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Department of Computer Structures, University of Ulm, Germany 

Abstract 
A particular case of multiple inheritance, involving a family of related types with a com-
mon abstract ancestor, is examined, and a substantial example, involving five abstract 
and nine concrete collection types, is presented. The separation of types and implemen-
tations, together with the separation of subtyping and code re-use, results in a clearly 
structured and easily intelligible type library which allows extensive polymorphic use of 
collections at the type level. A full implementation of only one of these types, together 
with a few additional trivial code units, can be re-used to implement all nine concrete 
types. The paper concludes by describing how the binary methods and constructors can 
also be easily and efficiently designed and implemented. 

1 INTRODUCTION 

Multiple inheritance provides a number of challenges for the design of object oriented 
programming languages which affect both subtyping and subclassing. This paper dis-
cusses how the programming language Timor1, which is currently under development at 
the University of Ulm in Germany, supports two related aspects of multiple  inheritance. 
The first concerns the progressive design, using multiple inheritance, of families of re-
lated types which have a common abstract ancestor. The second is the implementation of 
such designs in a way which can maximise the re-use of code. 

Timor has been designed specifically with the idea of designing and implementing 
software components for object oriented systems. By components we, like McIlroy [13], 
mean general purpose software units which can be designed and implemented by a 
software components vendor for use in many different application systems. For this 
reason Timor rigorously separates type definitions, known as type interfaces or simply 
types, from their implementations. This separation allows a component deve loper to 

                                                                 
1 The design of Timor has been based, wherever appropriate, on the design of Java. Nevertheless, as will be 
evident in the sequel, it is structurally quite different, even if the syntax is often identical. 
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define a type and then produce different impleme ntations thereof for sale to (possibly 
different) customers. In this context a distinction between types and their 
implementations is useful even if in individual application systems a single 
implementation of any particular type is always used. Consequently in this paper we do 
not fully address issues raised by the contemporaneous use of different implementations 
of a single type in a single application or system, although Timor also allows this 
possibility. Similarly we do not consider how client users select a particular 
implementation for a type. 

The distinction between types and implementations (which, unlike Java classes, are 
not themselves types) facilitates a similar separation of subtyping from subclassing, 
thereby allowing issues related to these themes to be handled orthogonally. Timor allows 
programmers to define derived types which can extend supertypes in a behaviourally 
conform manner [12] and/or can include base types without implying behavioural 
conformity. Only variables of supertypes defined by extension can be the object of 
assignments of their extended subtypes in the traditional sense of inclusion polymorphism 
[3]. But a type derived by inclusion is not a supertype in this sense. 

These features of Timor are described more fully in [10], but only in terms of single 
inheritance. In the present paper we show how a particular case of multiple inheritance is 
supported in Timor both at the type and implementation levels. 

The standard OO class construct does not distinguish between types and their 
implementations, with the consequence that multiple inheritance is usually viewed as a 
code re-use problem. By introducing the idea of interfaces, Java was able to separate 
issues of multiple type inheritance from multiple code re-use; the former is supported in 
Java, the latter is not [1]. The fundamental distinction which is made in Timor between 
types and implementations allows the two issues not only to be clearly separated, but also 
simplifies support for multiple code re-use. 

Section 2 distinguishes four kinds of multiple type inheritance, three of which can, at 
least partially, be modelled using aggregation rather than inheritance, and explains why 
only the first case is discussed in this paper. Section 3 discusses the kinds of method 
collisions which can occur in the first case. In section 4 an extended example from the 
Timor Collection Library is described, which is used throughout the paper. This leads to 
the formulation of two type inheritance rules for Timor in section 5. Sections 6 and 7 then 
show how constructors and binary methods are supported in Timor, while section 8 
describes how these can include abstract algorithms. 

From section 9, which introduces the concept of multiple implementations in Timor, 
the focus moves to implementation techniques. Section 10 shows how in some cases any 
of the implementations of a type can be re-used in the implementation of some other 
(possibly unrelated) type, while section 11 discusses how individual implementations can 
be used, a technique which can, but need not, be used to emulate conventional 
subclassing. Section 12 shows how a few further trivial code units can be defined, which 
can be re-used to implement the duplication properties of different collection types. 
Section 13 summarises the code re-use rules. Techniques for implementing binary 
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methods and constructors are then introduced in sections 14 and 15. Section 16 concludes 
the paper. 

2 MULTIPLE TYPE INHERITANCE 

Multiple inheritance at the type level can be regarded primarily as a modelling tool. It can 
be used to model at least four kinds of situations: 

a) An abstraction (e.g. Collection) can be specialised in different ways (e.g. as an 
OrderedCollection, a DuplicateFreeCollection). Such specialisation 
can involve orthogonal properties (here ordering and duplication properties) 
which can appear in various combinations in actual objects (e.g. Set, List), re-
sulting in diamond inheritance. 

b) A concrete object type (e.g. Person) can also be specialised in different ways 
(e.g. as a Student, an Employee). Such specialisation can also involve orthogo-
nal properties which can appear in various combinations in actual objects, also re-
sulting in diamond inheritance (e.g. a StudentEmployee). 

c) Two or more different object types (e.g. Radio, CassettePlayer) can be 
combined to form a single new (compound) object type (e.g. 
RadioCassettePlayer). 

d) Two or more objects of the same type can be combined to form a single new 
(compound) object type (e.g. DoubleCassettePlayer). The effect is repeated 
inheritance. 

