
Journal of Object Technology | RESEARCH ARTICLE

Navigating the trace of executable domain specific
languages through a trace domain query language

Hiba AJABRI†, Jean-Marie MOTTU†‡, Christian ATTIOGBE†, and Pascal BERRUET§

†Nantes Université, École Centrale Nantes, IMT Atlantique(‡), CNRS, LS2N, UMR 6004, F-44000 Nantes, France
§Lab-STICC/University of Bretagne Sud, Lorient, France

ABSTRACT Executable Domain Specific Languages (xDSL) enable domain experts to design and simulate the systems they
develop. Various strategies have been explored for capturing system execution traces, allowing domain experts to perform
advanced analysis. However, extracting meaningful data from these traces presents significant challenges for many domain
experts due to: (1) a limited understanding of the trace structure and (2) a lack of software development skills needed to
implement programs that navigate and extract data from execution traces. This paper presents an approach that allows domain
experts to write trace queries using domain terminology, without relying on developers or requiring an in-depth understanding
of the trace structure. This approach is at the heart of our main contribution: Trace Domain Query Language (TraceDQL), a
query language that enables domain experts to write queries that explore the execution trace and return the requested data.
This language is designed to be applicable across different application domains. The operational semantics of TraceDQL
abstracts away the complexity of trace navigation, enabling domain experts to extract data without needing to understand the
underlying trace structure. We illustrate our proposal with two case studies: the Simple Manufacturing System (SMS) xDSL and
the Arduino xDSL.

KEYWORDS Domain-Specific Language, Model Execution, Execution Trace, Trace Query Language, Object Constraint Language (OCL).

1. Introduction

In Model-Driven Engineering, there is a shift from Domain-
Specific Languages to executable Domain-Specific Languages
(xDSLs) which are widely used not only to describe models but
also to simulate their behavior (i.e., models are executable) for
various purposes; for instance, simulating industrial systems
(Kaiser et al. 2022), verifying and testing purposes (Lübke &
Van Lessen 2017), or enabling further computations (An et al.
2011). During simulations, the modifications of the system state
are recorded in an execution trace that provides an efficient
means of storing execution data for advanced analysis without
always running the system again. These traces can be analyzed

JOT reference format:
Hiba AJABRI, Jean-Marie MOTTU, Christian ATTIOGBE, and Pascal
BERRUET. Navigating the trace of executable domain specific languages
through a trace domain query language. Journal of Object Technology. Vol.
24, No. 2, 2025. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2025.24.2.a8

to extract valuable data for domain experts (Alawneh & Hamou-
Lhadj 2009; Aljamaan et al. 2014; Bousse et al. 2014).

For example, in industrial engineering, xDSLs are designed
to model manufacturing systems and to simulate their behavior.
In a previous study (Ajabri et al. 2024), we introduced the Sim-
ple Manufacturing System xDSL (SMS xDSL) to model and
simulate simple manufacturing systems. Therefore, an expert in
the industrial domain can define and run SMS models, such as
the Hammer SMS model illustrated in Fig. 1(a). The system
includes three machines: GenHandle (producing handles), Gen-
Head (producing heads), and Assembler (combining them into
hammers). Conveyors transport the products, and a tray holds
them. An execution of the Hammer SMS model simulates the
Hammer production system and generates an execution trace
that captures the different states of the system. Fig. 1 shows two
states from the Hammer SMS simulation: (a) a hammer head
on conveyor A, and (b) the same head placed in the tray.

While the generation of the execution trace allows domain
experts to dynamically store a large amount of information,

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.2.a8

Figure 1 Two states of the Hammer production SMS model
at different times, captured during the simulation.

extracting specific data from it remains a challenging task. Im-
plementing a software component (e.g., EMF Java code, OCL
query) to navigate the trace and retrieve the required data is chal-
lenging because: (1) navigating the trace requires a thorough
understanding of the trace structure; (2) developing a dedicated
software component requires software development skills that
not all domain experts have. Hence, the assistance of software
experts may help, but domain experts would prefer to write
and manage their queries, using domain concepts and terms,
to gather data from the trace, allowing them to focus on what
is stored and requested in the trace instead of how it is stored.
Moreover, this trace analysis should be general enough to be
applied to other models, described with different xDSL.

