

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 3

Special issue: TOOLS USA 2002 proceedings

Cite this article as follows: H. Mili, H. Mcheick, and S. Sadou: CorbaViews – Distributing Objects
that Support Several Functional Aspects, in Journal of Object Technology, vol. 1, no. 3, Special
issue: TOOLS USA 2002 proceedings, pages 207-229.
http://www.jot.fm/issues/issue_2002_08/article12

CorbaViews – Distributing Objects that
Support Several Functional Aspects

Hafedh Mili and Hamid Mcheick, University of Québec at Montréal, Montréal,
Canada
Salah Sadou, Université de Bretagne-Sud, Vannes, France

Abstract
The separation of concerns, as a conceptual tool, enables us to manage the complexity
of the software systems that we develop. A number of approaches have been proposed
that aim at modularizing software around the natural boundaries of the various
concerns, including subject-oriented programming (SOP) [Harrison & Ossher, 1993]
aspect-oriented programming (AOP) [Kiczales et al., 1997], and our own view-oriented
programming (VOP) [Mili et al., 1999]. Both SOP and AOP support compile-time
composition. A major advantage of VOP is run-time behavioral composition, which
comes at the expense of a cumbersome dispatching mechanism. The same
applications that warrant the kind of separation supported by these techniques tend also
to be distributed whereby different client sites see different compositions of aspects,
simultaneously. The level of indirection provided by distribution middleware simplifies
the programming model, and reduces the overhead of VOP.

1 INTRODUCTION

In the real world, objects change roles during their lifetime. From the time a person
appears on the IRS records as a deductible expense, that person will keep changing roles
until well beyond its death, regularly acquiring and relinquishing attributes and behavior.
Generally speaking, we need a mechanism for allowing objects to change behavior during
their lifetime, specifically when that change takes place within the same program run.
Further, we should be able to support this behavioral change, while the program is
running, and we should be able to accommodate new behaviors that were not anticipated

In the context of a distributed application, different sites, and different users within
the same site, may see different aspects of the same objects, including different
functionalities, different access rights and privileges, different quality of service
parameters, and so forth.

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

208 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

The transition from analysis to design consists of deriving an implementation of the
functionalities specified at analysis time in a way that satisfies design-level constraints
and addresses design-level concerns. Such concerns include error handling,
synchronization, logging, access to lower-level services, and the like. Addressing these
concerns usually means adding code that crosscuts normal modularization boundaries, i.e.
typically objects and methods.

These are but three of the most common situations requiring us to modularize
programs along dimensions other than the traditional function, class, or method, inherent
in both procedural and object-oriented programming. There have been a number of
approaches to providing language-level support for separation of concerns in the OO
research community. Each one of these approaches was intended to solve one particular
set of problems related to the three mentioned above.

The concept of views in OOP was first introduced by Shilling and Sweeny [Shilling
& Sweeny, 1989] as a filter of a global interface of the class, but the views are not
separable or separately reusable. Aksit et al. presented composition filters as a way of
intercepting incoming and outgoing messages [Aksit et al., 1992]. However, the filters
add no state, and can only modify existing behavior without adding new ones. Harrison
and Ossher [Harrison & Ossher, 1993] proposed subject-oriented programming as a way
to build integrated “multiple view” applications by composing application fragments,
called subjects, which represent compilable and possibly executable functional slices
[Harrison & Ossher, 1993]. However, the composition of subjects takes place at
compilation time, and offers few degrees of freedom. Aspect oriented programming
captures concerns that crosscut several entities in new constructs called aspects that are
woven into the structure of functional code [Kiczales et al., 1997]. However, aspect
“weaving” also takes place at compilation time, and aspects do not necessarily
correspond to domain-level behavior.

The problem of dynamic adaptation has been addressed by a number of researchers.
Earlier approaches were based on variations of the adapter/decorator design pattern. The
problem with such approaches is that the various adapters (and the classes they adapt)
have to be known beforehand [Buchi & Weck, 2000]. Two approaches attempt to address
this problem in a type-safe fashion: Kniesel, with Darwin/Lava [Kniesel, 1999], and
Büchi & Weck’s generic wrappers concept [Buchi & Weck, 2000]. Presumably, both
approaches enable an object to offer different interfaces to different client programs. With
generic wrappers, the various interfaces have to be hierarchically composed. Further,
with both approaches, the adapter and “adapted” have different object identities, and
neither approach handles distribution explicitly.

It turns out that the same applications that warrant the use of separation of concern
techniques also tend to be the kind of applications that are distributed and that offer
different sets of functionalities to different user communities. In summary, we have a
situation where:

1. Objects acquire and lose behavior dynamically (the dynamic behavior change
problem),

Introduction

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 209

2. Objects offer different sets of behaviors to different client programs
simultaneously (the multiple interface problem), and

3. (Server) objects and client programs are distributed (the distribution problem).
We could treat the different problems separately, if there are no interactions between the
three aspects, or try to find a global solution that accommodates all three requirements in
an optimal fashion. In this paper, we propose an approach that handles all three
requirements in a unified framework. It relies on a (non-distributed) programming model
called view oriented programming [Mili et al., 1999] that considers application objects as
consisting of some core functionality to which state and behavior (views) are added and
retracted on demand during run-time. To support this programming model in an existing
typed language (first C++, and then Java), without unduly burdening programmers with
new syntax and semantics, we set out to use a code transformation approach that trades
performance and type safety for run-time flexibility. As it turned out, distribution actually
simplifies this process, for two reasons, 1) a conceptually clean separation between
interfaces (clients) and implementations (servers), 2) a built-in infrastructure for dynamic
behavior invocation.