 
The basic problem which all of these create is that collisions can occur among the mem-
bers inherited from two or more parent types. However, each case seems to require a 
separate approach.  

In case a) it usually seems more appropriate to merge colliding members (e.g. a 
method insert) to form a single member in the new type, because it is the different 
definitions of methods which express the differences in the types. 

Case b) differs from case a) in that the methods inherited at the bottom of the 
diamond rarely need to be redefined in intermediate types, because they refer to the same 
concrete object type. 

In case c) collisions are more likely to be accidental, so tha t merging into a single 
method may not be the ideal answer. 

In case d) the use of a single type name is insufficient to disambiguate the names of 
members. 

Case a) differs from cases c) and d) in that the latter can at least partially be 
modelled without us ing inheritance at all. Instead they can be defined by aggregation, i.e. 
the object types to be inherited in the new type can instead be regarded as named 
component variables of the new type. Thus for example a RadioDoubleCassette-
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Player object can in principle be modelled either as inheriting a radio and two cassette 
player objects or as having such components declared as variables. The aggregation 
approach solves the naming problem but requires the programmer to forgo some 
advantages of inheritance. We refer to examples falling into the categories (c) and (d) as 
multiple component inheritance. 

Case b) can also be partly modelled using aggregation, although this is probably 
unusual in current OO practice. For example separate types Studying and Employed 
can be defined which do not inherit from Person, but with all the new members 
appropriate to a student or an employee. These types can then be included in new types 
Student, Employee and/or StudentEmployee by aggregation. Hence case b) is 
borderline, and can be treated either as multiple component inheritance or abstraction 
inheritance (i.e. as an example of case a)). 

To find a mechanism for realising the advantages both of multiple component 
inheritance and of aggregation involves quite separate techniques from the issue of 
unifying members which have been inherited from a common ancestor via different 
paths. Both have interesting facets and both find innovative support in Timor. In the 
present paper we address the issue of multiple inheritance from a common ancestor. 
Timor's approach for handling multiple component inheritance is based on aggregation, 
enhanced by some new techniques which will be described in a future paper. 

3 HANDLING COLLISIONS IN TIMOR 

In Timor all the members of a type definition are formally considered to be methods2. 
Consequently the discussion of collisions can be confined in the present context to 
method collisions. 

Following the Java approach [1] to method collisions, Timor distinguishes between 
collisions merely in the names of methods and collisions of method signatures. Collisions 
of complete method signatures are treated as cases of redef inition, while collisions merely 
in the names of methods (i.e. where the signatures otherwise differ) are treated as 
overloading.  When overloading occurs, each inherited method is considered to be a 
separate method. Thus discussions of collisions in the sequel refer to cases where the 
method signatures are indistinguishable. 

                                                                 
2  Abstract fields and abstract references can appear in type definitions. Formally these are regarded 
as a pair of methods for setting and getting a hidden value. 
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4 AN EXAMPLE: THE TIMOR COLLECTION LIBRARY 

As a realistic example of multiple inheritance from a common abstract ancestor we use 
that part of the Timor Collection Library (TCL) which, following the concept developed 
for Collja [6, 7, 14], defines the organisation of general collections according to the fol-
lowing orthogonal properties of their elements: 

• duplication of elements in three forms: 
– duplicates are allowed, 
– duplicates are ignored, 
– duplicates are signalled as exceptions. 

• ordering of elements in three forms: 
– unordered, 
– user-ordered, 
– sorted by user-defined criteria. 

The TCL thus has nine concrete collection types, reflecting all the combinations of these 
properties. These are as follows: 
 

Collection 
Type Name 

Duplication 
Criterion 

Ordering 
Criterion 

Bag Allow duplicates No ordering 

Set Ignore duplicates No ordering 

Table Signal duplicates No ordering 

List Allow duplicates User ordered 

OrderedSet Ignore duplicates User ordered 

OrderedTable  Signal duplicates User ordered 

SortedList Allow duplicates Sorted 

SortedSet Ignore duplicates Sorted 

SortedTable Signal duplicates Sorted 
 

To facilitate their polymorphic use with a high degree of flexibility there are also five ab-
stract nodes: 

• the root type Collection (which serves as a polymorphic supertype for all 
collections); 

• the type DuplFree (derived from Collection, a polymorphic supertype for all 
collections which may not contain duplicate elements), 
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• the type Ordered (derived from Collection, a polymorphic supertype for all 
ordered collections), 

• the type UserOrdered (derived from Ordered, a polymorphic supertype for all 
user ordered collections) and 

• the type Sorted (derived from Ordered, a polymorphic supertype for all sorted 
collections). 

The complete structure is illustrated in Figure 1. 
 

 
Collection 

Ordered 
Table 

Ordered 

Sorted User 
Ordered 

Bag 

DuplFree 

Set Table 

Ordered 
Set 

Sorted 
List 

List 

Sorted 
Set 
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Figure 1: Structure of the Timor Collection 

 

In order to guarantee behavioural conformity all the common methods of all collection 
types are initially defined in Collection with a maximum of behavioural flexibility. 
Thus its (abstract) method insert, for example, does not define 

– how an insertion affects the ordering of the collection, 
– whether the insertion will be successful if it involves inserting a duplicate, 
– whether an exception will be thrown to indicate a duplicate (but it defines an ex-

ception DuplEx which might be thrown). 
An abstract type with such non-deterministic methods is designed to allow a maximum of 
polymorphism. In derived types the actions of the insert method are specified more 
precisely, depending on the node in question. Thus the insert method of the abstract 
type UserOrdered defines that insert appends the element at the end of the collection 
(and adds new methods for inserting at other positions) but without defining its duplica-
tion properties further. On the other hand the insert method of the concrete type Bag is 
defined without specifying ordering, but indicating that duplicates are accepted (with the 
effect that the exception DuplEx can be removed from Bag's insert method). 

