
as mechanism to provide concurrency to an object. Several existing models violate this 
rule. For example, in some models an object must inherit from a special class to be active 
or synchronized as in Eiffel// (Caromel, 1990) or the proposal of Karaorman & Bruno 
(Karaorman & Bruno, 1993). This have a reuse problem: active classes must have to be 
defined as subtypes of passive ones in order to reuse defined classes, without any 
semantical reason which justifies it. Other models use a language keyword as a kind of 
class modifier to define it as active, as in Mentat (Grimshaw, 1993) or Charm++ (Kale & 
Krishnan, 1993). Although inheritance is not directly used, the same problem arises 
because this mechanism prevents from freely substituting active and passive versions of a 
class. 

The same problem exists with synchronization. Any COOL we know offers totally 
orthogonal identification as synchronization is implemented into class, and thus 
considered part of the class type. Proposals as Composition Filters (Bergmans, 1994) or  
D-Language (Lopes, 1997) have the advantage of being based on mechanisms orthogonal 
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to object-oriented features, therefore they show very high orthogonal identification of 
synchronization. But it’s not complete, since in both of them we have to define different 
subtypes in order to combine the same functionality with different synchronizations. 

Orthogonality of concurrent concerns 

Initially we considered that these principles established a framework useful and thorough 
enough to help in the design of highly reusable COOL’s. But when used to design our 
concurrent language CoJava, soon it was clear that concurrency was reluctant to fit to 
these principles when applied to it as a monolithic concern. That can also be deducted 
from the previous exposition of each principle. For example, it’s relatively easy to 
orthogonalize interaction between objects by means of mechanisms like wait-by-
necessity that make asynchronous calls transparent to the language. The same is true for 
activity, as demonstrate homogeneous models where functionality is orthogonal to active 
behaviour of objects, but in this case practical issues make quite mandatory implementing 
languages with an heterogeneous model. Synchronization is, in turn, impossible to 
completely orthogonalize, as it can require explicit code, but it’s at least possible to 
implement it in such a way that fulfils data type orthogonality and identification 
principles. Also, we have to pay attention to models that combine several concerns, as for 
example those that only allow active objects to be synchronized. 

This distinction between several concurrent aspects, that is interaction, activity and 
synchronization, isn’t new. Papathomas (1995) or Kafura&Lavender (1993) already make 
it in their taxonomy of COOL’s, distinguishing between an animation model, an 
interactive model and a synchronization model. Even in classical non object-oriented 
concurrent systems we can distinguish between different mechanisms for these three 
concerns. Orthogonality of these concerns in the sense of Wegner (1987) can be argued, 
as there are examples of languages that implement some of them but not the other ones. 
But until now there isn’t any work about the convenience of separating these concerns in 
COOL’s design, since attention has been centered on separating synchronization from 
functionality.  

Therefore, we argue that is important to establish a principle of separation of 
concurrent concerns as follows: 

• Principle of orthogonality of concurrent concerns : concurrency can be 
considered as formed by the orthogonal concerns of activity, interaction and 
synchronization.  

Therefore, in the design of a concurrent system, these concerns should be keep in mind as 
separated aspects, and the principles of orthogonal concurrency previously stated could 
(and should) be applied to each one. This should lead to define separate and orthogonal 
mechanisms implementing each concern, which clearly provides higher reusability.  

It could be argued that even these concerns aren’t totally monolithic. For example, 
synchronization has been divided in several subconcerns by some authors (i.e. Holmes, 
1999; Bader & Elrad, 1998). Of course, that’s absolutely legitimate and perfectly 
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combinable with our principles. Orthogonalization can be applied recursively, but, as 
argues Morrison (1979) some of the consequences of following this course can lead to 
complications. At each decomposition stage the designer has to make a decision. The 
orthogonalization can either be ignored on some other constraint, for example 
implementation efficiency, or else he has to live with the consequences. Anyway, the 
process must end at some point, commonly when a balance between advantages and 
limitations has been reached.  

