

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 1, May-June 2002

Cite this article as follows: J Leslie Keedy, Gisela Menger, Christian Heinlein: Inheriting from a
Common Abstract Ancestor in Timor , in Journal of Object Technology, vol. 1, no. 1, May-June
2002, pages 81-106, http://www.jot.fm/issues/issue_2002_05/article2

Inheriting from a Common
Abstract Ancestor in Timor

J. Leslie Keedy, Gisela Menger and Christian Heinlein,
Department of Computer Structures, University of Ulm, Germany

Abstract
A particular case of multiple inheritance, involving a family of related types with a com-
mon abstract ancestor, is examined, and a substantial example, involving five abstract
and nine concrete collection types, is presented. The separation of types and implemen-
tations, together with the separation of subtyping and code re-use, results in a clearly
structured and easily intelligible type library which allows extensive polymorphic use of
collections at the type level. A full implementation of only one of these types, together
with a few additional trivial code units, can be re-used to implement all nine concrete
types. The paper concludes by describing how the binary methods and constructors can
also be easily and efficiently designed and implemented.

1 INTRODUCTION

Multiple inheritance provides a number of challenges for the design of object oriented
programming languages which affect both subtyping and subclassing. This paper dis-
cusses how the programming language Timor1, which is currently under development at
the University of Ulm in Germany, supports two related aspects of multiple inheritance.
The first concerns the progressive design, using multiple inheritance, of families of re-
lated types which have a common abstract ancestor. The second is the implementation of
such designs in a way which can maximise the re-use of code.

Timor has been designed specifically with the idea of designing and implementing
software components for object oriented systems. By components we, like McIlroy [13],
mean general purpose software units which can be designed and implemented by a
software components vendor for use in many different application systems. For this
reason Timor rigorously separates type definitions, known as type interfaces or simply
types, from their implementations. This separation allows a component deve loper to

1 The design of Timor has been based, wherever appropriate, on the design of Java. Nevertheless, as will be
evident in the sequel, it is structurally quite different, even if the syntax is often identical.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_05/article2

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

define a type and then produce different impleme ntations thereof for sale to (possibly
different) customers. In this context a distinction between types and their
implementations is useful even if in individual application systems a single
implementation of any particular type is always used. Consequently in this paper we do
not fully address issues raised by the contemporaneous use of different implementations
of a single type in a single application or system, although Timor also allows this
possibility. Similarly we do not consider how client users select a particular
implementation for a type.

The distinction between types and implementations (which, unlike Java classes, are
not themselves types) facilitates a similar separation of subtyping from subclassing,
thereby allowing issues related to these themes to be handled orthogonally. Timor allows
programmers to define derived types which can extend supertypes in a behaviourally
conform manner [12] and/or can include base types without implying behavioural
conformity. Only variables of supertypes defined by extension can be the object of
assignments of their extended subtypes in the traditional sense of inclusion polymorphism
[3]. But a type derived by inclusion is not a supertype in this sense.

These features of Timor are described more fully in [10], but only in terms of single
inheritance. In the present paper we show how a particular case of multiple inheritance is
supported in Timor both at the type and implementation levels.

The standard OO class construct does not distinguish between types and their
implementations, with the consequence that multiple inheritance is usually viewed as a
code re-use problem. By introducing the idea of interfaces, Java was able to separate
issues of multiple type inheritance from multiple code re-use; the former is supported in
Java, the latter is not [1]. The fundamental distinction which is made in Timor between
types and implementations allows the two issues not only to be clearly separated, but also
simplifies support for multiple code re-use.

Section 2 distinguishes four kinds of multiple type inheritance, three of which can, at
least partially, be modelled using aggregation rather than inheritance, and explains why
only the first case is discussed in this paper. Section 3 discusses the kinds of method
collisions which can occur in the first case. In section 4 an extended example from the
Timor Collection Library is described, which is used throughout the paper. This leads to
the formulation of two type inheritance rules for Timor in section 5. Sections 6 and 7 then
show how constructors and binary methods are supported in Timor, while section 8
describes how these can include abstract algorithms.

From section 9, which introduces the concept of multiple implementations in Timor,
the focus moves to implementation techniques. Section 10 shows how in some cases any
of the implementations of a type can be re-used in the implementation of some other
(possibly unrelated) type, while section 11 discusses how individual implementations can
be used, a technique which can, but need not, be used to emulate conventional
subclassing. Section 12 shows how a few further trivial code units can be defined, which
can be re-used to implement the duplication properties of different collection types.
Section 13 summarises the code re-use rules. Techniques for implementing binary

Introduction

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 83

methods and constructors are then introduced in sections 14 and 15. Section 16 concludes
the paper.

2 MULTIPLE TYPE INHERITANCE

Multiple inheritance at the type level can be regarded primarily as a modelling tool. It can
be used to model at least four kinds of situations:

a) An abstraction (e.g. Collection) can be specialised in different ways (e.g. as an
OrderedCollection, a DuplicateFreeCollection). Such specialisation
can involve orthogonal properties (here ordering and duplication properties)
which can appear in various combinations in actual objects (e.g. Set, List), re-
sulting in diamond inheritance.

b) A concrete object type (e.g. Person) can also be specialised in different ways
(e.g. as a Student, an Employee). Such specialisation can also involve orthogo-
nal properties which can appear in various combinations in actual objects, also re-
sulting in diamond inheritance (e.g. a StudentEmployee).

c) Two or more different object types (e.g. Radio, CassettePlayer) can be
combined to form a single new (compound) object type (e.g.
RadioCassettePlayer).

d) Two or more objects of the same type can be combined to form a single new
(compound) object type (e.g. DoubleCassettePlayer). The effect is repeated
inheritance.

The basic problem which all of these create is that collisions can occur among the mem-
bers inherited from two or more parent types. However, each case seems to require a
separate approach.