Regarding these difficulties, two research questions may be
formulated:

– RQ#1: can we design a query language to exploit exe-
cution traces regardless of the application domain of the
model being traced ?

– RQ#2: can we make such a trace query language reusable
and easy to use by domain experts ?

To address these research questions, we present our contribu-
tion in the form of Trace Domain Query Language (TraceDQL);
it is a generic, executable language that enables the domain ex-
perts to write queries using their domain terminology, to explore
execution traces of a given model, and to retrieve needed data
from traces. TraceDQL provides operators that simplify the
task of writing queries. For instance, considering an execution
trace from the Hammer SMS model simulation, the domain
expert may want to retrieve the quantity of hammer heads pro-
duced during this simulation. Retrieving these specific data
requires navigating through the model states recorded in the
execution trace and counting the hammer heads. However, the
same hammer head is recorded several times (e.g., in Fig. 1 the
head is first recorded on conveyor A and a second time in the
tray). Implementing a software to count hammer heads and to
remove duplicates may be complex for the domain expert. Thus,
TraceDQL offers for instance a REMOVE REDUNDANCY BY
instruction. In addition, TraceDQL supports query reusability.
A parametric query can be reused with new parameter values,
a query can be reused in another query through a call, and the

output of a query can be reused as input for another query, de-
pending on its type. Moreover, the operational semantics of the
TraceDQL makes navigating the execution trace transparent to
the domain expert, and avoids having to understand the structure
of the trace language.

To illustrate the contribution, we consider two case studies:
an updated version of the Simple Manufacturing System (SMS)
xDSL and the Arduino xDSL. The implementation is available
on a public GitLab repository1 and it is permanently available
via this link (Ajabri et al. 2025).

In the remainder, Section 2 discusses the research back-
ground. Section 3 outlines the approach and explains how
the domain expert may use domain-specific queries to extract
data from the execution trace. Thereafter, Section 4 presents
the TraceDQL language. Sections 5 discloses the application
of TraceDQL with the SMS xDSL and the Arduino xDSL con-
sidering different examples and in Section 6 we conduct the
discussion. Finally, the related work is outlined in Section 7,
and the conclusion and future work are drawn in Section 8.

2. Background
The background section presents the main concepts and under-
lying approaches used in our contributions, illustrated through
the Simple Manufacturing System xDSL case study.

2.1. Executable domain-specific languages
A Domain-Specific Language (DSL) is a language tailored to
a specific domain. Executable Domain-Specific Languages
(xDSLs) extend DSLs beyond system modeling by enabling
execution (Combemale et al. 2012). Three essential elements
constitute an xDSL: abstract syntax, execution semantics, and
concrete syntax. The abstract syntax defines the concepts of the
language and their relationships. It is typically represented as
an object-oriented model, called a metamodel. The execution
semantics determine how a model conforming to the abstract
syntax is executed. There are two main types: translational
semantics (i.e., compilation) (Cleenewerck & Kurtev 2007), and
operational semantics (i.e., interpretation) (Plotkin 2004). In
this paper, we adopt the operational semantics. The operational
semantics of an xDSL consists of two parts: A runtime state
definition, which describes the possible runtime states of a
model under execution. A set of execution rules, which dictate
how the runtime state evolves over time. Finally, the concrete
syntax is the notation used to represent abstract syntax concepts.
It can be either textual or graphical.

2.2. Simple manufacturing system xDSL case study
In previous work, we developed the Simple Manufacturing Sys-
tem xDSL (SMS xDSL) (Ajabri et al. 2024). Fig. 2 presents an
excerpt from the SMS xDSL metamodel, while the complete
version is available in a public GitLab repository2, and it is
permanently available at this link (Ajabri et al. 2025). This
metamodel contains 16 metaclasses and consists of two main
1 https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL
2 https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/

Language_Workbench/xSMS

2 AJABRI et al.

https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL
https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/Language_Workbench/xSMS
https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/Language_Workbench/xSMS

Figure 2 Excerpt from the SMS metamodel: abstract syntax
(left part) and runtime state definition (right part).