The next section includes a brief overview of the major separation of concerns
techniques, and a more detailed presentation of our own view-oriented programming.
Section 3 explores distribution issues in the context of these methods. Section 4 describes
the principles underlying our approach. An ongoing implementation is described in
section 5. We conclude in section 6.

2 SEPARATION OF CONCERNS TECHNIQUES

We start with some widely known methods, and then spend some time describing view-
oriented programming because it is the basis for the approach described in section 4.

Subject-oriented programming

Subject-oriented programming views object oriented applications as the composition of
several application slices representing separate functional domains or add-ons (features)
to existing functional domains. Such a slice is called a subject and consists of a self-
contained, declaration-wise, object-oriented program, with its own class hierarchy.
Subject-oriented programming enables us to compose such hierarchies (subjects) into one
that, generally speaking, consists of, 1) the union of the interfaces (signatures) emanating
from the input subjects, and 2) the composition of the implementations of the methods
that are defined in more than one subject. Default composition uses name matching to
compose class definitions. Name matching may be overridden locally with composition
expressions written in a powerful composition language [Ossher et al., 1995].

A major advantage of class composition à la SOP (i.e. by “merging” class
hierarchies) over composition through multiple inheritance is that when two classes are
“merged”, all of their descendants (from both input hierarchies) will benefit from the

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

210 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

“merge”. By contrast, adding an aspect (embodied in a class) to an existing hierarchy
using multiple-inheritance requires that we create a subclass of each class in the
hierarchy. SOP, and to some extent, its descendant MDSOC (Multi-Dimensional
Separation of Concerns, [Tarr et al, 1999]) suffer from a number of limitations, including,
1) the compile-time binding of the various subjects, 2) the relative coarseness of the
composition unit—the method—, because of which composability requires some pre-
planning [Mili et al., 1996], [Mili et al., 2001a], and 3) the limited reusability of subjects
whose composition relies on extensional name matching—renaming notwithstanding.

Aspect-oriented programming

Underlying AOP is the observation that what starts out as fairly distinct concerns at the
requirements level, or at the design requirements level (non-functional requirements) end
up tangled in the final program code because of the lack of support, both at the design
process level, and at the programming language level, for keeping these concerns
separate. With aspect-oriented programming (AOP), these concerns may be packaged as
aspects, which can be woven into “any” application that has those concerns. AOP
requires three ingredients:

• A general purpose programming language for defining the core functionalities of
software components,

• An aspect language for writing aspects, i.e. code modules that address a specific
concern and that cross-cut various components in the general-purpose language,
and

• An aspect weaver, which is a pre-processor that “weaves” or “injects” aspects into
the base software components to yield vanilla flavor components, coded in the
general purpose programming language.

Kiczales et al. have proposed different forms of aspects. The simplest form of aspects,
advisories, add some piece of code to specific methods identified by more or less
complex <method,class> expressions (so-called point cuts), and may be used to
instrument code or to handle some fairly generic functionality (logging, error handling,
etc.). The language for describing point cuts enables us to specifying class names and
method names intentionally (property-based point cuts) using more or less complex
patterns. Further, the code embodied in the aspects can be inserted at a variety of points
of control (so-called join points), as opposed to SOP’s implicit before or after semantics.
Finally, a third kind of aspects is proposed that handles associations between objects.
Such aspects may have their own state variables, and may trigger the execution of a
number of methods on the participating objects.

Aspect-oriented programming has gained wide acceptance in the research
community in part because of its gradual learning curve: it is possible to do eminently
and frequently useful things simply. However, much like SOP, it only supports compile-
time composition of aspects. A number of proposals have been floated to support
dynamic “weaving” of aspects. Such proposals rely on reflection, with two major

Separation of concerns techniques

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 211

disadvantage, 1) lack of safety — too much uncontrolled power, and 2) performance
penalty.

Dynamic adaptation methods

Adaptation techniques were first developed in the context of GUI frameworks. Typically,
most graphical components would come in several flavors, a basic one, and a set of
“decorated flavors” to include things such as borders, “scrollability”, and the like. Rather
than define a variant (subclass) for each combination of graphical attributes, we use the
adapter/wrapper design pattern. To some extent, the filter-based approaches [Shilling &
Sweeny, 1989] and composition filters [Aksit et al., 1992] are examples of such
approaches. However, the traditional wrapper implementation suffers from a number of
problems [Buchi & Weck, 2000]. Büchi and Weck defined a set of requirements that
wrapping/adaptation methods must satisfy, including:

• Run-time applicability: the actual type and instance of the wrapped object must be
decidable at run-time,

• Genericity: the wrapper must be applicable to any subtype of the declared
interface of the wrapped object

• Transparency: the wrapper should be a subtype of the wrapped object
• Overriding: wrappers should be able to override methods of wrapped objects
• Shielding: a wrapper should be able to control whether clients can access directly

the wrapped object.
The traditional decorator pattern fails the run-time applicability, transparency, and
shielding conditions. Run-time applicability usually comes at the expenses of type safety.
Both Kniesel [Kniesel, 1999] and Büchi and Weck [Buchi & Weck, 2000] proposed Java-
based techniques for providing type-safe run-time bound decorators. Büchi and Weck
defined the concept of generic wrappers which are represented using a class-like
syntactic construct that specifies the static type of the objects to be wrapped — called
wrappee. The wrappee is specified at run-time (wrapper creation time). In their model,
they require that the wrapper be of a subtype of the run-time type of the wrapped object.
However, in their first prototype implementation, they settled for the static type. With
generic wrappers, a wrapper forwards method calls to the wrappee when those methods
don't exist in the wrapper. Generic Wrappers support conjunctive adaptation in the sense
that, if we want to define several wrappers on the same object, they have to wrap each
other in a hierarchical fashion.