Such redefinitions of methods must be reflected by listing them in a redefines 
clause of a derived type. As the first version of Timor does not support a formal 
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specification technique, only the headers of such methods are listed, but we intend that a 
later version will also allow the changes (and of course the original methods) to be more 
formally specified. Sometimes a redefinition can lead to a change in the method header 
(e.g. where an exception defined in a parent type may not be thrown in a derived type, cf. 
Collection with Bag), but in many cases the method header remains the same (though 
hopefully programmers will be encouraged to document the redefined behaviour in 
comments).  

The redefinitions described above are illustrated in the following simplified 
example3: 

abstract type Collection { 
  op void insert(ELEMENT e) throws DuplEx; 
  /* other method headers */ 
} 
 
abstract type UserOrdered extends Collection 
redefines { 
  op void insert(ELEMENT e) throws DuplEx; 
  // insert appends e at the end 
  /* other redefined method headers */ 
} 
{ /* new methods for inserting/removing 
    elements at different positions */ 
} 
 
type Bag extends Collection 
redefines { 
  op void insert(ELEMENT e); 
  // insert accepts duplicates 
} 
{ /* new method headers */ 
} 
 
type List extends Bag, UserOrdered 
redefines { 
  op void insert(ELEMENT e); 
  // insert appends e at the end 
  // and accepts duplicates 
} 
{ /* new method headers */ } 

                                                                 
3 The qualifier op introduces an operation (which can modify the state of an instance of the type), enq 
introduces an enquiry (which cannot modify the instance's state). This distinction is important for example 
for defining qualifying types with bracket routines (cf. [8, 9]) but is not significant for the present 
discussion. The type ELEMENT can be thought of as any relevant type. Timor supports  a generic mechanism 
along the lines described in [4, 5], but again this is not directly relevant to our discussion and is not 
described here. 
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An important advantage of redefines clauses in Timor types is that they indicate (in-
dependently of an implementation) whether and where methods of a common ancestor 
have been redefined in intermediate nodes in the type hierarchy.  

5 TYPE INHERITANCE RULES 

We are now in a position to formulate the following type inheritance rules: 
Type Inheritance Rule 1: If in a derived type multiple methods with the same 

signature 4 are derived from a common ancestor, they are treated as a single method 
(unless they have different return types, in which case a compile time error arises). 

Type Inheritance Rule 2: If the definitions of such methods differ (i.e. if one or more 
of them has been redefined differently from the definition in their closest common 
ancestor), they must also be listed in a redefines clause in the type being defined. 

Rule 1 is defined in terms of a common ancestor in order to clarify that it does not 
apply to all cases where methods have the same signature, thus leaving scope for a 
different definition which might suit multiple object and repeated inheritance. 

Rule 2 in effect requires that conflicting definitions are clarified. Where a definition 
in one of the ancestors can be used in the new type this can be signalled by the use of the 
keyword from followed by the name of a type, e.g.  

redefines { 
  op void insert(ELEMENT e) from UserOrdered; 
} 

                                                                 
4  As in Java, exception declarations are not considered to be part of the signature of a method. 
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6 CONSTRUCTORS 

Constructors can be declared in Timor types. They deviate from the Java style in order to 
allow flexibility in their names and in their parameters. The keyword maker introduces 
each constructor, e.g. 

maker Bag init(); 
// makes a new Bag object 
maker Bag intersect(Bag b1, b2); 
// returns intersection of b1 and b2 

We refer to constructors such as intersect, which have parameters of their own type, 
or of a supertype, as binary makers. If a concrete type does not have an explicitly defined 
constructor, the compiler supplies a parameterless constructor with the name init. 

An interesting example of a binary maker is introduced in the type List. 
maker List reverse(Ordered c); 

This can accept any ordered collection (i.e. both user-ordered and automatically sorted 
collections) and create a List instance containing its elements in reverse order. 

Constructors are needed only in concrete types, since their purpose is to construct 
actual instances of types, and in OO languages they are no rmally not inherited. However 
Timor provides a mechanism for predefining constructors in abstract and concrete types. 
Such predefined constructors are then "inherited" in derived types. 

A predefined constructor can be recognised by the use of the keyword ThisType as 
the type name for the return type of a constructor. The TCL has two such constructors, 
declared in the abstract type Collection, i.e. 

abstract type Collection { 
  maker ThisType init(); 
  // a standard constructor 
  maker ThisType convert(Collection c); 
  // converts any Collection instance 
  // to an instance of the current type 
  /* other method headers */ 
} 

The first of these is a normal parameterless constructor. Although declared in 
Collection it cannot be invoked to produce a Collection instance, because abstract 
types cannot be instantiated. But it predefines that any concrete type derived directly or 
indirectly from Collection has such a constructor, called init. Thus the TCL type 
Bag automatically has a constructor: 

maker Bag init(); 

Similarly each of the concrete types derived from Collection has a constructor 
convert with a parameter of type Collection, e.g.  
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maker Set convert(Collection c); 
The parameter is of course polymorphic, allowing any kind of collection instance in the 
type hierarchy to be passed to the constructor as a parameter. Thus the code sequence 

Bag b = new Bag.init(); 
... 
Set s = new Set.convert(b); 

produces a new Set instance containing the same members as appear in the Bag b (but 
with duplicates removed). 