In case a) it usually seems more appropriate to merge colliding members (e.g. a
method insert) to form a single member in the new type, because it is the different
definitions of methods which express the differences in the types.

Case b) differs from case a) in that the methods inherited at the bottom of the
diamond rarely need to be redefined in intermediate types, because they refer to the same
concrete object type.

In case c) collisions are more likely to be accidental, so tha t merging into a single
method may not be the ideal answer.

In case d) the use of a single type name is insufficient to disambiguate the names of
members.

Case a) differs from cases c) and d) in that the latter can at least partially be
modelled without us ing inheritance at all. Instead they can be defined by aggregation, i.e.
the object types to be inherited in the new type can instead be regarded as named
component variables of the new type. Thus for example a RadioDoubleCassette-

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

Player object can in principle be modelled either as inheriting a radio and two cassette
player objects or as having such components declared as variables. The aggregation
approach solves the naming problem but requires the programmer to forgo some
advantages of inheritance. We refer to examples falling into the categories (c) and (d) as
multiple component inheritance.

Case b) can also be partly modelled using aggregation, although this is probably
unusual in current OO practice. For example separate types Studying and Employed
can be defined which do not inherit from Person, but with all the new members
appropriate to a student or an employee. These types can then be included in new types
Student, Employee and/or StudentEmployee by aggregation. Hence case b) is
borderline, and can be treated either as multiple component inheritance or abstraction
inheritance (i.e. as an example of case a)).

To find a mechanism for realising the advantages both of multiple component
inheritance and of aggregation involves quite separate techniques from the issue of
unifying members which have been inherited from a common ancestor via different
paths. Both have interesting facets and both find innovative support in Timor. In the
present paper we address the issue of multiple inheritance from a common ancestor.
Timor's approach for handling multiple component inheritance is based on aggregation,
enhanced by some new techniques which will be described in a future paper.

3 HANDLING COLLISIONS IN TIMOR

In Timor all the members of a type definition are formally considered to be methods2.
Consequently the discussion of collisions can be confined in the present context to
method collisions.

Following the Java approach [1] to method collisions, Timor distinguishes between
collisions merely in the names of methods and collisions of method signatures. Collisions
of complete method signatures are treated as cases of redef inition, while collisions merely
in the names of methods (i.e. where the signatures otherwise differ) are treated as
overloading. When overloading occurs, each inherited method is considered to be a
separate method. Thus discussions of collisions in the sequel refer to cases where the
method signatures are indistinguishable.

2 Abstract fields and abstract references can appear in type definitions. Formally these are regarded
as a pair of methods for setting and getting a hidden value.

An Example: The Timor Collection Library

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 85

4 AN EXAMPLE: THE TIMOR COLLECTION LIBRARY

As a realistic example of multiple inheritance from a common abstract ancestor we use
that part of the Timor Collection Library (TCL) which, following the concept developed
for Collja [6, 7, 14], defines the organisation of general collections according to the fol-
lowing orthogonal properties of their elements:

• duplication of elements in three forms:
– duplicates are allowed,
– duplicates are ignored,
– duplicates are signalled as exceptions.

• ordering of elements in three forms:
– unordered,
– user-ordered,
– sorted by user-defined criteria.

The TCL thus has nine concrete collection types, reflecting all the combinations of these
properties. These are as follows:

Collection
Type Name

Duplication
Criterion

Ordering
Criterion

Bag Allow duplicates No ordering

Set Ignore duplicates No ordering

Table Signal duplicates No ordering

List Allow duplicates User ordered

OrderedSet Ignore duplicates User ordered

OrderedTable Signal duplicates User ordered

SortedList Allow duplicates Sorted

SortedSet Ignore duplicates Sorted

SortedTable Signal duplicates Sorted

To facilitate their polymorphic use with a high degree of flexibility there are also five ab-
stract nodes:

• the root type Collection (which serves as a polymorphic supertype for all
collections);

• the type DuplFree (derived from Collection, a polymorphic supertype for all
collections which may not contain duplicate elements),

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

• the type Ordered (derived from Collection, a polymorphic supertype for all
ordered collections),

• the type UserOrdered (derived from Ordered, a polymorphic supertype for all
user ordered collections) and

• the type Sorted (derived from Ordered, a polymorphic supertype for all sorted
collections).

The complete structure is illustrated in Figure 1.

Collection

Ordered
Table

Ordered

Sorted User
Ordered

Bag

DuplFree

Set Table

Ordered
Set

Sorted
List

List

Sorted
Set

Sorted
Table

Figure 1: Structure of the Timor Collection

In order to guarantee behavioural conformity all the common methods of all collection
types are initially defined in Collection with a maximum of behavioural flexibility.
Thus its (abstract) method insert, for example, does not define

– how an insertion affects the ordering of the collection,
– whether the insertion will be successful if it involves inserting a duplicate,
– whether an exception will be thrown to indicate a duplicate (but it defines an ex-

ception DuplEx which might be thrown).
An abstract type with such non-deterministic methods is designed to allow a maximum of
polymorphism. In derived types the actions of the insert method are specified more
precisely, depending on the node in question. Thus the insert method of the abstract
type UserOrdered defines that insert appends the element at the end of the collection
(and adds new methods for inserting at other positions) but without defining its duplica-
tion properties further. On the other hand the insert method of the concrete type Bag is
defined without specifying ordering, but indicating that duplicates are accepted (with the
effect that the exception DuplEx can be removed from Bag's insert method).

Such redefinitions of methods must be reflected by listing them in a redefines
clause of a derived type. As the first version of Timor does not support a formal

An Example: The Timor Collection Library

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

specification technique, only the headers of such methods are listed, but we intend that a
later version will also allow the changes (and of course the original methods) to be more
formally specified. Sometimes a redefinition can lead to a change in the method header
(e.g. where an exception defined in a parent type may not be thrown in a derived type, cf.
Collection with Bag), but in many cases the method header remains the same (though
hopefully programmers will be encouraged to document the redefined behaviour in
comments).