Kniesel proposed Lava as an extension of Java with a real delegation mechanism
[Kniesel, 1999]. An object delegates to another object specified as a special attribute (an
instance variable qualified as a delegatee) in its class definition. The delegatee may
change during run-time, in the same way that strategy objects may change in the strategy
pattern. Kniesel shows that his system is type safe. However, a major limitation of Lava
is that the number and type of delegatees is fixed at compile-time: it is part of the class
definition!

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

212 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

View-oriented programming

Basics: we view each object of an application as a set of core functionalities that are
available, directly or indirectly, to all the users of the object, and a set of interfaces that
are specific to particular uses, and which may be added or removed during run-time. The
interfaces may correspond to different types of users with similar functional interests or
to different users with different functional interests. We set out to provide support for the
following:

• Enable client programs to access several functional areas or views simultaneously,
• Support the addition and removal of views (functional slices) during run-time,

making objects support different interfaces during run-time, and
• Have a consistent and unencumbered protocol to address objects that support

views.

Figure 1 shows an aggregation-based implementation of this idea. The dashed object
boundary (rectangle) represents our abstraction of an application object: it consists of the
combination of the core instance and the views. In this example, the core object includes
two state variables (‘a’ and ‘b’), and supports three operations (f(), g(), and h()). The view
objects, which point to the core object, may add state (‘c’ for view 1 and ‘d’ for view 2),
behavior (i(...) for view 1, j(...) for view 2, and k(...) for views 1 and 3), and delegate
shared data and behavior. In this case, upon invoking the operation f() on view 1, the

Figure 1. A model of an object with views.

Legend: - dotted arrows indicate delegation links
 - the resulting application object supports all the interfaces

j(.)

g(.)

h(.)

i(.)

k(.)

f(.)

f()

g(), a

g(), b
View 1
c : int;

f(x : int): int ;
k(x: int): float;
i(z: char):bool;

Core object

a: int;
b: float;

f(x : int): int;
g(y: float): int;
h(z: string): int;

View 3

b: float;
k(x: int): float
g(y:float): int;

View 2

a: int;
d: float;

g(y:float):int;
j(x: int): int;

Application Object

Separation of concerns techniques

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 213

request is forwarded to the core object, and the operation f() is executed in the context of
the core object. The same is true for references to the shared state variables (‘a’ for view
2, and ‘b’ for view 3). Practically, there will be a single copy of such variables, stored in
the core object, and read/write requests will be forwarded to the core object. The
application object is seen as supporting the union of behaviors of the core instance and of
the currently attached views.

Viewpoints, reuse, and decentralized development. It has been our experience that in
business information systems, the roles played by domain objects often correspond to
generic business processes, and do not depend on the business domain. For example, for
the purposes of building an information system that supports the business, leasing
computers is more similar (software infrastructure and functionalities) to leasing cars,
then to selling computers. Using our model of view programming, the different roles that
an application object can play will be represented by views. When those roles correspond
to different business processes, then the logic of the code of the views should be reusable
across business domains. We propose a kind of a template for functional roles/views that
is parameterized by those elements of the interface of the core object that are required by
the functional role. This template, called viewpoint, can then be instantiated for different
types of assets, be they trucks, buildings, machines, or computers. In the example of
Figure 1, view 1 which uses the method f(.) of the core object, is the result of
‘instantiating’ a viewpoint that requires that the core object support a method f().

Programming with views. Our approach consists of supporting view programming into
a host language such as Java or C++ by adding a “views veneer” which language pre-
processors will translate into vanilla flavor constructs from the host language. We will
focus on the code transformations that need to take place, and on the run-time mechanics
of our approach.

Consider the example of a customer relationship management (CRM) application.
Let Customer be the core object (see Table 1). In addition to information about contact
info and outstanding orders, we could support two additional functional areas, e.g. the
customer credit profile (CreditWorthinessCustomer view), and a loyalty (“frequent
miles”) program (LoyaltyCustomer view). Table 1 shows one possible implementation
of the views, i.e. as regular Java classes that contain view-specific data and functions, but
that forward core data and functions to the core instance. The view classes are generated
by instantiating a corresponding template (viewpoint) for the class Customer (much like
Büchi & Weck’s generic wrappers). Core objects store and manipulate their views
through data structures and functions inherited from the class Viewable.

A Customer object is created by instantiating the core class. Later on, views may be
added or removed to the core object dynamically, using an inherited API from
Viewable. When we first add a view to a core instance, an instance of view class is
created and linked with the core instance. That view object can later be deactivated, re-
activated, or deleted. Deactivation turns off the behavior of a view, but preserves its state.

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

214 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

The behavior of an object with views depends on the set of views that are currently
added (and active). When the object receives a message, its answer depends on whether
its core functionality or one of the attached views supports the requested behavior. If no
implementer is currently available for the requested behavior, the request is denied. In a
reflective language such as Smalltalk, this behavior can be accomplished by modifying
the dispatching mechanism. In a typed and (mostly) statically bound language such as
C++, this behavior can be obtained by performing the appropriate compile-time code
transformations. Java, which offers reflexive capabilities, does not support message
intercession easily, and a code transformation approach is also used1

class Customer extends Viewable {
 private String name;
 private String number;
 private String address;
 private Collection orders;
 …
 public void addOrder(Order in){…}
 public Iterator getOrders(){…}
 …
}
class LoyaltyCustomer extends View{
 private Customer coreObject;
 private String loyaltyGrade;
 …
 public void printCustomer() {…}
 public void
 printListOrOrdersMade() {…}
 public String getName() {
 return coreObject.getName();
 }
 …
}

class CreditWorthinessCustomer
 extends View {
 private Customer coreObject;
 private String creditRating;
 private float creditLimit;
 private String accountState;
 …
 public void printCustomer() {…}

 public String getName() {
 return coreObject.getName();
 }
}

Consider the following program excerpts:

 import com.walmart.core.Customer;
 import com.walmart.finance.*;
 import com.walmart.operations.*;
(1) Customer myCustomer = Customer.getInstanceWithID(id);
(2) myCustomer.attach(“Loyalty”);
(3) myCustomer.attach(“CreditWorthiness”);
(4) float val = myCustomer.getCreditLimit();
(5) myCustomer.printCustomer();