Basing on the existing work on COOL’s, we argue that the orthogonalization level 
we propose here is the more widely agreed, thus offering a good mixing of reusability, 
expresivity and abstraction for most general-purpose languages. If the designer considers 
convenient to decompose some of the proposed concurrent concerns he can do it. The 
proposed principles of orthogonal concurrency remain valid and appliable to each 
considered concern. 

For example, as it’ll be explained in the next section, when designing our COOL 
CoJava, we decided to decompose synchronization concern in two orthogonal 
subconcerns in order to achieve reusability of synchronization policies. 

3 DESIGNING AN ORTHOGONALLY CONCURRENT SYSTEM: 
COJAVA 

To verify the usefulness of the proposed principles, we used them in the design of a 
COOL called CoJava.  Therefore, CoJava has these features: 

1. The following aspects are taken as orthogonal in the language: functionality, 
activity, interaction and synchronization. Furthermore, synchronization is 
considered as a composite concern of both an implementation-depent and an 
implementation- independent aspects (Bader & Eldar, 1998; holmes, 1999). This 
point will be further explained in more detail. 

2. The language supports a separate description of the different aspects of an object 
at the conceptual level, and their composition at runtime.  

3. Active and passive objects are allowed, as well as intraobject concurrency. Any 
type of object is allowed to be active or passive, in a per-instance basis.  

4. Synchronization policies are generic, reusable, and  can be combined with any 
type of object, without restriction. 

5. Interaction between objects is transparently managed by means of a wait-by-
necessity mechanism. 

6. Only functionality of an object determines its type. 
Feature (1) is based on the principle of orthogonality of concurrent concerns. Features 
(2), (3), (4) and (6) allows to fulfill data type orthogonality as well as concurrency 
identification principles, as it’ll be detailed later. Feature (5) points to independency 
principle applied to the interaction concern. Obviously, feature (3) prevents from totally 
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fulfil independency principle for the ac tivity aspect, as CoJava follows an heterogeneous 
model. As it has been previously explained, this can be justified by efficiency reasons. 

Therefore, CoJava has a high compliance with the design principles previously 
explained. In fact, as far as we know, it fulfils these principles better than any other 
COOL with the exception of the activity aspect, more orthogonal in homogeneous 
models. In the next sections we’ll show how this design has been implemented in a 
language, describing CoJava’ syntax. We’ll also show how it offers a high reusability 
thanks to its orthogonal design. 

The CoJava language 

CoJava has been implemented as an extension of Java (Gosling, 1996), extending it in 
two ways: (1) it provides a sublanguage that allows description of synchronization 
policies, based on synchronization and mapping classes, and (2) a sublanguage for 
creating objects by means of compositions of the behavioural aspects defined in the 
language. 

Separation of concerns in CoJava is supported by the existence of three separate 
kinds of classes, each one with its corresponding base class, which allow to define the 
semantics of each one of the aspects considered as independent in the model: 

• FunClass classes, derived from Object base class, are functional classes, which 
correspond to the classes in a classical  class-based language such as Java  or 
C++. 

• SyncClass classes, derived from SyncClass base class, are classes where we 
define synchronization restrictions. As we will show later, another kind of class 
called MapClass exists to compose synchronization with functionality. 

• WrapperClass classes, derived from WrapperClass base class, which define an 
active/passive behaviour. 

Every object in CoJava is composed of a functional component, a wrapper component, 
and an ordered set of synchronization components. This shortlist is specified when the 
object is created. For example, the following code would create an object with a 
functional component instantiated from the Buffer class, the active behaviour 
corresponding to Active wrapper class, and the synchronization defined in BufferSync 
class: 

Buffer A; 
A= new Buffer() with wrapper Active synchronized by 
{BufferSync}; 

It can be seen that it is the functional class that determines the type of the object. 
Therefore in CoJava the objects with the same functional type are manipulated in the 
same way, and totally interchangeable as parameters in a method call, independently of 
their active/passive behaviour or synchronization. 
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The activity component or wrapper can not accede directly the functionality of the 
object. Therefore, it’s generic and composable with any functional and synchronization 
classes.  