The redefinitions described above are illustrated in the following simplified
example3:

abstract type Collection {
 op void insert(ELEMENT e) throws DuplEx;
 /* other method headers */
}

abstract type UserOrdered extends Collection
redefines {
 op void insert(ELEMENT e) throws DuplEx;
 // insert appends e at the end
 /* other redefined method headers */
}
{ /* new methods for inserting/removing
 elements at different positions */
}

type Bag extends Collection
redefines {
 op void insert(ELEMENT e);
 // insert accepts duplicates
}
{ /* new method headers */
}

type List extends Bag, UserOrdered
redefines {
 op void insert(ELEMENT e);
 // insert appends e at the end
 // and accepts duplicates
}
{ /* new method headers */ }

3 The qualifier op introduces an operation (which can modify the state of an instance of the type), enq
introduces an enquiry (which cannot modify the instance's state). This distinction is important for example
for defining qualifying types with bracket routines (cf. [8, 9]) but is not significant for the present
discussion. The type ELEMENT can be thought of as any relevant type. Timor supports a generic mechanism
along the lines described in [4, 5], but again this is not directly relevant to our discussion and is not
described here.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

An important advantage of redefines clauses in Timor types is that they indicate (in-
dependently of an implementation) whether and where methods of a common ancestor
have been redefined in intermediate nodes in the type hierarchy.

5 TYPE INHERITANCE RULES

We are now in a position to formulate the following type inheritance rules:
Type Inheritance Rule 1: If in a derived type multiple methods with the same

signature 4 are derived from a common ancestor, they are treated as a single method
(unless they have different return types, in which case a compile time error arises).

Type Inheritance Rule 2: If the definitions of such methods differ (i.e. if one or more
of them has been redefined differently from the definition in their closest common
ancestor), they must also be listed in a redefines clause in the type being defined.

Rule 1 is defined in terms of a common ancestor in order to clarify that it does not
apply to all cases where methods have the same signature, thus leaving scope for a
different definition which might suit multiple object and repeated inheritance.

Rule 2 in effect requires that conflicting definitions are clarified. Where a definition
in one of the ancestors can be used in the new type this can be signalled by the use of the
keyword from followed by the name of a type, e.g.

redefines {
 op void insert(ELEMENT e) from UserOrdered;
}

4 As in Java, exception declarations are not considered to be part of the signature of a method.

Constructors

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

6 CONSTRUCTORS

Constructors can be declared in Timor types. They deviate from the Java style in order to
allow flexibility in their names and in their parameters. The keyword maker introduces
each constructor, e.g.

maker Bag init();
// makes a new Bag object
maker Bag intersect(Bag b1, b2);
// returns intersection of b1 and b2

We refer to constructors such as intersect, which have parameters of their own type,
or of a supertype, as binary makers. If a concrete type does not have an explicitly defined
constructor, the compiler supplies a parameterless constructor with the name init.

An interesting example of a binary maker is introduced in the type List.
maker List reverse(Ordered c);

This can accept any ordered collection (i.e. both user-ordered and automatically sorted
collections) and create a List instance containing its elements in reverse order.

Constructors are needed only in concrete types, since their purpose is to construct
actual instances of types, and in OO languages they are no rmally not inherited. However
Timor provides a mechanism for predefining constructors in abstract and concrete types.
Such predefined constructors are then "inherited" in derived types.

A predefined constructor can be recognised by the use of the keyword ThisType as
the type name for the return type of a constructor. The TCL has two such constructors,
declared in the abstract type Collection, i.e.

abstract type Collection {
 maker ThisType init();
 // a standard constructor
 maker ThisType convert(Collection c);
 // converts any Collection instance
 // to an instance of the current type
 /* other method headers */
}

The first of these is a normal parameterless constructor. Although declared in
Collection it cannot be invoked to produce a Collection instance, because abstract
types cannot be instantiated. But it predefines that any concrete type derived directly or
indirectly from Collection has such a constructor, called init. Thus the TCL type
Bag automatically has a constructor:

maker Bag init();

Similarly each of the concrete types derived from Collection has a constructor
convert with a parameter of type Collection, e.g.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

maker Set convert(Collection c);
The parameter is of course polymorphic, allowing any kind of collection instance in the
type hierarchy to be passed to the constructor as a parameter. Thus the code sequence

Bag b = new Bag.init();
...
Set s = new Set.convert(b);

produces a new Set instance containing the same members as appear in the Bag b (but
with duplicates removed).

In the type Collection several other binary makers are predefined, e.g.
maker ThisType merge(Collection c1, c2);
// returns merge of c1 and c2 as
// a collection of the current type
maker ThisType intersect(Collection c1, c2);
// returns intersection of c1 and c2 as
// a collection of the current type
maker ThisType difference(Collection c1, c2);
// returns difference of c1 and c2 as
// a collection of the current type

The maker merge serves as a union operation for sets, a concatenation operation for lists,
etc.

If a predefined maker is derived from more than one base type leading to a collision
of the signatures, the two definitions are merged into a single predefined maker. Where
the signatures differ the Java rules for overloading apply.

7 BINARY METHODS

Timor types do not support the concept of static methods or fields. The effects of Java
static declarations are achieved in other ways 5. One such possibility is relevant to this pa-
per, namely the introduction of binary methods in Timor types. A binary method carries
out operations on multiple existing instances of a type. They are typically used to com-
pare instances, e.g.

binary boolean equal(Set s1, s2);
binary boolean includes(Set s1, s2);

An important advantage of Timor's binary methods is that they provide a vehicle for im-
plementing binary operations, in the sense described in [2], without creating the problems
associated with binary instance methods.