In the type Collection several other binary makers are predefined, e.g. 
maker ThisType merge(Collection c1, c2); 
// returns merge of c1 and c2 as  
// a collection of the current type 
maker ThisType intersect(Collection c1, c2); 
// returns intersection of c1 and c2 as 
// a collection of the current type 
maker ThisType difference(Collection c1, c2); 
// returns difference of c1 and c2 as 
// a collection of the current type 

The maker merge serves as a union operation for sets, a concatenation operation for lists, 
etc. 

If a predefined maker is derived from more than one base type leading to a collision 
of the signatures, the two definitions are merged into a single predefined maker. Where 
the signatures differ the Java rules for overloading apply. 

7 BINARY METHODS 

Timor types do not support the concept of static methods or fields. The effects of Java 
static declarations are achieved in other ways 5. One such possibility is relevant to this pa-
per, namely the introduction of binary methods in Timor types. A binary method carries 
out operations on multiple existing instances of a type. They are typically used to com-
pare instances, e.g.  

binary boolean equal(Set s1, s2); 
binary boolean includes(Set s1, s2); 

An important advantage of Timor's binary methods is that they provide a vehicle for im-
plementing binary operations, in the sense described in [2], without creating the problems 
associated with binary instance methods. 

Like makers, binary methods can be predefined for derived types. In this case the 
keyword ThisType is used to define parameters which are covariantly adapted to the 
current type. 
                                                                 
5  A program, for example, is the instantiation of a type by the operating system. 
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In this respect they are similar to predefined makers, but with one significant 
difference. Whereas a predefined maker only exists as a real constructor in concrete 
derived types, binary methods not only covariantly predefine methods for concrete types; 
they also exist as real methods in the abstract types in which they are defined or derived. 
This is one of several reasons for distinguishing the two constructs. 

In the TCL several binary methods are defined in the type Collection, e.g. 
binary boolean equal(ThisType c1, c2); 
binary boolean includes(ThisType c1, c2); 

What this means is that each abstract and each concrete type derived from Collection 
has these methods, e.g. List has methods 

binary boolean equal(List c1, c2); 
binary boolean includes(List c1, c2); 

and Bag has methods 
binary boolean equal(Bag c1, c2); 
binary boolean includes(Bag c1, c2); 

In this case the parameters are not instances of Collection which are intended to be 
used polymorphically, although derived types of the actual parameter types can of course 
be passed to the actual methods in accordance with the normal polymorphism. For exa m-
ple because List is a derived type of Bag, a List instance can be passed to the 
Bag.equal method, but a Bag instance cannot be passed to List.equal. 

8 ABSTRACT ALGORITHMS 

It is not always obvious, in examples such as the TCL, how binary methods and makers 
are intended to function. For example how does the predefined maker which appears in 
every collection type convert from all other collection types to its own particular type? 
What does a comparison for equality mean? 

To help clarify such questions Timor allows types to include abstract algorithms in 
the definitions of makers and binary methods. An abstract algorithm can use the methods 
of its type, but recourse to actual implementations of the type is not allowed. 

One way of looking at an abstract algorithm is as a specification of a maker or a 
binary method, expressed in terms of the basic operations on a type. Alternatively it can 
be viewed as an algorithm which a client could write himself by using the methods of the 
type. A further useful viewpoint will become evident in sections 14 and 15. 

The following is a slightly simplified example of an abstract algorithm, which 
defines a general algorithm for the "conversion" maker in the type Collection: 

maker ThisType convert(Collection c) { 
// converts any Collection instance 
// to an instance of the current type 
  Enumeration enum = c.elements(); 
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  while (enum.hasMoreElements()) { 
    try { insert(enum.nextElement()); } 
    catch (DuplEx de) { /* ignore it!*/ } 
  } 
} 

We see that it is defined to iterate over all elements of its parameter, using its own 
insert method in an attempt to insert it into the new collection. 

Because Collection is abstract this maker does not really exist, it merely 
predefines an algorithm for its derived types. Thus the effect of the insert method 
invocation depends on the type for which the maker is actually invoked. In Table, 
OrderedTable and SortedTable invoking the insert method can result in a 
duplicate exception being thrown. The algorithm shows that this is ignored, allowing 
conversion of instances of these types to occur without an exception being thrown. If on 
the other hand the type in question is an ordered type the actual insert method of the 
type will cause the element to be placed in its appropriate place (either automatically 
sorted or appended). 

Abstract algorithms for binary methods are similar. In this case they invoke the 
methods of their parameters, as the following example shows: 

binary boolean equal(ThisType c1, c2) { 
  if (c1.size() != c2.size()) return false; 
  ELEMENT elem; 
  Enumeration enum = c1.elements(); 
  while (enum.hasMoreElements()) { 
    elem = enum.nextElement(); 
    if (c1.occurrences(elem) != c2.occurrences(elem)) 
      return false; 
  } 
  return true; 
} 

The algorithm first checks that the two collections have the same number of elements 
then that there are the same number of occurrences of each element in both. 