The synchronization in CoJava has been considered as two different concerns. One 
of them deals with defining necessary mutual exclusions between methods with regard to 
their concurrent execution. From now, we’ll better call them restrictions, to avoid 
misunderstandings. These restrictions are implementation-dependent, as they derive from 
a concrete implementation of the class. A change in this implementation can lead to 
changes in these restrictions, even if functionality, that is, class interface, has remained 
unchanged. Therefore, we considered that these restrictions have to be defined as part of 
functional class. 

The other aspect of synchronization is implementation- independent. For example, a 
priorities-based policy doesn’t depend of any particular implementation of a functional 
class. In fact, such a synchronization policy could be applied to any functional class. 
Furthermore, if we consider the data type orthogonality principe, it should be potentially 
generic, to be applied to any data type, and thus reusable. But the synchronization 
component deals with the problem of having to refer to methods of the functional class. 
So, in order to support its genericity, we have chosen to create an intermediate mapping 
class which acts as a connector between synchronization an functional classes. 

Thus, in CoJava, SyncClass are abstract classes defining synchronization. In a 
SyncClass we can define abstract states and abstract methods. An abstract method could 
have some preconditions to its execution, normally based on some of the defined abstract 
states, as well as preactions if necessary. Subclasses of a SyncClass may be defined, 
thereby creating synchronization SyncClass hierarchies. However, as they are abstract 
classes, SyncClass may not be directly instantiated neither included as object’s 
component. For this purpose we have to use MapClass classes. MapClass are in charge of 
the establishment of a correspondence between the abstract states and methods of a 
synchronization class and concrete methods of the functional class. This separation of 
synchronization and functionality is somewhat similar to the proposed one in Dragoon 
(Atkinson et al, 1992), but with important differences. In CoJava it is permitted to 
construct synchronization class hierarchies, which in turn is totally forbidden in Dragoon. 
Also, in Dragoon mapping between abstract and concrete methods is carried out inside 
the functional class, but in CoJava we use a separated class, the MapClass, which can be 
composed at runtime with a functional class. This prevents programmers from having to 
define a subclass of a functional class in order to include the required synchronization for 
a specific situation. As we have been discussing, this solution based on subclassing 
derives from a lack of orthogonality and a loss of reusability, as appends in Dragoon, 
Composition Filters or D-Language, for example. CoJava avoids this problem thanks to 
separating mapping in different kind of classes. In this way, it provides total 
polymorphism to the synchronization class, as it may be composed with different 
functionalities by simply defining the adequate mapping class.  
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SyncClass base class has two data members, which are CurrentCall and Queue. This 
allows to accede to the data of the current call and the waiting calls queue for the object. 
This MetaObject Protocol allows us to define relatively complex synchronization policies 
(Caromel, 1990; Caromel et al, 1998).  

A simple example in CoJava 

In order to illustrate the main features of CoJava, we will now present a typical example, 
consisting on the implementation of a bounded buffer which is acceded concurrently by a 
producer and a consumer. 

We define the functional class Buffer which implements a buffer based on an array 
of limited size, and the generic synchronization class BoundedContainer for a bounded 
container. The BufferSync class maps the generic synchronization class over the 
functional class: 

FuncClass Buffer{ 
  Incompatible methods{ 
    put={put, get};    
  } 
  private Integer[] buffer=new Object [4]; 
  private Integer P=new Integer(0); 
 
  public void put(Object X){ 
    buffer[P]=X; 
    P++; 
  } 
 
  public Object get(){ 
    P--; 
    return buffer[P]; 
  } 
 
  public Boolean empty(){ 
    return (P==0); 
  } 
 
  public Boolean full(){ 
    return (P==buffer.length); 
  } 
 
  public Integer size(){ 
    return P; 
  } 
} 
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SyncClass BoundedContainer{ 
  abstract states={empty, full}; 
  abstract methods={push, pop}; 
 
  preconditions{ 
    (!full) for push; 
    (!empty) for pop; 
  } 
} 
 
 
MapClass BufferSync maps BoundedContainer over Buffer{ 
 states map{ 
   full=full(); 
   empty=empty(); 
 } 
 
 methods map{ 
   push=put(); 
   pop=get(); 
 } 
} 

A very simple program which implements the use of this buffer as a passive object with 
the above mentioned synchronization by a producer and a consumer could look like this: 