Like makers, binary methods can be predefined for derived types. In this case the
keyword ThisType is used to define parameters which are covariantly adapted to the
current type.

5 A program, for example, is the instantiation of a type by the operating system.

Binary Methods

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

In this respect they are similar to predefined makers, but with one significant
difference. Whereas a predefined maker only exists as a real constructor in concrete
derived types, binary methods not only covariantly predefine methods for concrete types;
they also exist as real methods in the abstract types in which they are defined or derived.
This is one of several reasons for distinguishing the two constructs.

In the TCL several binary methods are defined in the type Collection, e.g.
binary boolean equal(ThisType c1, c2);
binary boolean includes(ThisType c1, c2);

What this means is that each abstract and each concrete type derived from Collection
has these methods, e.g. List has methods

binary boolean equal(List c1, c2);
binary boolean includes(List c1, c2);

and Bag has methods
binary boolean equal(Bag c1, c2);
binary boolean includes(Bag c1, c2);

In this case the parameters are not instances of Collection which are intended to be
used polymorphically, although derived types of the actual parameter types can of course
be passed to the actual methods in accordance with the normal polymorphism. For exa m-
ple because List is a derived type of Bag, a List instance can be passed to the
Bag.equal method, but a Bag instance cannot be passed to List.equal.

8 ABSTRACT ALGORITHMS

It is not always obvious, in examples such as the TCL, how binary methods and makers
are intended to function. For example how does the predefined maker which appears in
every collection type convert from all other collection types to its own particular type?
What does a comparison for equality mean?

To help clarify such questions Timor allows types to include abstract algorithms in
the definitions of makers and binary methods. An abstract algorithm can use the methods
of its type, but recourse to actual implementations of the type is not allowed.

One way of looking at an abstract algorithm is as a specification of a maker or a
binary method, expressed in terms of the basic operations on a type. Alternatively it can
be viewed as an algorithm which a client could write himself by using the methods of the
type. A further useful viewpoint will become evident in sections 14 and 15.

The following is a slightly simplified example of an abstract algorithm, which
defines a general algorithm for the "conversion" maker in the type Collection:

maker ThisType convert(Collection c) {
// converts any Collection instance
// to an instance of the current type
 Enumeration enum = c.elements();

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

 while (enum.hasMoreElements()) {
 try { insert(enum.nextElement()); }
 catch (DuplEx de) { /* ignore it!*/ }
 }
}

We see that it is defined to iterate over all elements of its parameter, using its own
insert method in an attempt to insert it into the new collection.

Because Collection is abstract this maker does not really exist, it merely
predefines an algorithm for its derived types. Thus the effect of the insert method
invocation depends on the type for which the maker is actually invoked. In Table,
OrderedTable and SortedTable invoking the insert method can result in a
duplicate exception being thrown. The algorithm shows that this is ignored, allowing
conversion of instances of these types to occur without an exception being thrown. If on
the other hand the type in question is an ordered type the actual insert method of the
type will cause the element to be placed in its appropriate place (either automatically
sorted or appended).

Abstract algorithms for binary methods are similar. In this case they invoke the
methods of their parameters, as the following example shows:

binary boolean equal(ThisType c1, c2) {
 if (c1.size() != c2.size()) return false;
 ELEMENT elem;
 Enumeration enum = c1.elements();
 while (enum.hasMoreElements()) {
 elem = enum.nextElement();
 if (c1.occurrences(elem) != c2.occurrences(elem))
 return false;
 }
 return true;
}

The algorithm first checks that the two collections have the same number of elements
then that there are the same number of occurrences of each element in both.

Like the algorithm in the maker convert this algorithm is predefined for derived
types, but unlike the former it is a "real" algorithm, in the sense that binary methods,
unlike makers, also exist for abstract types. In other words there is a real binary method:

binary boolean equal(Collection c1, c2);
defined in the abstract type Collection. Using this algorithm any two instances of
(concrete) collection types can be compared for equality.

Derived types always inherit predefined makers and binary methods defined in their
supertypes, but they can redefine the algorithms. For example in Bag and Set (neither of
which throw duplicate exceptions) the maker convert can be simplified (in a
redefines clause) to:

Abstract Algorithms

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

maker ThisType convert(Collection c) {
 Enumeration enum = c.elements();
 while (enum.hasMoreElements()) insert(enum.nextElement());
}

The possibility of redefining abstract algorithms in derived types raises the question:
Which algorithm is valid when different versions exist in predefined methods which are
all inherited in a derived type? In this case the definer of the type has the choice of select-
ing one of the existing algorithms or defining a new algorithm. Thus in List, which is
derived from Ordered and from Bag, the algorithm can be selected as follows:

type List extends Bag, UserOrdered
redefines {
 binary boolean equal(ThisType c1,c2) from UserOrdered;
}
{ /* new method headers */
}

9 IMPLEMENTATION TECHNIQUES

Each abstract type in Timor can have zero or more implementations, each concrete type
needs one or more. An implementation can, regardless of any relationship between its
own and other types, have one of several forms:

a) It can have a completely new implementation. This is well suited to the informa-
tion hiding principle [15-17]. The new implementation of the methods of super-
types must conform with the specifications of the supe rtypes (where relevant as
redefined in the derived type). The implementation of new and redefined mem-
bers must conform with the specification of the derived type.

b) An implementation can re-use implementations of other types (indicated by the
keyword reuses). In contrast with standard OO practice a subtype relation be-
tween the type of the new implementation and those of the re-used implementa-
tions need not exist. Thus code re-use can be completely decoupled from subtyp-
ing and from the inclusion of interfaces.

c) A reuses clause can designate a specific implementation to be re-used. Alterna-
tively, it can designate a type, any of whose implementations can be re-used (at
the level of the public members). The first case typically reflects the conventional
object oriented style of code inheritance, while the second leads to a quite differ-
ent style of code re-use.

d) An implementation can also re-use typeless implementations, i.e. implementations
which are defined independently of a specific type and which cannot themselves
be used as types. This case is also indicated by the keyword reuses.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

e) A type can be mapped to another type, and in this way re-use its implementations,
without implying a relationship between the two types. This technique is de-
scribed in [10] but not discussed further in this paper.