parts: the abstract syntax (left side of Fig. 2) and the runtime
state definition (right side). The abstract syntax defines the
root metaclass ProductionLine, containing a set of RModules
(representing machines or containers such as conveyors and
trays), and ProductTypes (defining different product types in the
system). The runtime state definition defines the system’s state
during execution. It introduces additional dynamic metaclasses
and features to represent the runtime state of static language
concepts. The runtime package contains a SimulationState meta-
class, which tracks simulated time via the currentTime attribute.
SimulationState has a set of RModuleState, which references
the RModule and contains a set of Task elements defined by
startTime, endTime and state attributes. A ContainerState is
a subtype of RModuleState, which can contain a set of Prod-
uct during runtime. A Product has an id, a name and a type
reference to the ProductType metaclass.

2.3. Modeling and execution framework
Designing an xDSL such as SMS xDSL can be accomplished us-
ing a Modeling and Execution Framework. GEMOC Studio3 is
an Eclipse extension that provides a comprehensive set of tools
for developing xDSLs. The abstract syntax of an xDSL can be
defined in GEMOC Studio using the Eclipse Modeling Frame-
work (EMF). The GEMOC Execution Framework (Bousse et
al. 2016) and various meta-programming approaches allow the
definition of execution semantics. The framework also supports
the development of the concrete syntax of an xDSL. Finally,
the framework allows models conforming to the xDSL to be
executed. In-depth analysis of such executions often requires
tracing the execution process.

The SMS xDSL, designed with this framework, allows the
modeling of a hammer production line (Hammer SMS model in
Fig. 1), and simulating its behavior. This simulation can answer
questions such as: what was the duration of the simulation? or
how many hammers were produced in a given period? Such
questions can be answered by looking at the final state of the
model under simulation in the execution trace. However, more
complex analyses may require examining multiple states, for
instance: how many hammer heads were produced in a given

3 http://gemoc.org/studio

Figure 3 An excerpt from the execution trace model of a
Hammer SMS model execution, that includes the states (a)
and (b) depicted in Fig. 1, illustrating that the tray has re-
ceived the hammer head (red associations).

period, after three hours? At which state was the first ham-
mer produced? Such insights require tracing the execution for
further analysis.

2.4. Trace language and execution traces
A trace language is used to define execution traces, which are
models conforming to a trace language metamodel. To capture
the state of the model during execution, the trace language must
allow to select which elements of the given xDSL will be traced.
It is a feature of genericity. Formally, a language L described by
a metamodel (MM), is the set of the models generated by MM
or equivalently that conform to L. For any model m conforming
to the metamodel MM (that describes the language L), we have
m ∈ L, meaning m conforms to MM. Let L be a given xDSL
and T[L] be the trace language, considering m ∈ L and t ∈ T[L],
tm is the execution trace of m meaning t embeds a portion of
m, which is the model state that conforms to the runtime state
definition of L. Therefore, the execution trace tm is a parametric
trace which contains two parts: a part that pertains to the trace
language structure TraceStructure, and a part that comprises the
model states ModelState. Fig. 3 presents an excerpt from an
execution trace of the Hammer SMS model and illustrates these
two parts.

Trace framework In our work, we use the SimpleTrace4

framework to generate execution traces, as illustrated in Fig. 4.
It includes a Trace Generator and is implemented using Gemoc
Studio. Given an xDSL, the language engineer annotates the
runtime state elements that should be traced, using the "dy-
namic" keyword. A domain expert defines and executes a model
conforming to the given xDSL. At the end of the execution,
the captured runtime states are collected and structured into the
execution trace model.
4 https://github.com/gemoc/simpler-traces

Navigating the trace of executable domain specific languages through a trace domain query language 3

http://gemoc.org/studio
https://github.com/gemoc/simpler-traces

Figure 4 Execution trace generation process capturing model
states over execution.

Figure 5 Layered structure involving the trace language.