1 AspectJ™ also uses a code transformation approach, instead of a reflexion-based implementation.

Separation of concerns techniques

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 215

In line (4) the programmer invoked a behavior that is available in the
CreditWorthinessCustomer view on the instance of Customer, without referring
explicitly to the view instance. The underlying mechanism is a pre-processor that replaces
line (4) with the following line,

(4’) float val=((CreditWorthinessCustomer)
 myCustomer.getView(“CreditWorthiness”)).getCreditLimit();

because it knows that getCreditLimit() is available in the view class
CreditWorthinessCustomer, but it does not know for sure that at the time that the
call is made, an CreditWorthinessCustomer view is attached and active, and we
cannot sort this out at compilation time.

Line (5) shows the method printCustomer() which is supported by both
LoyaltyCustomer and CreditWorthinessCustomer. We adopted the approach
advocated by Harrison & Ossher [Harrison & Ossher, 1993], which consists of
composing the various method implementations. Our approach relies on a universal
composition view, which is automatically generated to contain default implementations
for the all the multiply defined methods:

class _CompView_Customer extends View {
 public void printCustomer() {
 // some combination of the implementations coming from

// LoyaltyCustomer and CreditWorthinessCustomer
 }
 …
}

The actual code generated and the mechanics of composition views are slightly more
complex, as they take into account the potential for broken delegation [Mili et al., 1999].

3 DISTRIBUTION ISSUES

The combination of aspects and distribution is interesting for three reasons. First,
Distribution is, itself, one of those design aspects that crosscut implementation classes,
and that clutter the code without bringing in any new user-defined functionality. It would
thus seem to be a perfect fit for a technique such as aspect-oriented programming, which
appears to be particularly well suited for separating design-level concerns. Second,
Depending on the separation of concerns technique, objects that embody several concerns
may be fragmented, which may raise a number of issues for distribution. Third,
considering that different functional areas usually imply different data ownership and use
privileges, to what extent can aspect, role, or view boundaries can be used as units for
distribution — and possibly for duplication — in a distributed application context. We
look at these issues in turn.

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

216 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Implementing distribution with separation of concerns techniques

The question here is whether distribution logic can be encapsulated in components along
the boundaries of the various separation-of-concerns techniques. There are two sides to
this issue. First, we have to figure out where, in an object-oriented program, does
distribution make a difference (so called join points), i.e. what needs to be changed to
turn a regular (non-distributed) application into a distributed one. Once we do this, we
then have to analyze the various separation-of-concerns techniques to figure out which
technique’s abstraction boundaries [Mili et al., 2001a] best match the required changes
to accommodate distribution.

There have been a number of research efforts trying to categorize concerns in such a
way that they can be matched against the panoply of techniques, both aspect-oriented and
plain object-oriented techniques (see e.g. [Walker et al, 1999]). Turning a regular
application into a distributed one is, for the most part, a solved problem. Existing
distribution frameworks all use a variant of the proxy pattern, and various compilers will
automatically generate most of the code involved in “distributing” objects (e.g. CORBA
IDL compiler). There remain a few changes that need to be accommodated. One such
change involves lifecycle issues. Indeed, the “creation” of remote objects is different
from the creation of local objects. For instance, the former requires going through an
object factory, which may itself be accessed using some sort of a naming service. We also
need to handle remote exceptions. Indeed, remote method invocations may raise a
number of exceptions that may either be related directly to the remoteness of objects, or
that may be re-castings of user-defined exceptions. Both of these changes are to take
place in the client program, but they can occur anywhere within a method.

Both subject-oriented programming and view-oriented programming allow
composition only at the method level. Only aspect-oriented programming supports
composition at sub-method levels, with some restrictions (entry and return points,
exceptions, etc.). Thus, aspect-oriented programming seems to be the best fit for handling
these kinds of aspects, on demand. As we later see, we used AOP to introduce multi-
aspect logic into distribution (CORBA) logic.

Note that if we are interested in supporting a distribution infrastructure with a
configurable set of services (e.g. transactions, security), then we are faced with a new
instance of “multiple aspects” problem, this time concerning the distribution
infrastructure implementation itself, instead of the application that executes in the context
of the distribution infrastructure (see e.g. [Coady et al, 2001],[Joshi & Agrawal, 2002]).

Distributing objects embodying several aspects

The effect of distribution on objects that embody several aspects or concerns depends on
the separation of concerns technique that we used in the first place. If the method
involves compile-time integration of the various aspects (concerns), then there is no
interaction between separation of concerns and distribution since the “multi-aspect”

Distribution issues

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 217

objects look no different from regular objects, and the same distribution issues will be
raised, and the same techniques used.