Like the algorithm in the maker convert this algorithm is predefined for derived 
types, but unlike the former it is a "real" algorithm, in the sense that binary methods, 
unlike makers, also exist for abstract types. In other words there is a real binary method: 

binary boolean equal(Collection c1, c2); 
defined in the abstract type Collection. Using this algorithm any two instances of 
(concrete) collection types can be compared for equality. 

Derived types always inherit predefined makers and binary methods defined in their 
supertypes, but they can redefine the algorithms. For example in Bag and Set (neither of 
which throw duplicate exceptions) the maker convert can be simplified (in a 
redefines clause) to: 
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maker ThisType convert(Collection c) { 
  Enumeration enum = c.elements(); 
  while (enum.hasMoreElements()) insert(enum.nextElement()); 
} 

The possibility of redefining abstract algorithms in derived types raises the question: 
Which algorithm is valid when different versions exist in predefined methods which are 
all inherited in a derived type? In this case the definer of the type has the choice of select-
ing one of the existing algorithms or defining a new algorithm. Thus in List, which is 
derived from Ordered and from Bag, the algorithm can be selected as follows: 

type List extends Bag, UserOrdered 
redefines { 
  binary boolean equal(ThisType c1,c2) from UserOrdered; 
} 
{ /* new method headers */ 
}
 

9 IMPLEMENTATION TECHNIQUES 

Each abstract type in Timor can have zero or more implementations, each concrete type 
needs one or more. An implementation can, regardless of any relationship between its 
own and other types, have one of several forms: 

a) It can have a completely new implementation. This is well suited to the informa-
tion hiding principle [15-17]. The new implementation of the methods of super-
types must conform with the specifications of the supe rtypes (where relevant as 
redefined in the derived type). The implementation of new and redefined mem-
bers must conform with the specification of the derived type. 

b) An implementation can re-use implementations of other types (indicated by the 
keyword reuses). In contrast with standard OO practice a subtype relation be-
tween the type of the new implementation and those of the re-used implementa-
tions need not exist. Thus code re-use can be completely decoupled from subtyp-
ing and from the inclusion of interfaces. 

c) A reuses clause can designate a specific implementation to be re-used. Alterna-
tively, it can designate a type, any of whose implementations can be re-used (at 
the level of the public members). The first case typically reflects the conventional 
object oriented style of code inheritance, while the second leads to a quite differ-
ent style of code re-use. 

d) An implementation can also re-use typeless implementations, i.e. implementations 
which are defined independently of a specific type and which cannot themselves 
be used as types. This case is also indicated by the keyword reuses. 
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e) A type can be mapped to another type, and in this way re-use its implementations, 
without implying a relationship between the two types. This technique is de-
scribed in [10] but not discussed further in this paper. 

 

10 RE-USING ANY IMPLEMENTATION OF A TYPE 

With the kinds of types under discussion it is often desirable to provide alternative im-
plementations, based for example on an array, on various forms of linked lists, etc. We 
now describe how Timor allows the re-use of any  implementation of a type in implemen-
tations of a different type, without implying a subtyping relationship. 

We begin with an implementation of the TCL type List as if it were a completely 
independent type (cf. section 9 a)): 

impl ArrayList of List { 
  ELEMENT[] theArray; 
  int maxSize = 500; 
  int currentSize = 0; 
  enq int size() { 
    return currentSize; 
  } 
  op void clear() { 
    currentSize = 0; 
  } 
  op void insert(ELEMENT e) { 
    // defined to append e 
    if (currentSize == maxSize) throw new FullEx.init(); 
    theArray[currentSize] = e; 
    currentSize++; 
  } 
  op void insertAtPos(ELEMENT e, int pos) 
    throws OutOfBoundsEx { 
    if (currentSize == maxSize) throw new FullEx.init(); 
    if (pos > currentSize || pos < 0) 
      throw new OutOfBoundsEx.init(); 
    setInArray(e, pos); 
  } 
  op void setInArray (ELEMENT e, int pos) { 
    // an internal method to insert e 
    // into theArray at position pos 
    ... 
  } 
  ... 
} 
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The OutOfBoundsEx exception is a checked exception which appears in the type defini-
tion for insertAtPos, a method first introduced in the abstract node UserOrdered. 

Because a simple array implementation is used, the possibility arises that it can 
become full. Hence in both insert and insertAtPos an exception (FullEx) is 
thrown, which does not appear in the type definition. This is an unchecked exception. The 
issue of restrictions which can appear in individual implementations of a type is taken up  
in section 14, where it is shown how the value of maxSize can be passed as an 
implementation parameter without affecting the type definition.   

As no reuses clause appears, and as List is a concrete type, the implementation 
must be complete. By definition it conforms with the information hiding principle. Many 
equivalent implementations of List, e.g. SingleLinkList and DoubleLinkList, 
can be programmed. 

Leaving aside until later the question of makers and binary methods, it is evident that 
all such impleme ntations of the instance methods of List can be re-used as 
implementations of Bag. The insert method in List is specified to append elements 
and to accept duplicates. That of Bag inserts elements without defining a position and it 
also accepts duplicates. Hence any implementation of List fulfils the specification of 
Bag. So implementing Bag costs virtually nothing: 

impl NewBag1 of Bag reuses List { 
} 

The reuses clause can name one or more types, indicating in this example that any im-
plementation of List can be re-used as an implementation of Bag6. 