To integrate an xDSL’s runtime states into the trace, the
SimpleTrace language employs a layered structure, as depicted
in Fig. 5. We consider a metaclass TraceElement of the trace
language metamodel, which has a containment reference to
EObject, the root for all elements in the Ecore5 metamodel (i.e.
M2-layer in the MOF6 standard). The reference defined at the
level of M2- M1-layer allows an instance TraceElementInstance
of TraceElement to contain instances of EObject. An instance
ElementInstance of a metaclass Element of a given xDSL is an
instance of EObject that may be contained in TraceElementIn-
stance, at the model level (i.e., M0- layer). Therefore, the
execution trace tm can embed instances of metaobjects in a
given xDSL since the trace language metamodel refers to Ecore
objects, which reveals the parametric aspect of tm. For Simple-
Trace, only instances of metaobjects of a given xDSL annotated
as dynamic or contained in metaobjects annotated as dynamic,
are included in the trace because they represent the model state
during runtime.

Trace hypotheses We formulate two key hypotheses to sup-
port our proposal. First, among two main types of execution
traces in the literature: event-based traces and state-based traces
(Ezzati-Jivan & Dagenais 2012; Montplaisir et al. 2013), we
consider the second one, which captures the states of the sys-
tem under execution. The captured states must represent the
ModelState part. Second, the given xDSL must be annotated
appropriately: the Trace Generator (see Fig. 4) requires anno-
tating runtime state elements that should be traced, using the
5 https://eclipse.dev/modeling/
6 https://www.omg.org/mof/

"dynamic" keyword. It is essential to identify, based on the
annotation of the trace framework, which elements are relevant
for the domain expert when analysing a trace. This allows us
to relieve the domain experts from specifying such structural
information in the queries, enabling them to focus solely on the
analysis task, without having to manage the internal structure
of the trace.

2.5. Putting into practice and main issues
The given xDSL and SimpleTrace language are both imple-
mented using GEMOC Studio. It enables the definition of the
SMS xDSL, the instantiation of models such as the Hammer
SMS model, and their simulation, ultimately producing an exe-
cution trace. Fig. 3 presents an excerpt from the execution trace
of the Hammer SMS model, illustrating the two parts of this
parametric trace: TraceStructure and ModelState.

It is challenging for domain experts to extract data from such
parametric traces tm. It requires: (1) navigating the TraceS-
tructure and (2) exploring each ModelState and moreover (3)
comparing and analyzing different ModelStates over time.

For example, to count the amount of hammer heads generated
during a simulation, a domain expert must implement the algo-
rithm shown in Fig. 6. The algorithm achieves three main tasks:
task (1) defines the getCaptures(traceMM,executionTrace),
which navigates the TraceStructure, task (2) navigates each
ModelState of the SMS xDSL to identify the hammer heads,
and task (3) prevents counting several times the same hammer
through the different ModelStates. Therefore, domain experts
must implement the first task of the algorithm; this requires
a good understanding of the trace structure (1). They must
implement the second part to navigate the model state which
conforms to the runtime state definition of the SMS xDSL meta-
model (2), and then count the hammer heads products without
duplicates (3). For instance, in Fig. 3 the same product Head is
duplicated.

This highlights the need for dedicated tools and abstractions
to assist domain experts in querying and analyzing traces with-

Figure 6 An algorithm to navigate in the execution trace of
the Hammer production line SMS model and to compute the
quantity of hammer heads generated during the simulation.

4 AJABRI et al.

https://eclipse.dev/modeling/
https://www.omg.org/mof/

Figure 7 Overview of the approach that provides query facilities for the domain expert to extract data from the execution trace.

out deep familiarity with the underlying trace infrastructure.
Notably, the algorithm in Fig. 6 is tailored to answer a single
specific query, and is tightly coupled to the SMS xDSL when
navigating the ModelState. Moreover, the logic for traversing
multiple ModelStates is interwoven and hard to isolate, making
reuse and generalization difficult. This entanglement further
increases the complexity for domain experts who must adapt or
rewrite similar logic for each new query.

3. Overview of the Proposed Approach
We propose an approach to support domain experts in analyzing
execution traces without requiring them to manage the internal
structure of the trace metamodel. The goal is to enable queries to
be written in the expert’s domain terminology, while abstracting
away the complexity of the trace structure, particularly the
navigation across multiple ModelStates, which is often tangled
and query-specific, as previously illustrated.