In those methods where different concerns are represented as separate objects (e.g. our
approach and dynamic adapters (e.g. [Kniesel, 1999] and [Buchi & Weck, 2000]), then
there are two strategies, and corresponding host of issues to be addressed. Roughly
speaking, the first strategy consists of separating the multi-aspect “aspect” from the
distribution aspect, and distributing multi-aspect objects like any network (aggregation)
of related objects. In other words, a core object and all its appendages will be defined as
remote objects, with their own interfaces, proxies, data holders, and the like. Figure 2
illustrates this strategy. While the simplicity of this approach may be appealing, it suffers
from a lot of problems. Consider the following (naïve) delegation-based dispatch
algorithm:

perform(Message m, Target o) {
 Method meth = o.lookup(m);
 if (meth = null) then
 deleg <- o.getDelegates();
 while (meth != null) do
 meth = deleg.next().lookup(m)
 enddo
 endif
 if (meth != null) then
 meth.invoke(o,m)
 else
 o.doesNotUnderstand(m)
 endif
end perform

Client site Server site

Figure 2. The entire delegation machinery is distributed

delegation links
message sends
proxy – object relationships

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

218 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

If we transpose this algorithm into the distribution context, it seems natural that the
method invocation itself (meth.invoke(o,m)) would take place on the server side.
However, it is not clear whether the method look-up itself happens on the client side,
using the proxies of the various components, or on the server side. If it happens on the
client side, then a lots of network traffic will be generated to resolve a single message
send. Further, the client-side proxies will not be light clients, but will have to duplicate
some of the processing logic. It thus seems more reasonable to implement the delegation-
based method dispatch on the server side. If the delegates exist only as stores of state and
behavior for the delegator, then we may want to forget about remoting the entire
structure, and let the dispatching happen on the server side.

The second strategy for distributing multi-aspect objects consists of tackling both
problems simultaneously. There are two major advantages to using this second strategy:

• Conceptually, we could use the abstraction mechanisms provided by the
distribution infrastructure, such as the separation of interfaces from
implementation, to hide some of the conceptual complexities of supporting multi-
aspect objects,

• Performance-wise, combine distribution required dispatching with multi-aspect
required dispatching, reducing dispatch complexity and performance overhead.

Figure 3 illustrates this second strategy. From the client side, the composite object looks
like a single monolithic object.

This approach does have a disadvantage, though. We may be sacrificing the dynamic
interface evolution of client-side proxies, unless we resort to using the dynamic
invocation interface on the client as well. This is the approach that we have taken in our
work, as explained in the next section.

Client site Server site

Figure 3. The client side sees a single object. The
delegation machinery is hidden on the server’s side.

delegation links
message sends
proxy – object relationships

View programming and distribution

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 219

4 VIEW PROGRAMMING AND DISTRIBUTION

Issues

In this section, we are interested in the situation where an object with views is distributed,
and offers different sets of functions through different client sites. In the most general
case, it is conceivable that views, embodying function specific state and behavior, may be
owned by different sites, and may thus reside in different sites. Figure 4 illustrates such a
scenario for the object in Figure 1. We assume in this example that site 3 is not aware of
the existence of a core object behind the view, or of View 1 and View 2, and the behavior
of these should not be available to it, except indirectly as a side effect of methods called
on the core object. For the case of sites 1 and 2, they know about view 1 and view 2, but
don’t know about view 3, and any behavior invoked on the core object should only
invoke the methods that are explicitly provided by view 1 and view 2 (or as side effects
of such behaviors).

We address our model of view programming from the perspective of a
CORBA/RMI-like model where a single state-holding copy of an object is available over
the network whereas different proxies/stubs route requests to that object through ORBs.
Figure 5 illustrates such a model. We assume for simplicity that a single ORB manages
requests on behalf of all sites. We also assume for the time being that there is no object
replication: each of the core instance and the views reside on a single site, with proxies
representing them elsewhere.

Figure 4. Distributed object with views.

Core object

+f(x : int) : int
+g(y : float) : int
+h(z : string) : int

+a : int
+b : float

V3

+k(x : int) : float
+g(y : float) : int

+b : float

V1

+f(x : int) : int
+k(x : int) : float
+i(z : char) : bool

+c : int

V2

+g(y : float) : int
+j(x : int) : int

+a : int
+d : float

g(float), a

g(float), bf(int)

Site 2

Site 1

Site 0

Site 3

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

220 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Figure 5. A single-server, multiple-client scenario.

Consider now the fact that our own parsing of client code of viewable objects also
involves code generation, and a number of source code transformations (see section 2.4).
For instance, a user program that uses several views of the same object will have
messages to that object go through a composition view. However, a composition view is
nothing but a “stub-like” class that implements the union of the interfaces (potentially)
supported by the viewable object. This stub dispatches calls depending on which views
are attached (and active) at that point in time (see section 2.4). Because support for
distribution also involves generating a stub class that implements a remote interface, we
could combine the two code generations. A distributed object configurator (DOC)
enables architects to select, from a set of interfaces and a set of sites, which interfaces are
going to be visible to which sites, and which sites will implement which interfaces. DOC
will be discussed in section 5. We next look at the simplest case where all the views
reside in the same site.

Single server, multiple clients

Figure 5 shows an example situation where several views reside on the same server, but
different client sites see different subsets of those views. In this case, each client site only
sees the version of the server side object that corresponds to its views. There are two
issues that need to be addressed. First, how to make the same server object implement
two or more client interfaces, and second, where to handle the dispatch of multiply
implemented methods (methods implemented by several views or by the core class and
one or more views). We look at these issues in turn.
Implementing several interfaces. Existing CORBA products generate, from the same
IDL interface, a client stub and a server skeleton. Whereas the client stub is supposed to
be used as is, the server skeleton is supposed to be specialized or somewhat
refined/completed to provide the full implementation of the object. There are two
approaches to server object implementation, one based on inheritance, and the other

Three views

V

V

Client
2

Client site
1

Client site 2

V

V

Client
1

V1

V2

V3

View programming and distribution

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 221

based on forwarding. With the inheritance-based approach, the object implementation
must inherit from the generated skeleton (class CustomerSkeleton in the example
above). With the forwarding-based approach (also referred to as tie approach), a subclass
of the generated skeleton forwards method calls to an object. In a language that supports
multiple inheritance, both the inheritance-based and delegation-based object
implementation approaches allow a class to implement several interfaces. In Java,
multiple inheritance of classes is not supported, but the same class can support several
interfaces, which makes the tie approach appropriate for implementing several interfaces
with the same Java class. Figure 6 illustrates this.