What the reuses clause actually means is described in section 13. Its application 
here is that all matching methods of Bag use the implementation in the specified 
"implementation" type (here List). A match is defined as a method in the re-used unit 
with the same signature and return type, and with either the same exceptions or a subset 
thereof. 

Any additional public methods which the latter implements, but which are not 
needed, cannot be invoked by clients. Any members not needed by the implementation 
can be removed. In this example methods such as insertAtPos are redundant in 
implementations of Bag. 

This example shows how a subtyping relationship and a subclassing relationship are 
often the reverse of each other. By separating these issues Timor can easily cope with the 
two.

                                                                 
6  Various mechanisms for selecting an actual implementation will be discussed in a future paper.  
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11 RE-USING INDIVIDUAL IMPLEMENTATIONS 

A reuses clause can optionally nominate individual implementations. This technique 
can (but need not) be used to mimic conventional incremental OO subclassing.  One could 
begin by implementing the abstract type Collection, for example by defining data 
structures and programming those methods which are valid for implementations of all the 
subtypes (e.g. size, clear). But the definition of methods such as insert, which are 
non-deterministically specified in Collection and require different implementations in 
different derived types, will be incrementally coded in an implementation of the corre-
sponding type. 

The same technique can be used where a subtyping relationship does not exist. We 
now show how it is used in the TCL to implement SortedList. The latter differs from 
List primarily in that its insert method uses some criteria7 for automatically sorting 
elements in the list. For any particular implementation most of the required code will be 
identical to that for List. This is clearly another case for code re-use. Here is how it can 
be defined for an array implementation: 

impl ArraySorted of SortedList reuses ArrayList 
overrides { 
  op void insert(ELEMENT e) { 
    // defined to sort e 
    if (currentSize == maxSize) throw new FullEx.init(); 
    sortIntoArray(e); 
  } 
   ...  
} // end of redefined methods 
{ //now the new methods 
  op void sortIntoArray(ELEMENT e) { 
  // an internal method sorting e into theArray 
  ...  
  } 
 .../* more new methods */ 
} 

This implementation "borrows" all the data structures and methods which it needs from 
the List implementation ArrayList (see section 10). The overrides clause indicates 
which methods are overridden in a re-used implementation, and provides a new imple-
mentation for them. (It could use a "super" mechanism to invoke the original methods, 
though that is not appropriate here.) Again redundant methods (e.g. insertAtPos) can 
be pruned where appropriate. 

                                                                 
7 The criteria are defined by clients using the generic technique of Timor, which is not described here (but 
see [4, 5]). 
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In this example we see how two subtypes of the same behavioural supertype 
(Ordered) can be implemented by one re-using the code of another 8. Further 
implementations of SortedList could be produced in the same way, by re-using 
SingleLinkList, DoubleLinkList, etc. 

We have now potentially produced a number of implementations of each of the 
concrete types List, Bag and SortedList, the three types which accept duplicates. 
Next we consider how implementations of the six DuplFree types can be produced. 

                                                                 
8  It would equally be possible first to provide an independent implementation of SortedList and 
then to reuse its code to implement List. 
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12 IMPLEMENTING THE DUPLICATION PROPERTIES 

The duplication properties of the collection types are orthogonal to their other properties. 
Providing new code for each implementation on an individual type basis (e.g. corre-
sponding to the incremental subclassing style) is therefore a combinatorial problem. A 
better approach is to provide a separate algorithm for each case, which can be re-used in 
combination with implementations for SortedList and List to implement the remain-
ing concrete types. This aim can best be achieved by providing appropriate mechanisms 
for checking whether an attempt is being made to insert a duplicate into a collection and 
if so take the appropriate action. 

With this aim in mind we begin with a view interface9 which provides the minimal 
interface needed for checking for duplicates, and then ignoring these when the insert 
method is invoked (i.e. relevant for implementing Set, OrderedSet and SortedSet): 

view Insert { 
 op void insert(ELEMENT e); 
 enq boolean contains(ELEMENT e); 
} 

Based on this view a typeless implementation can be coded with a method which handles 
duplicates by overriding the insert method, as follows: 

impl DuplIgnore requires Insert 
overrides { 
  op void insert(ELEMENT e) { 
    if (!^Insert.contains(e)) ^Insert.insert(e); 
  } 
} 

The requires clause indicates that this implementation is intended for use in an imple-
mentation of a type which also implements Insert. Invocations of the methods of 
Insert are indicated, as when an implementation invokes methods of a reused imple-
mentation, with the hat (̂ ) symbol. In this particular example the typeless implementa-
tion not only assumes the availability of an implementation of Insert but it also over-
rides the method insert. 

This implementation can now be re-used, together with any implementations of 
List or SortedList, to implement Set and SortedSet, as fo llows:  

impl Set1 of Set reuses List, DuplIgnore 
{/* no new method implementations*/ 
} 

                                                                 
9  View interfaces typically define a standard set of methods which can be used polymorphically in 
different types. As is useful in this example they can be defined retrospectively, allowing a limited form of 
structural type matching, which is stat ically checked when it is needed. A match occurs with the same 
signature and return type and a subset of the exceptions. 
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impl SortedSet1 of SortedSet reuses SortedList, DuplIgnore { 
} 

As described in section 10, the methods of the type to be implemented are matched with 
those of the re-used implementations. In this example all are satisfied from the first listed 
"implementation type". 