10 RE-USING ANY IMPLEMENTATION OF A TYPE

With the kinds of types under discussion it is often desirable to provide alternative im-
plementations, based for example on an array, on various forms of linked lists, etc. We
now describe how Timor allows the re-use of any implementation of a type in implemen-
tations of a different type, without implying a subtyping relationship.

We begin with an implementation of the TCL type List as if it were a completely
independent type (cf. section 9 a)):

impl ArrayList of List {
 ELEMENT[] theArray;
 int maxSize = 500;
 int currentSize = 0;
 enq int size() {
 return currentSize;
 }
 op void clear() {
 currentSize = 0;
 }
 op void insert(ELEMENT e) {
 // defined to append e
 if (currentSize == maxSize) throw new FullEx.init();
 theArray[currentSize] = e;
 currentSize++;
 }
 op void insertAtPos(ELEMENT e, int pos)
 throws OutOfBoundsEx {
 if (currentSize == maxSize) throw new FullEx.init();
 if (pos > currentSize || pos < 0)
 throw new OutOfBoundsEx.init();
 setInArray(e, pos);
 }
 op void setInArray (ELEMENT e, int pos) {
 // an internal method to insert e
 // into theArray at position pos
 ...
 }
 ...
}

Re-using Any Implementation of a Type

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

The OutOfBoundsEx exception is a checked exception which appears in the type defini-
tion for insertAtPos, a method first introduced in the abstract node UserOrdered.

Because a simple array implementation is used, the possibility arises that it can
become full. Hence in both insert and insertAtPos an exception (FullEx) is
thrown, which does not appear in the type definition. This is an unchecked exception. The
issue of restrictions which can appear in individual implementations of a type is taken up
in section 14, where it is shown how the value of maxSize can be passed as an
implementation parameter without affecting the type definition.

As no reuses clause appears, and as List is a concrete type, the implementation
must be complete. By definition it conforms with the information hiding principle. Many
equivalent implementations of List, e.g. SingleLinkList and DoubleLinkList,
can be programmed.

Leaving aside until later the question of makers and binary methods, it is evident that
all such impleme ntations of the instance methods of List can be re-used as
implementations of Bag. The insert method in List is specified to append elements
and to accept duplicates. That of Bag inserts elements without defining a position and it
also accepts duplicates. Hence any implementation of List fulfils the specification of
Bag. So implementing Bag costs virtually nothing:

impl NewBag1 of Bag reuses List {
}

The reuses clause can name one or more types, indicating in this example that any im-
plementation of List can be re-used as an implementation of Bag6.

What the reuses clause actually means is described in section 13. Its application
here is that all matching methods of Bag use the implementation in the specified
"implementation" type (here List). A match is defined as a method in the re-used unit
with the same signature and return type, and with either the same exceptions or a subset
thereof.

Any additional public methods which the latter implements, but which are not
needed, cannot be invoked by clients. Any members not needed by the implementation
can be removed. In this example methods such as insertAtPos are redundant in
implementations of Bag.

This example shows how a subtyping relationship and a subclassing relationship are
often the reverse of each other. By separating these issues Timor can easily cope with the
two.

6 Various mechanisms for selecting an actual implementation will be discussed in a future paper.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

11 RE-USING INDIVIDUAL IMPLEMENTATIONS

A reuses clause can optionally nominate individual implementations. This technique
can (but need not) be used to mimic conventional incremental OO subclassing. One could
begin by implementing the abstract type Collection, for example by defining data
structures and programming those methods which are valid for implementations of all the
subtypes (e.g. size, clear). But the definition of methods such as insert, which are
non-deterministically specified in Collection and require different implementations in
different derived types, will be incrementally coded in an implementation of the corre-
sponding type.

The same technique can be used where a subtyping relationship does not exist. We
now show how it is used in the TCL to implement SortedList. The latter differs from
List primarily in that its insert method uses some criteria7 for automatically sorting
elements in the list. For any particular implementation most of the required code will be
identical to that for List. This is clearly another case for code re-use. Here is how it can
be defined for an array implementation:

impl ArraySorted of SortedList reuses ArrayList
overrides {
 op void insert(ELEMENT e) {
 // defined to sort e
 if (currentSize == maxSize) throw new FullEx.init();
 sortIntoArray(e);
 }
 ...
} // end of redefined methods
{ //now the new methods
 op void sortIntoArray(ELEMENT e) {
 // an internal method sorting e into theArray
 ...
 }
 .../* more new methods */
}

This implementation "borrows" all the data structures and methods which it needs from
the List implementation ArrayList (see section 10). The overrides clause indicates
which methods are overridden in a re-used implementation, and provides a new imple-
mentation for them. (It could use a "super" mechanism to invoke the original methods,
though that is not appropriate here.) Again redundant methods (e.g. insertAtPos) can
be pruned where appropriate.

7 The criteria are defined by clients using the generic technique of Timor, which is not described here (but
see [4, 5]).

Re-using Individual Implementations

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

In this example we see how two subtypes of the same behavioural supertype
(Ordered) can be implemented by one re-using the code of another 8. Further
implementations of SortedList could be produced in the same way, by re-using
SingleLinkList, DoubleLinkList, etc.

We have now potentially produced a number of implementations of each of the
concrete types List, Bag and SortedList, the three types which accept duplicates.
Next we consider how implementations of the six DuplFree types can be produced.