Buffer B= new Buffer() with wrapper Passive synchronized by 
{BufferSync}; 
Consumer C= new Consumer () with wrapper Active synchronized 
by {}; //void synchronization 
Producer P= new Producer () with wrapper Active synchronized 
by {};/ /void synchronization 
 
while (true){ 
  B.put(P.getObject());  
  C.putObject(B.get()); 
} 

Note that despite the appearance of “sequentiality” of the code, concurrency is achieved 
because the calls to the active objects are asynchronous, and so both the producer and the 
consumer will only stop if the buffer gets filled up or empty respectively, or due to the 
wait-by-necessity mechanism provided that they obtain a reference to an object which 
may be not yet available. A sequential version of the program might be obtained by 
simply turning the active wrapper of either the producer or the consumer into a passive 
one, albeit in this case it would  not be logical to use a buffer to communicate them, as it 
would never contain more than one element. 
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The classical example of the addition of a get2() method to the Buffer class, which in 
our case simply removes two values from the buffer and returns the second one, could be 
implemented in CoJava  by extending the previously defined classes: 

FuncClass Buffer2 extends Buffer{ 
  Incompatible methods{ 
    get2={put,get,get2};    
  } 
 
  public Object get2(){ 
    P=P-2; 
    return buffer[P]; 
  } 
 
} 

 
SyncClass BoundedContainer2 extends BoundedContainer{ 
  abstract states={half}; 
  abstract methods={pop2}; 
  preconditions{ 
    (half) for pop2; 
  } 
} 
 
MapClass BufferSync2 extends BufferSync{ 
 states map{ 
    half=(size()>=2); 
 } 
 methods map{ 
    pop2=get2(); 
 } 
} 

Note in these examples the clear-cut separation of concerns and the high degree of 
reusability of synchronization code obtained in CoJava, due to its genericity and  
extensibility. Mapping classes prevent the inclusion of synchronization code of any kind 
in the functional class, or code that depends on functionality in the synchronization class, 
promoting the independence of both components.  

The use of the MOP allows us to implement policies which are more difficult to 
convey by just bearing in mind the object’s states. For example, let us suppose a 
container object with read and write methods. Due to its implementation, readings can be 
performed concurrently, but writings require an exclusive access to the object. A naïve 
synchronization could lead to an inanition of the calls to write method if there is a 
continuous flow of read calls. The implementation of a FIFO policy would avoid this 
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problem, but it cannot be defined with abstract states. On the other hand, it’s easy to 
implement it using both the reified call and the waiting queue of the object as variables: 

SyncClass FIFO { 
  abstract methods={anymethod}; 
   
  boolean accept(){ 
    return (CurrentCall=Queue.oldestCall()); 
  } 
 
  preconditions{ 
    (accept) for anymethod; 
  } 
} 

As we can see, the synchronization policy defined here is quite simple but expressive, 
and in this case does not require any abstract states. We must also point out that the fact 
of some methods requiring exclusive access is not reflected in the synchronization class, 
as it depends exclusively on the implementation of functionality, which takes charge of 
determining this concern. Thus, this same synchronization class would be valid in order 
to impose a FIFO policy on any functional class regardless of its restrictions derived from 
a particular implementation.  