Reused implementations are also examined for overriding methods which match 
methods of the type. In this case the overriding method insert in DuplIgnore is 
matched for both types. However, the requires clause must also be checked, to ensure 
that all the requirements specified via Insert are met. These requirements must be met 
by matching the definition with that of the type currently being implemented, not with a 
particular re-used implementation. As the view Insert was especially designed for this 
purpose, there is no problem. 

Implementing OrderedSet also involves ignoring attempts to insert duplicates via 
the insertAtPos method. For this purpose we can extend the view Insert, as follows: 

view InsertPos extends Insert { 
   op void insertAtPos(ELEMENT e, int pos); 
} 

and provide a further typeless implementation: 
impl DuplIgnorePos requires InsertPos 
overrides { 
  op void insertAtPos(ELEMENT e, int pos) { 
    if (!^InsertPos.contains(e)) 
      ^InsertPos.insertAtPos(e, pos); 
  } 
} 

which can be used to implement OrderedSet as follows: 
impl OrderedSet1 of OrderedSet 
reuses List, DuplIgnore, DuplIgnorePos { } 

Implementations of Table, OrderedTable and SortedTable follow a similar pattern, 
differing only in the fact that the detection of an attempt to insert a duplicate results in the 
exception DuplEx being thrown. Here are the relevant units: 

view SignalInsert { 
  op void insert(ELEMENT e) throws DuplEx; 
  enq boolean contains(ELEMENT e); 
} 
 
impl DuplSignal requires SignalInsert 
overrides { 
  op void insert(ELEMENT e) throws DuplEx { 
    if (!^SignalInsert.contains(e)) 
      ^SignalInsert.insert(e); 
    else throw new DuplEx.init(); 
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  } 
} 
 
view SignalInsertPos extends SignalInsert { 
   op void insertAtPos(ELEMENT e, int pos) throws DuplEx; 
} 
 
impl DuplSignalPos requires SignalInsertPos 
overrides { 
  op void insertAtPos(ELEMENT e, int pos) throws DuplEx { 
    if (!^SignalInsertPos.contains(e)) 
      ^SignalInsertPos.insertAtPos(e, pos); 
    else throw new DuplEx.init(); 
  } 
} 

This opens the way for the following implementations of the remaining collection types 
impl Table1 of Table reuses List, DuplSignal { 
} 
 
impl SortedTable1 of SortedTable 
  reuses SortedList, DuplSignal { 
} 
 
impl OrderedTable1 of OrderedTable 
  reuses List, DuplSignal, DuplSignalPos { 
}
 

13 CODE RE-USE RULES 

The rules for code re-use for instance methods can be summarised as: 

Type Re-use Rule: If a type is nominated in a reuses clause, any of the 
implementations of that type can be interchangeably re-used. Explicitly coded methods of 
the new implementation have no access to the private methods or data structures of the 
re-used "type implementation". 

Implementation Re-use Rule: If an individual implementation is nominated in a 
reuses clause, explicitly coded methods of the new implementation can access the 
internal methods and/or data structures of the re-used implementation. 

Method Matching Rule: A method match occurs when the signature and the result 
type in a unit nominated in a reuses clause matches that of the type being implemented 
and the exceptions in the nominated unit are either the same as, or a subset of, those in 
the type being implemented. 
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Method Selection Rule: Methods are selected from the first nominated unit in which 
a match occurs. (Any unmatched methods must be explicitly coded in the 
implementation.) 

Overriding Rule: Overriding methods which appear in re-used implementations are 
also matched (according to the Method Matching and Selection rules) and in the new 
implementation they override the corresponding method selected. 

Multiple Overriding Rule: If more than one matching overriding method is found, 
the overriding takes place in the order right to left. This means that if for the clause 
reuses A, B, C there is a matching method in A which is overridden in both B and C, 
at run-time the overriding method in C is invoked and if this invokes its "super" the 
overriding method in B is invoked, which can in turn invoke the original method in A. 

Requires Rule: If a re-used implementation has a requires clause, this must be 
satisfied by the definition of the type being implemented. This means that for each 
method of the view there must be a matching method (as defined in the Matching Method 
Rule) in the type being implemented. (The requires rule has no effect on the multiple 
overriding rule.) 

With respect to the collection hierarchy example, these rules together enable all the 
instance methods of all the concrete types to be implemented, without any algorithm 
having been repeated for the entire hierarchy. Next we consider the binary methods and 
constructors.

 

14 IMPLEMENTING BINARY METHODS 

The implementation of binary methods requires special attention for three reasons. First, 
these require an implementation in abstract types, such as Collection and DuplFree. 
Second, in a system which contemporaneously supports multiple implementations of a 
type, it cannot be assumed that when different instances of the same type are compared 
they will have the same implementation. Third, although an implementation for one type 
can re-use code of unrelated types, this by no means guarantees that binary method im-
plementations can also be re-used. For example the instance methods of Bag can be im-
plemented by re-using instance methods of List, but a List comparison for equality, 
which takes into account (and relies on) ordering, cannot be re-used as a Bag equality 
method (where ordering is not relevant). 

In fact all three issues can be resolved by using abstract algorithms (which can 
appear in type definitions, see section 8) as implementation algorithms. As the abstract 
algorithms can only be formulated in terms of invocations of public methods (without 
recourse to particular implementations) such algorithms are implementation independent 
and can be used even where instances with different implementations are passed as 
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parameters. Furthermore, different abstract algorithms can be provided for different 
types. Hence the problem would be solved, were it not for the issue of efficiency. 