8 It would equally be possible first to provide an independent implementation of SortedList and
then to reuse its code to implement List.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

12 IMPLEMENTING THE DUPLICATION PROPERTIES

The duplication properties of the collection types are orthogonal to their other properties.
Providing new code for each implementation on an individual type basis (e.g. corre-
sponding to the incremental subclassing style) is therefore a combinatorial problem. A
better approach is to provide a separate algorithm for each case, which can be re-used in
combination with implementations for SortedList and List to implement the remain-
ing concrete types. This aim can best be achieved by providing appropriate mechanisms
for checking whether an attempt is being made to insert a duplicate into a collection and
if so take the appropriate action.

With this aim in mind we begin with a view interface9 which provides the minimal
interface needed for checking for duplicates, and then ignoring these when the insert
method is invoked (i.e. relevant for implementing Set, OrderedSet and SortedSet):

view Insert {
 op void insert(ELEMENT e);
 enq boolean contains(ELEMENT e);
}

Based on this view a typeless implementation can be coded with a method which handles
duplicates by overriding the insert method, as follows:

impl DuplIgnore requires Insert
overrides {
 op void insert(ELEMENT e) {
 if (!^Insert.contains(e)) ^Insert.insert(e);
 }
}

The requires clause indicates that this implementation is intended for use in an imple-
mentation of a type which also implements Insert. Invocations of the methods of
Insert are indicated, as when an implementation invokes methods of a reused imple-
mentation, with the hat (̂) symbol. In this particular example the typeless implementa-
tion not only assumes the availability of an implementation of Insert but it also over-
rides the method insert.

This implementation can now be re-used, together with any implementations of
List or SortedList, to implement Set and SortedSet, as fo llows:

impl Set1 of Set reuses List, DuplIgnore
{/* no new method implementations*/
}

9 View interfaces typically define a standard set of methods which can be used polymorphically in
different types. As is useful in this example they can be defined retrospectively, allowing a limited form of
structural type matching, which is stat ically checked when it is needed. A match occurs with the same
signature and return type and a subset of the exceptions.

Implementing the Duplication Properties

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 99

impl SortedSet1 of SortedSet reuses SortedList, DuplIgnore {
}

As described in section 10, the methods of the type to be implemented are matched with
those of the re-used implementations. In this example all are satisfied from the first listed
"implementation type".

Reused implementations are also examined for overriding methods which match
methods of the type. In this case the overriding method insert in DuplIgnore is
matched for both types. However, the requires clause must also be checked, to ensure
that all the requirements specified via Insert are met. These requirements must be met
by matching the definition with that of the type currently being implemented, not with a
particular re-used implementation. As the view Insert was especially designed for this
purpose, there is no problem.

Implementing OrderedSet also involves ignoring attempts to insert duplicates via
the insertAtPos method. For this purpose we can extend the view Insert, as follows:

view InsertPos extends Insert {
 op void insertAtPos(ELEMENT e, int pos);
}

and provide a further typeless implementation:
impl DuplIgnorePos requires InsertPos
overrides {
 op void insertAtPos(ELEMENT e, int pos) {
 if (!^InsertPos.contains(e))
 ^InsertPos.insertAtPos(e, pos);
 }
}

which can be used to implement OrderedSet as follows:
impl OrderedSet1 of OrderedSet
reuses List, DuplIgnore, DuplIgnorePos { }

Implementations of Table, OrderedTable and SortedTable follow a similar pattern,
differing only in the fact that the detection of an attempt to insert a duplicate results in the
exception DuplEx being thrown. Here are the relevant units:

view SignalInsert {
 op void insert(ELEMENT e) throws DuplEx;
 enq boolean contains(ELEMENT e);
}

impl DuplSignal requires SignalInsert
overrides {
 op void insert(ELEMENT e) throws DuplEx {
 if (!^SignalInsert.contains(e))
 ^SignalInsert.insert(e);
 else throw new DuplEx.init();

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

 }
}

view SignalInsertPos extends SignalInsert {
 op void insertAtPos(ELEMENT e, int pos) throws DuplEx;
}

impl DuplSignalPos requires SignalInsertPos
overrides {
 op void insertAtPos(ELEMENT e, int pos) throws DuplEx {
 if (!^SignalInsertPos.contains(e))
 ^SignalInsertPos.insertAtPos(e, pos);
 else throw new DuplEx.init();
 }
}

This opens the way for the following implementations of the remaining collection types
impl Table1 of Table reuses List, DuplSignal {
}

impl SortedTable1 of SortedTable
 reuses SortedList, DuplSignal {
}

impl OrderedTable1 of OrderedTable
 reuses List, DuplSignal, DuplSignalPos {
}

13 CODE RE-USE RULES

The rules for code re-use for instance methods can be summarised as:

Type Re-use Rule: If a type is nominated in a reuses clause, any of the
implementations of that type can be interchangeably re-used. Explicitly coded methods of
the new implementation have no access to the private methods or data structures of the
re-used "type implementation".

Implementation Re-use Rule: If an individual implementation is nominated in a
reuses clause, explicitly coded methods of the new implementation can access the
internal methods and/or data structures of the re-used implementation.

Method Matching Rule: A method match occurs when the signature and the result
type in a unit nominated in a reuses clause matches that of the type being implemented
and the exceptions in the nominated unit are either the same as, or a subset of, those in
the type being implemented.

Code Re-use Rules

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 101

Method Selection Rule: Methods are selected from the first nominated unit in which
a match occurs. (Any unmatched methods must be explicitly coded in the
implementation.)

Overriding Rule: Overriding methods which appear in re-used implementations are
also matched (according to the Method Matching and Selection rules) and in the new
implementation they override the corresponding method selected.