At the heart of our approach lies a Trace Domain Query Lan-
guage (TraceDQL), designed to express queries over execution
traces in a high-level, declarative manner. This language pro-
vides specialized operators tailored to trace analysis needs, such
as querying across temporal states or filtering elements based
on dynamic model behavior.

While each execution trace conforms to a specific trace lan-
guage, TraceDQL is designed as a generic and reusable query
language. The domain expert does not have to write in the
queries the parts navigating the trace structure. This task is man-
aged by TraceDQL by analyzing the trace language structure
and extracting the relevant parts automatically.

Fig. 7 illustrates the overall approach. On the bottom left,
an execution trace is generated via the trace generation process
(as previously depicted in Fig. 4). The domain expert then
imports both the SimpleTrace language and the given xDSL
into a TraceDQL model, referred to as a Data Collect Query.
She also provides the path to the corresponding execution trace.
Using the abstract and concrete syntaxes of TraceDQL, the
expert defines queries that reflect their information needs.

Finally, these queries are executed through the operational
semantics of TraceDQL. The result is a new model, named Data
Collection, which contains the extracted and structured data.
This output is ready for interpretation (for instance, numerical
data can be used to compute Key Performance Indicators (KPIs),

Figure 8 An overview of TraceDQL concrete syntax

or for further analysis, such as applying OCL queries if the data
are subtraces).

4. TraceDQL: Trace Domain Query Language
This section describes the Trace Domain Query Language
(TraceDQL) by going through its two parts: abstract syntax
and operational semantics. Fig. 8 provides a glimpse of the
TraceDQL concrete syntax. It is a textual syntax implemented
with the Xtext7 framework. The complete textual syntax is
permanently accessible via this link (Ajabri et al. 2025).

4.1. TraceDQL abstract syntax
Fig. 9 illustrates an excerpt from the abstract syntax of
TraceDQL. We define the metaclass Package as a root class of
the TraceDQL abstract syntax. A Package can only be contained
in one super-package, but it can contain a set of sub-packages
and a set of ImportedResources (i.e., TraceDQL models that
may be imported using their packages qualified names). The
SimpleTrace metaclass is a subtype of the ImportedResource
metaclass, indicating that the imported resource is the Simple-
Trace language. The Package defines a tracePath attribute to
specify the path to the execution trace on which the queries will
be executed and it has a containment reference to the metaclass
Block. A Block has a number of parameters defined by the
metaclass Parameter, and a set of queries represented by the
metaclass Query. Parameter has a value attribute, along with
the Block, the Query and the Package metaclasses, it inherits a
name attribute from NamedElement. Fig. 8 presents an example
7 https://eclipse.dev/Xtext/index.html

Navigating the trace of executable domain specific languages through a trace domain query language 5

https://eclipse.dev/Xtext/index.html

Figure 9 TraceDQL abstract syntax excerpt, this part depicts
the structure of a TraceDQL query and the structure that holds
the values of the evaluated queries.

of a Block named construction_capture. This Block contains
two queries and it includes a Parameter called typ. The value
of the typ parameter is assigned when the Block is invoked by
a Data element. In this example, the parameter is assigned the
value Hammer.

A Query consists of a number of instructions defined by
the metaclass Instruction. An instruction may be an instance
of Source, Selection, Condition or Suppression metaclasses.
An instruction may be applied to an EClass and/or an EStruc-
turalFeature using the on reference. The EClass and the ES-
tructuralFeature are metaclasses of the Ecore metamodel. More
precisely, the Selection instruction may be applied to an EClass
or an EStructuralFeature, whereas the Source is applied only to
an EClass, and Suppression and Condition are applied solely
to an EStructuralFeature. The instructions within the query
are ordered in a way that the Source always comes first, if it
exists, following by the Selection, whereas the Condition and
Suppression do not follow a specific order. Each instruction
may be used with an operator given by the Query_Option enu-
meration. More precisely, FIRST and LAST options may be
used with the Source and the Selection, the SIZE option may
be applied with the Selection, whereas REDUNDANCY is left
for the Suppression. The Source may be applied to another
query, within the same block or reuse another query declared
in another block, through the in reference. With this reference,
the queries are linked within the Block, i.e., a query references
its previous query. The Source may also accept the output of
another parametric computed block (i.e., expressed later with
Data). This allows one to select instances of an EClass or an ES-
tructuralFeature from the output of another query. Fig. 8 shows
two examples of TraceDQL Query. The first Query (1), named
query_fid_1, includes a Selection instruction on the Product
EClass from the SMS xDSL metamodel, along with a Condition