We should stress that the usual “self problem” inherent in simple message
forwarding is not an issue here: the “forwarder” does not perform any application specific
processing whatsoever; it simply dispatches method calls coming over the wire. Thus
there is no chance that a method on the server object would need to come back into the
skeleton object. Note, however, that if a method on the server object needs to access a yet
another remote object, the call is handled transparently (going through a proxy and the
ORB) as if that other object were local.

A final point has to do with view creation and destruction. As mentioned in section
2.3, the first call to attach(<a view>) attaches a view, and subsequent calls have no effect.
The same goes for requests to detach (destroy) a view. With server objects handling
multiple interfaces, we have to keep a count of the number of clients that access a given
interface, much like COM does. However, we have to make sure that several requests to
detach a view that originate from the same site will count as one. One way of handling
this is a two stage reference count strategy: the tie object maintains its own reference
count. That count is incremented whenever a new attach(…) request is forwarded from
the client side, and decremented whenever a new detach(…) request comes from that
site. At the same time, the shared object implementation maintains its own count of the
various views, which indicates how many server interfaces need a particular view. A
server interface (tie object) no longer needs a view when its reference count goes to zero.
Thus, whenever a tie object’s count goes to zero, it asks the shared implementation to
decrement its reference count. When that count goes to zero, the view is destroyed.

Things get complicated when several client processes use the same interface, and
thus share the same server-side tie object. This could cause dangling references if some
client site requests more detach(…) than it had requested attach(…), thus
inadvertently making a view unavailable to other clients who still need it. This could call
for a per-client site management of reference counts on tie objects.

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

222 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

Figure 6. Server Object(s) implement several client interfaces.

Dispatching to multiply-implemented methods. In a proxy-based implementation of
distribution, the client side code only forwards requests to the server side code. When
dealing with objects with views, we know that some method calls won’t be answered if at
the time the call is made, the server object does not have the corresponding view. We
have the option of simply forwarding method calls to the server, and let the server side
dispatch method calls or raise exceptions if a method is not currently supported.
Alternatively, we could handle the dispatch on the client side, and then ensure that any
call that goes to the server will get answered.

The first solution has the advantage of simplicity, but can be costly, performance-
wise, depending on the relative frequency of failing method calls. The second alternative
has the advantage of distributing the dispatching between client and server, and obviating
the need for an expensive round-trip in those cases where the method called is not
supported. The second reason why we might still need client-side view management,
anyway: if we have two client programs that use the same interface (and thus, refer to the
same server-side tie object) but that may use different view activations: we need to have a
per-proxy view management. Finally, with client-side view management, only view
creation and destruction need to go the server; view activation and deactivation can be
handled locally.

With client-side method dispatching, the client side stub is similar to the composition
view described earlier in the sense that it has the combined interface of the core object
and the available views; based on the views currently active on the object, it may dispatch
to different server side method combinations. Those method combinations will have
different names generated automatically using some mangling scheme.

Client site specific subsets

V1 V2 V3

V
1

V2 V2 V3

OR
B

ORB

V
1
V
2

Client
V2

V3

Client

IDLCompiler IDL ompiler

Skltn1 Skltn2

TieImp
l

TieImpl

V
1
V
2
V
3

Client site 1 Client site 2 Server object with 3 views supporting two
interfaces

Pool of available interfaces

View programming and distribution

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 223

Figure 7 shows an example stub based on this implementation. In this case, the stub
has an additional instance variable (viewStates) that contains the status of the various
views—referred to by name on the client side. The stub supports methods to
attach/activate and deactivate/detach views. Attaching a view will request the attachment
to the server, and set the local variable (viewStates) accordingly. Deactivating a view
is a local operation, and only works on viewStates. This stub code for the method
‘printCustomer()’ illustrates the name mangling scheme used to dispatch to different
method combinations on the server side: the method ‘printCustomer()’, which is
supported by the views LoyaltyCustomer and CreditWorthinessCustomer, has
three versions, ‘_LoyaltyCustomer_printCustomer()’, ‘_CreditWorthiness-
Customer_printCustomer()’, and the composition ‘_CreditWorthinessCus-
tomer_LoyaltyCustomer_printCustomer()’. The prefix is generated by the
method ‘getActiveViewsSupportingMethod(String signature)’.

package CustomerLoyaltyCustomerCreditWorthinessCustomer;
public class _CustomerStub extends ObjectImpl implements
 CustomerLoyaltyCustomerCreditWorthinessCustomer.Customer {
 private Hashtable viewStates;
 private static Hashtable methodsToViews;
 public boolean attachView(String viewName) {
 try {
 Request _req = _request("_attachView");
 req.add_in_arg().insert_string (viewName);
 _req.invoke();
 catch (ViewAttachmentException vae){ return false;}
 finally {
 viewStates.put(viewName,View.Active);return true;}
 }
 public void deactivateView(String viewName) {
 // View activation and deactivation are local
 viewState.put(viewName,View.Idle);
 }
 public void printCustomer() throws UnavailableBehavior {
 String prefix = GetActiveViewsSupportingMethod(