Multiple Overriding Rule: If more than one matching overriding method is found,
the overriding takes place in the order right to left. This means that if for the clause
reuses A, B, C there is a matching method in A which is overridden in both B and C,
at run-time the overriding method in C is invoked and if this invokes its "super" the
overriding method in B is invoked, which can in turn invoke the original method in A.

Requires Rule: If a re-used implementation has a requires clause, this must be
satisfied by the definition of the type being implemented. This means that for each
method of the view there must be a matching method (as defined in the Matching Method
Rule) in the type being implemented. (The requires rule has no effect on the multiple
overriding rule.)

With respect to the collection hierarchy example, these rules together enable all the
instance methods of all the concrete types to be implemented, without any algorithm
having been repeated for the entire hierarchy. Next we consider the binary methods and
constructors.

14 IMPLEMENTING BINARY METHODS

The implementation of binary methods requires special attention for three reasons. First,
these require an implementation in abstract types, such as Collection and DuplFree.
Second, in a system which contemporaneously supports multiple implementations of a
type, it cannot be assumed that when different instances of the same type are compared
they will have the same implementation. Third, although an implementation for one type
can re-use code of unrelated types, this by no means guarantees that binary method im-
plementations can also be re-used. For example the instance methods of Bag can be im-
plemented by re-using instance methods of List, but a List comparison for equality,
which takes into account (and relies on) ordering, cannot be re-used as a Bag equality
method (where ordering is not relevant).

In fact all three issues can be resolved by using abstract algorithms (which can
appear in type definitions, see section 8) as implementation algorithms. As the abstract
algorithms can only be formulated in terms of invocations of public methods (without
recourse to particular implementations) such algorithms are implementation independent
and can be used even where instances with different implementations are passed as

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

parameters. Furthermore, different abstract algorithms can be provided for different
types. Hence the problem would be solved, were it not for the issue of efficiency.

Abstract algorithms always pay the penalty of invoking public methods. This will
often not be as efficient as implementations which can directly access implementation
data structures and/or internal methods. To overcome this penalty, Timor supports a
mechanism [18] which is a variant of the multimethod technique [2]. This allows an
implementor to access the implementation details from his own implementation, but (for
information hiding reasons and to keep the mechanism relatively simple and clean) not
other implementations of the type.
To illustrate the principle, there are four possibilities when two instances are being com-
pared:

a) both parameters have the current implementation,
b) only the first has the current implementation,
c) only the second has the current implementation,
d) neither has the current implementation.

In case d) the implementation programmer has no choice: from his viewpoint the abstract
algorithm must be used. To handle the other cases he can write (up to) three different ver-
sions of a binary method, each taking best advantage of the parameter(s) with the imple-
mentation being coded. At run-time the method dispatcher selects a suitable method from
the multimethods available from different implementations (or the abstract algorithm).
How this works in detail and how the implementor can access an implementation in such
a case, will be discussed in a future paper.

15 IMPLEMENTING CONSTRUCTORS

Constructors raise two issues of relevance here. First, a binary maker (which for example
merges information from two other instances to create a new instance of a type) has the
same problem of multiple implementations just discussed for binary methods. And the
solution is the same: an implementor can write such a constructor as a number of mul-
timethods, from which the method dispatcher selects the best at run-time (whereby in this
case the "best" is usually also the one which provides the implementation selected for the
new instance, if this is known).

The second issue concerns the need for run-time parameters for a particular
implementation which are not defined in the constructors for the type. So far we have
given the impression that the TCL array implementation uses a preset constant value
(maxSize) to determine the size of the array. This is not a practical solution for a
collection library intended for wide general purpose use. But a simple fix which allows a
parameter to be passed via a constructor is unsatisfactory. The problem is that this would
affect the type definition, although each implementation can have different parameter
requirements in this respect (e.g. a linked list implementation possibly requires no
parameter, a hash table implementation might require a table length, etc.). This kind of

Implementing Constructors

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 103

consideration led the designers of Theta to separate constructors from type defin itions
[11]. With the Timor design, which considers operations such as intersect to be
binary makers, extra parameters of this kind would be even more obtrusive. Timor
therefore takes up an idea first implemented in Tau [18], which allows (potentially
different) extra parameters (not visible at the type level) to be defined in different
implementations. A default value can be supplied, or there are various ways in which it
can be set explicitly (e.g. in pragmas). A full discussion of the technique will appear in a
future paper. The important effect is that different implement ations can have different
parameters which are not reflected in the type definition, allowing the client programmer
to ignore them unless he specifically needs to set them.

16 CONCLUSION

Timor rigorously separates a number of structuring concepts which are often treated sim-
ply as different aspects of classes and inheritance in some OO programming languages:
types are separated from implementations, behavioural subtyping from interface inclu-
sion, subtyping from code re-use (and therefore subclassing). The advantages of separat-
ing orthogonal structuring requirements from each other has been illustrated using a sub-
stantial example from the TCL.

Fourteen general collection types (five of them abstract) are presented, defining all
combinations of two orthogonal properties:

– duplicates are: permitted, ignored, signalled;
– ordering is: unordered, user-ordered, sorted;

in a single behaviourally conform type hierarchy, designed to achieve a maximum of
polymorphism.

These are implemented, using code re-use techniques unrelated to normal
subclassing, in only six combinable code units, of which only one requires substantial
implementation effort. This implements the type List (a user-ordered collection with
duplicates, which can also be used to implement unordered collections without violating
behavioural conformity). The second re-uses this but implements SortedList (sorted,
with duplicates), while the four remaining code units trivially check for duplicates and
either ignore them or raise an exception.

To produce different implementations (as arrays, singly or doubly linked lists, etc.)
requires recoding only two of these units (List and SortedList), as any
implementation of these can be re-used by the remaining four, in all the required
combinations because of a strict adhe rence with the information hiding principle and
appropriately defined code re-use rules.