instruction. The second Query (2), named query_fid_2, selects
the first value of a specific EStructuralFeature, i.e. id, from the
first query using the Source instruction.

For the sake of conciseness, the corresponding part in the
abstract syntax describing the structure of the Condition is not
shown in a figure, but it is available in the implementation
(Ajabri et al. 2025). The Condition is considered to be a logic
expression. This expression may be a composition of other
expressions with logic operators, or it may be a comparison
between the value of an EStructuralFeature with a number, or
a value of a parameter or the output value of an arithmetic
expression between a set of Block(s) (i.e., expressed later with
Data). The expression may also use primitive operators (such
as EMPTY and NOT_EMPTY) on an EStructuralFeature.

To store and expose the results of the computed queries, the
TraceDQL abstract syntax, in Fig. 9, defines the Data metaclass,
for which the Package has a containment reference. The Data
metaclass is a super type of TransitData metaclass. A Transit-
Data is specifically designed to be invoked within a TraceDQL
Block. If the TransitData defines parameters, their values are
provided by the corresponding parameter values of the calling
block. In Fig. 8, the TransitData named first_ID is invoked
within the construction_capture Block, illustrating this behav-
ior. The Data inherits a name attribute from NamedElement,
and it has two containment references, one to Value metaclass
and the other to Parameter metaclass. In the present paper, we
limit a Value to three types, a string value represented by the
ValueString metaclass, a number value appearing in instances of
ValueNumber metaclass and finally the ValueObject metaclass
that has a value containment reference to an external object
from the Ecore. As explained in Subsection 2.4, this kind of
references allows instances of metaobjects of a given xDSL to
be included. The Block metaclass and the Data, are connected
in a way that the Data may be connected to one Block to store its
return value, or it may be associated to an arithmetic expression
between a set of Block, each has a number as the return value.
More details are provided at this link (Ajabri et al. 2025).

Before defining their operational semantics, we defined a
few rules to ensure that queries are well-formed. The well-
formedness conditions are different for Source, Selection, Con-
dition and Suppression, so we defined four different rules for
them.

Instruction validation rule: Source Instruction example
(isValidSrc). A Source instruction is valid if it is applied to
an EClass that is not null.

If src isInstanceOf Source
src.on isInstanceOf EClass
src.on ̸= null

then
isValidSrc(src) = true

We have defined three other similar rules for the Selection,
Condition and Suppression instructions, which are respectively
isValidSel, isValidCond and isValidSuppr.

Query validation rule (isValidQ). A query made of several
instructions is valid if it is made of one selection instruction (ij),
at most one source instruction (ik), and all the other instructions

6 AJABRI et al.

(Condition/Suppression) are applied to the EStructuralFeature
of the selected EClass. Particularly for the Condition, if this
feature is an EReference, the instruction can also be applied tran-
sitively to the EStructuralFeature of the referenced EClass, and
this process can continue recursively for each subsequent ERef-
erence. The function GETTRANSITIVECOMPONENTS gathers
all these EStructuralFeatures.

If ii∈1···n isInstanceOf Instruction
query = [i1;i2 . . . in]
∃! j ∈ 1 · · · n . ij isInstanceOf Selection
sources = [ik isInstanceOf Source | k ∈ 1 · · · n]
sources.size ≤ 1
comp = GETTRANSITIVECOMPONENTS(ij.on)
∀k ∈ 1 · · · n | k ̸= j ∧ ik /∈sources
=⇒ EStructuralFeature of ik ∈ comp

then
isValidQ(query) = true

Block validation rule (isValidB). A block made of several
queries is valid only if the queries do not have the same name,
and they do not have the same previous query.