“printCustomer##”);
 if (prefix.length()==0) throw new
 UnavailableBehavior(“printCustomer ()”,viewStates);
 String reqName = prefix + “_” + “printCustomer”;
 Request_req = _request(reqName);
 …
 }
 …
}

Figure 7. Client side dispatching

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

224 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

5 IMPLEMENTATION

Work on view programming has been ongoing for several years at the University of
Quebec at Montréal. We have already implemented prototype support for view-oriented
programming in C++ [Mili et al., 1999]. Our C++ implementation supports a small subset
of C++, and does not address distribution but helped us identify a number of problems
that we set out to solve in our Java-based distributed solution [Mili et al., 2001]. A
number of the difficulties we had with the C++ implementation were related to difficulty
of separating interfaces from implementations, both at the language level, and in terms of
the programming model that needs to be supported in the context of a monolithic
application. Java does support this separation. Further, the separation between interfaces
and implementations is at the heart of the programming model for distribution, enabling
us to concentrate view machinery in one place (see section 3).

In reference to the implementation strategies discussed in section 3.2, and to the
issues raised in section 4.2, we decided to address distribution and multi-aspect issues in
a single framework. As mentioned in section 3.2, and illustrated in some of the choices
discussed in section 4.2, doing so enables us to simplify the overall scheme, and to
enhance the overall performance of the combination of these two features.

As illustrated by our discussion in section 4.2, support for distributed multi-aspect
objects involves the following changes, as compared to plain distribution, a) the
implementation objects are “regular” objects with views, i.e. using an aggregation-based
simulation of delegation, and b) some view-specific processing at both the stub and
skeleton. This view specific processing consists, on the client side, of three changes, i)
addition of new infrastructure remote methods (e.g. attach/detach view), ii) addition of
new local methods and variables (activate/deactivate, and viewStates), and iii)
modification of dispatch of view-defined methods (see example of ‘release()’ method).
Server-side changes include support for attach/detach and the corresponding reference
counting logic.

Implementation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 225

Figure 8 shows the overall structure of our tool set. We numbered the various
processes for easy reference. At the beginning of the process, Java classes (core objects)
and viewpoints are translated to CORBA-IDL (process (1)) and CORBA IDL-like syntax
(process (2)), respectively. The Distributed Object Configurator (DOC) uses these
interfaces and deployment information to generate the view and distribution
infrastructure code. Specifically, deployment data describes:

1) Which views will need to be supported, overall. These views will be generated by
mapping the viewpoint IDL to core objects IDL, yielding view IDL (process (3)).
It is assumed that each one of these views will be implemented somewhere—all
by the same server for now,

2) Where do the various object components (core classes, view classes) reside. For
the time being, we assume that the core object implementation and its views will
reside on a single server. This will be generalized later to the case where core
object and views reside on separate machines,

3) Which client site needs which interfaces. This will be used to generate a single
IDL interface per client site, which, in turn will be used to generate a client stub
and a server skeleton per client interface (one per combined interface). This is
the work of process (4).

For those methods that have multiple implementations, we leave it up to the developers to
specify the composition. For example, the method printCustomer is supported by both
the credit worthiness view, and the customer loyalty view. Using the name mangling
scheme discussed in section 4.2, we need to provide an implementation for:

View
IDL

viewpoin
ts in java

lik

viewpoin
ts in java

lik

viewpoin
ts in java

lik

VP2I
DL

VPVPVP

Java
classes
Java
classes
Java
classes

JV2I
DL

COR
BA-
COR
BA-
COR
BA-

VPVPVPVie
w

Interf
.deployme

nt data

Client
stubs

Client
stubs

Serve
r
Serve
r

Imple
m.

Serv
er

(2
)

(1
)

(3
)

(4
)

(5
)

Figure 8. Structure of the toolset

multi-
method
aspects

multi-
method
aspects

multi-
method
aspects

multi-
method
aspects

ajc
script

Serv
er
Serv
er

AJ
C

Server
implem
entation

(6
)

Distributed
Object
C fi

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

226 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

public void _CustomerCreditWorthiness_CustomerLoyalty_print-
Customer();

We want to be able to provide such implementations but without editing either the source
file (e.g. the Java core classes) or the automatically generated code (e.g. the server side
skeletons). Thus, the tool (process (4)) generates, a) an empty method stub (with a single
return statement), and b) an aspect that developers can edit, and that includes the actual
implementation. The actual aspect looks as follows (simplified for presentation):

package ClientFideliteClientEstimationCreditClientarabica;
… // a bunch of imports

aspect _CreditWorthinesCustomer_LoyaltyCustomer_printCustomer{
 pointcut _CreditWorthinessCustomer_LoyaltyCustomer_printCus-
tomer():args()&& call (String _CompView_Customer._Credit-

WorthinessCustomer_LoyaltyCustomer_printCustomer());
 before() throws Exception: _pre_CustomerCreditWorthi-
ness_CustomerLoyalty_printCustomer () {
 // Developers edit this method
 try {
 ((CreditWorthinessCustomer)getView("CreditWorthiness”

+”Customer")). printCustomer();
 ((LoyaltyCustomer) getView("LoyaltyCustomer ")).print-

 Customer();
 } catch(Exception ex){ex.printStack();}
 }
}

In this case, the implementation is included in a new method that will be called before the
body of the multiple method. This is one of several flavours of aspects we are
experimenting with. In addition to generating the aspects for the multiple methods, the
processor (4) generates a script for the AspectJ compiler to weave all those aspects into
the main body of the server-side code. The actual code for the server views is generated
by the same tool we use for non-distributed applications (processor (5)).