Abstract algorithms always pay the penalty of invoking public methods. This will 
often not be as efficient as implementations which can directly access implementation 
data structures and/or internal methods. To overcome this penalty, Timor supports a 
mechanism [18] which is a variant of the multimethod technique [2]. This allows an 
implementor to access the implementation details from his own implementation, but (for 
information hiding reasons and to keep the mechanism relatively simple and clean) not 
other implementations of the type. 
To illustrate the principle, there are four possibilities when two instances are being com-
pared: 

a) both parameters have the current implementation, 
b) only the first has the current implementation, 
c) only the second has the current implementation, 
d) neither has the current implementation. 

In case d) the implementation programmer has no choice: from his viewpoint the abstract 
algorithm must be used. To handle the other cases he can write (up to) three different ver-
sions of a binary method, each taking best advantage of the parameter(s) with the imple-
mentation being coded. At run-time the method dispatcher selects a suitable method from 
the multimethods available from different implementations (or the abstract algorithm). 
How this works in detail and how the implementor can access an implementation in such 
a case, will be discussed in a future paper. 

15 IMPLEMENTING CONSTRUCTORS 

Constructors raise two issues of relevance here. First, a binary maker (which for example 
merges information from two other instances to create a new instance of a type) has the 
same problem of multiple implementations just discussed for binary methods. And the 
solution is the same: an implementor can write such a constructor as a number of mul-
timethods, from which the method dispatcher selects the best at run-time (whereby in this 
case the "best" is usually also the one which provides the implementation selected for the 
new instance, if this is known). 

The second issue concerns the need for run-time parameters for a particular 
implementation which are not defined in the constructors for the type. So far we have 
given the impression that the TCL array implementation uses a preset constant value 
(maxSize) to determine the size of the array. This is not a practical solution for a 
collection library intended for wide general purpose use. But a simple fix which allows a 
parameter to be passed via a constructor is unsatisfactory. The problem is that this would 
affect the type definition, although each implementation can have different parameter 
requirements in this respect (e.g. a linked list implementation possibly requires no 
parameter, a hash table implementation might require a table length, etc.). This kind of 
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consideration led the designers of Theta to separate constructors from type defin itions 
[11]. With the Timor design, which considers operations such as intersect to be 
binary makers, extra parameters of this kind would be even more obtrusive. Timor 
therefore takes up an idea first implemented in Tau [18], which allows (potentially 
different) extra parameters (not visible at the type level) to be defined in different 
implementations. A default value can be supplied, or there are various ways in which it 
can be set explicitly (e.g. in pragmas). A full discussion of the technique will appear in a 
future paper. The important effect is that different implement ations can have different 
parameters which are not reflected in the type definition, allowing the client programmer 
to ignore them unless he specifically needs to set them.  

16 CONCLUSION 

Timor rigorously separates a number of structuring concepts which are often treated sim-
ply as different aspects of classes and inheritance in some OO programming languages: 
types are separated from implementations, behavioural subtyping from interface inclu-
sion, subtyping from code re-use (and therefore subclassing). The advantages of separat-
ing orthogonal structuring requirements from each other has been illustrated using a sub-
stantial example from the TCL. 

Fourteen general collection types (five of them abstract) are presented, defining all 
combinations of two orthogonal properties: 

– duplicates are: permitted, ignored, signalled; 
– ordering is: unordered, user-ordered, sorted; 

in a single behaviourally conform type hierarchy, designed to achieve a maximum of 
polymorphism.  

These are implemented, using code re-use techniques unrelated to normal 
subclassing, in only six combinable code units, of which only one requires substantial 
implementation effort. This implements the type List (a user-ordered collection with 
duplicates, which can also be used to implement unordered collections without violating 
behavioural conformity). The second re-uses this but implements SortedList (sorted, 
with duplicates), while the four remaining code units trivially check for duplicates and 
either ignore them or raise an exception. 

To produce different implementations (as arrays, singly or doubly linked lists, etc.) 
requires recoding only two of these units (List and SortedList), as any 
implementation of these can be re-used by the remaining four, in all the required 
combinations because of a strict adhe rence with the information hiding principle and 
appropriately defined code re-use rules. 

Constructors and binary methods require special treatment. The mechanisms 
provided in Timor allow these to be predefined (and so standardised) in abstract types. 
An implementation- independent technique for defining their operation (abstract 
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algorithms) allows implementations of constructors and binary methods to operate 
independently of particular implementations, while an adaptation of the notion of 
multimethods can be used to code more efficient versions in particular implementations. 

The discussion of multiple type inheritance was deliberately restricted to a particular 
class of problems. The question arises whether it can be used in other cases. One such 
case is diamond inheritance arising from a concrete common ancestor (such as Person, 
inherited by Student and by Employee, coming together in a type StudentEmployee, 
see case b) in section 2). The techniques presented here can be used for such cases. 
However, we prefer to see this kind of modelling, along with cases c) and d) as belonging 
to a different class of multiple inheritance, which we call multiple component inheritance. 
This raises quite different issues from those discussed here. For such cases Timor 
approaches aggregation in a novel way and provides a new form of cast statement which 
leads to the idea of component polymorphism. These ideas form the subjects of a future 
paper. 
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