If qi∈1···n isInstanceOf Query
block = [q1;q2 . . . qn]
∀i, j ∈ 1 · · · n.i ̸= j =⇒ qi.name ̸= qj.name
∀i, j ∈ 1 · · · n.i ̸= j =⇒ qi.previous ̸= qj.previous

then
isValidB(block) = true

4.2. TraceDQL operational semantics
The TraceDQL operational semantics allows the computation of
TraceDQL queries over the execution trace. We use Kermeta38

to implement the TraceDQL operational semantics. We exploit
the OCL as a query language, and we transform the TraceDQL
queries into OCL queries. In MDE, OCL is a standard query lan-
guage widely utilized in both academic and industrial projects.
OCL is well supported and considered a basis for a family of
languages (EOL9, QVT10 and ATL)(Akehurst et al. 2005) and
GEMOC Studio environment.

Instruction OCL building rule (buildOCL). An OCL ex-
pression associated with a given Instruction is built only if this
instruction is valid. The function TRANSLATEOCL performs
this building, and it takes the Instruction as an argument. Ac-
cordingly, the resulting expression is an OCL expression that,
in the case of the Source/Selection instruction, will return the
instances of the Source/Selection EClass or the value of the Se-
lection EStructuralFeature when applied to an execution trace.
In other cases, the resulting OCL expression will filter/remove
instances of the Selection EClass based on the value of its ES-
tructuralFeature.

If ins isInstanceOf Instruction
isValidI(ins)
exprOCL = TRANSLATEOCL(ins)

then
buildOCL(ins) = exprOCL

8 https://diverse-project.github.io/k3/
9 https://eclipse.dev/epsilon/doc/eol/

10 https://www.omg.org/spec/QVT/1.3/About-QVT

Query OCL building rule (buildOCL). An OCL query asso-
ciated with a given TraceDQL Query is built only if this Query
is valid. The buildOCL function is applied to the TraceDQL
Query instructions to return their corresponding OCL expres-
sions. Then, the resulting OCL expressions are concatenated to
obtain the OCL query.

If ii∈1···n isInstanceOf Instruction
query = [i1;i2 . . . in]
isValidQ(query)
exprOCLi∈1···n= buildOCL(ii)
queryOCL= [exprOCL1;exprOCL2 . . . exprOCLn]

then
buildOCL(query) = queryOCL

Block OCL building rule (buildOCL). In order to build
the OCL query associated with a given TraceDQL Block, the
buildOCL function is applied to the TraceDQL Querys within
this block to return their corresponding OCL queries. Then,
considering the order in which the TraceDQL Querys are linked,
the resulting OCL queries are concatenated to obtain the OCL
query.

If qi∈1···n isInstanceOf Query
block = [q1;q2 . . . qn]
exprOCLi∈1···n= buildOCL(qi)
queryOCL= [exprOCL1;exprOCL2 . . . exprOCLn]

then
buildOCL(block) = queryOCL

Block evaluation rule (evaluateB). A block of queries is
evaluated when it is a valid block, and then it results in the eval-
uation of the OCL query obtained after the block OCL building.
We specify the execution trace, and we use a predefined function
EVALUATEOCL to evaluate the OCL query over this trace.

If qi∈1···n isInstanceOf Query
block = [q1;q2 . . . qn]
isValidB(block)
executionTrace isConformsTo SimpleTrace
queryOCL = buildOCL(block)
obj = EVALUATEOCL(executionTrace, queryOCL)

then
evaluateB(block) = obj

Data evaluation rule (evaluateD). The evaluation of the
data in a collection of blocks results in the evaluation of the
arithmetic expression with the return values of the blocks, using
COMPUTEARITHMETICEXPRESSION function. In case the re-
turn value of one block is not a number, this value is returned if
it was the only block, otherwise the function returns null.