Figure 9 shows a screendump of a preliminary implementation of DOC. This screen
shows the selection of core classes, viewpoints, and the corresponding views.

Implementation

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 227

 Figure 9. Specifying the functionality to be provided by servers to clients.

6 CONCLUSION

Our work addresses the problem of supporting several functional domains within the
same application, by composing at will functional fragments developed by independent
third parties. Those same situations that require, or could use, decentralized development
of functional domains also require distributed ownership of the functional domain data,
and distributed execution of the resulting programs. View programming seems like a
perfect fit to the extent that we have resolved most of the issues dealing with the
uniqueness of object reference, and the multiple-dispatch of methods—method supported
by several views. There remain a number of issues dealing with optimizing the
implementation of distributed view programming which we continue to explore, both
theoretically and empirically.

Core classes

Available viewpoints

Views for the selected
core class

Configuration of servers

core classes

views

Configuration of clients

CORBAVIEWS – DISTRIBUTING OBJECTS THAT SUPPORT SEVERAL FUNCTIONAL

ASPECTS

228 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3

ACKNOWLEDGMENTS

This work was sponsored by Nortel, DEC, IBM, CAE Electronics, Machina Sapiens, the
SYNERGIE program (Québec), and NSERC (Canada).

REFERENCES

[Aksit et al., 1992] M. Aksit and L. Bergmans, and L. Vural, “An object-oriented
language-database integration model: the composition filters approach”, in
Proc. of ECOOP 92, Springer Verlag 1992.

[Buchi & Weck, 2000] M. Büchi and W. Weck, “Generic Wrappers”, in ECOOP 2000,
LNCS 1850, pp. 201–225, 2000.

[Coady et al, 2001] Y. Coady, G Kiczales, M. Feely, N. Hutchinson, and J. Suan Ong,
“Structuring Operating System Aspects,” Communications of the ACM,
Special issue on Aspect-Oriented Programming, Oct. 2001, pp. 79-82

[Harrison & Ossher, 1993] W. Harrison and H. Ossher, “Subject-oriented program-ming:
a critique of pure objects,” in Proc. of OOPSLA’93, Washington D.C., Sept.
26-Oct 1, 1993, pp. 411-428.

[Joshi & Agrawal, 2002] R. K. Joshi and N. Agrawal, “AspectJ Implementation of a
Dynamically Pluggable Filter Objects in Distributed Environment,” in Proc.
of 2nd Int.Wshop Aspect Oriented Soft. Dev., Bonn, Feb 21-22, 2002

[Kiczales et al., 1997] G. Kiczales, J. Lamping, C. Lopez, “Aspect-Oriented
Programming,” in Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag LNCS 1241. June 1997.

[Kniesel, 1999] Gunter Kniesel, “Type-safe Delegation for Run-time Component
Adaptation,” ECOOP’99, LNCS 1628, pp. 351–366, 1999. eds Springer-
Verlag Berlin Heidelberg 1999

[Mili et al., 1996] H. Mili, W. Harrison, and H. Ossher, “Subjectalk: Implementing
Subject-oriented programming in Smalltalk,” Proc. of TOOLS USA 96, Santa
Barbara, CA, Aug 2-5, 1986.

[Mili et al., 1999] H. Mili et al., "View Programming: Towards a Framework for
Decentralized Development and Execution of OO Programs," Proc. of
TOOLS USA ‘99, Aug. 1-5, 1999, Prentice-Hall, pp. 211-221

[Mili et al., 2001] H. Mili, H.Mcheick, J. Dargham, and S. Delloul, “Distribution d’objets
avec vues”, in proc. of LMO’01, special issue of L’Objet, Jan. 2001.

References

VOL. 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 229

[Mili et al., 2001a] H. Mili, A. Mili, S. Yacoub, & E Addy, Reuse-Based Software
Engineering, John Wiley & Sons, 2001.

[Ossher et al., 1995] H. Ossher et al., “Subject-oriented composition rules,” in Proc. of
OOPSLA’95, Austin, TX, Oct. 15-19, 1995, pp. 235-250.

[Shilling & Sweeny, 1989] John Shilling and Peter Sweeny, “Three Steps to Views,”
Proc. of OOPSLA’89, New Orleans, LA, pp. 353-361, 1989.

[Tarr et al, 1999] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, “N Degrees of
Separation: Multi-dimensional separation of concerns,” in Proc. of ICSE’99,
Los Angeles, May 1999.

[Walker et al, 1999] R.J. Walker, E. Baniassad, and G. Murphy, An initial Assessment of
Aspect-Oriented Programming,” in Proc. of ICSE’99, Los Angeles, May
1999

About the authors

Hafedh Mili is a full professor, and the Associate Chair for Research at
the Computer Science department of the Université du Québec a
Montréal. He teaches, researches, and consults on object-oriented
software engineering and software reuse. His book Reuse-Based
Software Engineering with A. Mili, S. Yacoub, and E. Addy (John
Wiley & Sons, 2002) explores the use of state of the art and the
practice object techniques to help build more configurable software. He

can be reached at hafedh.mili@uqam.ca.

Hamid Mcheick is a Doctoral student at the University of Montréal. His research
interests include tools and environments for software reuse. His Master’s research
consisted of developing an intelligent C++ code browser for navigating reuse libraries.

Salah Sadou is an Associate Professor of Computer Science and the
Univeristé de Bretagne Sud, in Vannes, France. Professor Sadou is
interested in dynamic evolution of object-oriented programs. Parts of
this work were performed while he was on sabbatical at the Université
du Québec a Montréal.