Constructors and binary methods require special treatment. The mechanisms
provided in Timor allow these to be predefined (and so standardised) in abstract types.
An implementation- independent technique for defining their operation (abstract

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

algorithms) allows implementations of constructors and binary methods to operate
independently of particular implementations, while an adaptation of the notion of
multimethods can be used to code more efficient versions in particular implementations.

The discussion of multiple type inheritance was deliberately restricted to a particular
class of problems. The question arises whether it can be used in other cases. One such
case is diamond inheritance arising from a concrete common ancestor (such as Person,
inherited by Student and by Employee, coming together in a type StudentEmployee,
see case b) in section 2). The techniques presented here can be used for such cases.
However, we prefer to see this kind of modelling, along with cases c) and d) as belonging
to a different class of multiple inheritance, which we call multiple component inheritance.
This raises quite different issues from those discussed here. For such cases Timor
approaches aggregation in a novel way and provides a new form of cast statement which
leads to the idea of component polymorphism. These ideas form the subjects of a future
paper.

Acknowledgements

Special thanks are due to Dr. Mark Evered and Dr. Axel Schmolitzky for their invaluable
contributions to discussions of Timor and to the ideas which have been taken over from
earlier projects. Without their ideas and comments Timor would not have been possible.

BIBLIOGRAPHY

[1] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Language, Third Edition:
Addison-Wesley, 2000.

[2] K. B. Bruce, L. Cardelli, G. Castagna, T. H. O. Group, G. T. Leavens, and B. Pierce, "On
Binary Methods," Theory and Practice of Object Systems, vol. 1, pp. 221-242, 1995.

[3] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction and Polymor-
phism," Computing Surveys, vol. 17, pp. 471-522, 1985.

[4] M. Evered, "Unconstraining Genericity," 24th International Conf. on Technology of Ob-
ject-Oriented Languages and Systems, Beijing, 1997.

[5] M. Evered, J. L. Keedy, G. Menger, and A. Schmolitzky, "Genja - A New Proposal for
Genericity in Java," 25th International Conf. on Technology of Object-Oriented Lan-
guages and Systems, Melbourne, 1997.

[6] M. Evered, G. Menger, J. L. Keedy, and A. Schmolitzky, "A Useable Collection Frame-
work for Java," 16th IASTED Intl. Conf. on Applied Informatics, Garmisch-
Partenkirchen, 1998.

[7] M. Evered and G. Menger, "Very High Level Programming with Collection Compo-
nents," Conf. on Technology of Object-Oriented Languages and Systems, Nancy, 1999.

[8] J. L. Keedy, M. Evered, A. Schmolitzky, and G. Menger, "Attribute Types and Bracket
Implementations," 25th International Conference on Technology of Object-Oriented Lan-
guages and Systems, Melbourne, 1997.

Conclusion

VOL. 1, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 105

[9] J. L. Keedy, K. Espenlaub, G. Menger, A. Schmolitzky, and M. Evered, "Software Reuse
in an Object Oriented Framework: Distinguishing Types from Implementations and Ob-
jects from Attributes," 6th International Conference on Software Reuse, Vienna, 2000.

[10] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code Re-use in
Timor," 40th International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS Pacific 2002), Sydney, February 2002, in Conferences in Research and
Practice in Information Technology Series, vol. 10, James Noble & John Potter (eds),
Australian Computer Society Inc., pp.35-43.

[11] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A. C. Myers,
"Theta Reference Manual," MIT Laboratory for Computer Science, Cambridge, MA,
Programming Methodology Group Memo 88, February 1994.

[12] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM Transactions on
Programming Languages and Systems, vol. 16, pp. 1811-1841, 1994.

[13] M. D. McIlroy, "Mass Produced Software Components," NATO Conference on Software
Engineering, NATO Science Committee, Garmisch, Germany, 1968.

[14] G. Menger, "Unterstützung für Objektsammlungen in statisch getypten objektorientierten
Programmiersprachen (Support for Object Collections in Statically Typed Object Ori-
ented Languages)," Dept. of Computer Structures: University of Ulm, Germany, 2000.

[15] D. L. Parnas, "Information Distribution Aspects of Design Methodology," 5th World
Computer Congress, IFIP-71, 1971.

[16] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into Modules,"
Communications of the ACM, vol. 15, pp. 1053-1058, 1972.

[17] D. L. Parnas, "A Technique for Module Specification with Examples," Comm. ACM , pp.
330-336, 1972.

[18] A. Schmolitzky, "Ein Modell zur Trennung von Vererbung und Typabstraktion in objek-
torientierten Sprachen (A Model for Separating Inheritance and Type Abstraction in Ob-
ject Oriented Languages)," Dept. of Computer Structures: University of Ulm, Germany,
1999.

 INHERITING FROM A COMMON ABSTRACT ANCESTOR IN TIMOR

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 1

About the authors

J. Leslie Keedy is Professor and Head, Department of Computer Struc-
tures, University of Ulm, Germany, where he leads the Timor language
design and the Speedos operating design groups. His email address is
keedy@informatik.uni-ulm.de. His biography can be visited at
http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/

Gisela Menger received a Ph.D. in Computer Science from the Univer-
sity of Ulm in 2000. Currently she works as a scientific assistant in the
Department of Computer Structures at the University of Ulm. Her re-
search interests include programming language design and software en-
gineering. Her email address is menger@informatik.uni-ulm.de.

Christian Heinlein received a Ph.D. in Computer Science from the Uni-
versity of Ulm in 2000. Currently, he works as a scientific assistant in the
Department of Computer Structures at the University of Ulm. His re-
search interests include programming language design in general, espe-
cially genericity, extensibility and non-standard type systems. His email
address is heinlein@informatik.uni-ulm.de.