Implementation of CoJava runtime 

For this first implementation of CoJava runtime, we extensively based on reflective 
facilities of Java language. The use of metalevel programming and reflection for 
implementing the separation and integration of concerns has been widespread (Aksit et al, 
1996; Hürsch & Lopes, 1995; Kiczales et al, 1997). In CoJava, the creation of an object 
at the base level implies the creation of three objects at the metalevel, each one 
corresponding to an object component, which are communicated by means of a 
MetaObject Protocol (MOP). Access to each object comes through a proxy defined on the 
metalevel, which reifies the calls to object’s methods. Each reified call is transferred to 
the wrapper object of the metalevel. The wrapper uses the information contained in the 
metaobject corresponding to the synchronization component in order to decide when a 
call can be served. As previously noted, the MOP is accessible in a limited way to the 
programmer by means of the instance variables CurrentCall and Queue of the 
synchronization classes, which allow access to the reified call being evaluated as well as 
to the queue of reified waiting calls. 

4 CONCLUSIONS 

In this paper, we have proposed the definition of some orthogonal concurrency principles 
as a way to establish a useful framework for the design of object-oriented concurrency 



 
 
 DESIGN PRINCIPLES FOR HIGHLY REUSABE CONCURRENT OBJECT-ORIENTED SYSTEMS  
 
 
 
 

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1 
 

models which offer a high degree of reusability and avoid problems like inheritance 
anomaly. With this aim, we have proposed four principles, based on well-known 
principles and works of programming languages design, orthogonal persistence and 
separation of concurrent concerns.  

We have presented the CoJava model, whose design is based on the proposed 
principles. Therefore CoJava shows high concurrency independency, total data type 
orthogonality and a mechanism of concurrency identification  orthogonal to the type 
system. Thanks to this, CoJava achieves higher reusability than previous COOL’s 
proposals, avoiding completely inheritance anomaly. Therefore, we think that usefulness 
of our principles as helpful design guidelines for COOL’s has been shown. We must also 
point out that CoJava model fulfils the adaptability requirements for COOL’s defined by 
Sánchez et al.  (1998). 

5 RELATED WORK 

Object-oriented concurrency has been a fertile field of research since the late 80’s. A 
good survey can be found in Philippsen (2000). Some authors have suggested principles 
or guidelines for COOL’s design. For example, Caromel (1990), Papathomas (1992), 
Bergmans (1994), Meyer (1996) or Lopes (1997). But those works focused very much on 
pragmatic decisions, more than on well-established design principles. For example, 
among other considerations, Papathomas argues that a COOL must be able to implement 
the administrator pattern (Gentleman, 1981). Caromel and Meyer defend a sequential 
object model in order to simplify design and better reuse code from not-concurrent 
applications. Both Bergmans and Lopes base their proposals on the separation of 
concerns principle, but they don’t clearly specify how to apply it in the language design, 
and anyway they also include as design principles an efficient implementation and the 
convenience of extending an existing language.  

However, it seems clear that even if the principles we have proposed in this work 
aren’t explicitly defined until now, the majority of the proposed models that attempt to 
join concurrent and object-oriented paradigms have commonly used mechanisms that in 
fact improve concurrency orthogonality in some way, in order to reach a higher degree of 
reusability, simplicity and transparency to the user. In fact, inheritance anomaly  can be 
easily seen as a lack of orthogonality between concurrency and inheritance mechanisms 
(Nierstrasz, 1993), and in the same way proposed solutions would try to reach higher 
orthogonality. For example mechanisms like wait-by-necessity (Caromel, 1990) or 
homogeneous models (i.e. Yonezawa et al, 1987) contribute to higher orthogonality 
making synchronization of asynchronous calls transparent to programmer. Furthermore, 
the separation of concerns paradigm of software engineering, which was successfully 
used in some of the most recently proposed COOL’s (Bergmans, 1994; Lopes, 1997; 
Bader & Elrad, 1998; Holmes, 1999) is a concept strongly related to orthogonality: it 
involves the identification of orthogonal components, and the definition of mechanisms 
to support its description separately and its later composition (Hürsh & Lopes, 1995).  
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