If bi∈1···n isInstanceOf Block
data = [b1;b2 . . . bn]
vi∈1···n = evaluateB(bi)
obj = COMPUTEARITHMETICEXPRESSION(vi∈1···n)

then
evaluateD(data) = obj

4.3. OCL query generation
Any query integrates a trace structure that itself contains the
model state elements. Therefore, the translation of a query

Navigating the trace of executable domain specific languages through a trace domain query language 7

https://diverse-project.github.io/k3/
https://eclipse.dev/epsilon/doc/eol/
https://www.omg.org/spec/QVT/1.3/About-QVT

should preserve this global schema. Our translation into OCL
then consists of (1) a first step to extract the TraceStructure, (2)
a second step to navigate through the ModelState.

Figure 10 A TraceDQL query to return all the instances of
Product existing in the Hammer SMS execution trace (see
Fig. 3).

For example, given the Hammer SMS execution trace illus-
trated in Fig. 3, a TraceDQL query that retrieves Product in-
stances from the trace (see Fig. 10), is translated into a two-part
OCL query. The first part, which navigates over the TraceStruc-
ture, is shown in Listing 1. The second part, which navigates
over the ModelState, is shown in Listing 2. The first part is
concatenated with the second part to form the final OCL query.

1 #OCL query to navigate over the TraceStructure.
2 self.states
3 −>selectByKind(simple :: RuntimeState)
4 .runtimeExtensions
5 −>selectByKind(simple ::

RuntimeExtensionOfStaticElement)
6 .runtimeBindings
7 −>selectByKind(simple :: RuntimeObjectValueBinding)
8 .runtimeValue
9 −>selectByKind(simple :: RuntimeContainmentValue)

10 .runtimeObject

Listing 1 OCL query for navigating the TraceStructure.

1 #OCL query to navigate over the ModelState.
2 −>selectByKind(runtime :: SimulationState)
3 .moduleState
4 −>selectByKind(runtime :: ContainerState)
5 .products
6 −>selectByKind(runtime :: Product)

Listing 2 OCL query for navigating the ModelState.

5. Application
This section illustrates the feasibility of our proposal on an ad-
vanced version of the SMS xDSL and on an Arduino xDSL.
TraceDQL is put to the test in terms of ease of use, expressive-
ness and efficiency. For this purpose, we target some usual
questions that domain experts raised when examining an execu-
tion trace. Among these questions are:

– the duration of a simulation,
– the quantity produced for a given item,
– the absence, occurrences and frequency of some specific

event in their systems.

We manually validate the results of the TraceDQL queries, either
by directly checking the value of the output in the execution
trace or by verifying the generated OCL query.

Figure 11 A TraceDQL query to extract the simulation dura-
tion from the Hammer SMS model.

Figure 12 A TraceDQL query to count the quantity of pro-
duced hammer heads in the execution trace of the Hammer
SMS model.

5.1. Case study 1:TraceDQL to query SMS xDSL models
execution traces

The main scenario is as follows: a domain expert, in order to
study her system, has traces generated during a simulation; she
then recovers and analyses them. Prior to the simulation of the
system model, a language engineer provides the SMS xDSL to
design the model, with the required annotation; the TraceDQL
is available and the related components to manipulate models
and traces are available. She is able then to apply the approach
depicted in Fig. 7. The domain expert defines a new TraceDQL
model, i.e. the Data Library Getter, she imports the Simple-
Trace language and the SMS xDSL, and provides the path to
the execution trace. She may then write different queries to
extract the data from the execution trace, using the terminol-
ogy of the SMS xDSL domain (e.g. SimulationState, Product,
type, etc.). The following are examples of TraceDQL queries
that answer the questions previously invoked in Subsection 2.3.
Note that we selected among the most common questions asked
by experts when simulating production systems. For example,
the queries in Figures 11 and 12 may assist in computing the
throughput KPI for the production system, whereas the query in
Fig. 8 returns a complete state capture of the model, which may
be useful for diagnostic purposes.

– The TraceDQL query of Fig. 11: this query allows
extracting the simulation duration, which corresponds to
the last capture of the time, since the simulation starts at
time 0. Thus, the simulation duration is the currentTime
attribute value of the last SimulationState. This query is
a Single TraceDQL query, where the TraceDQL Block
contains one TraceDQL Query. The return type is a
number.

8 AJABRI et al.

Figure 13 An example illustrating both the concrete and
behavioral representations of an Arduino model with a red
LED plugged on an Arduino Board.

– The TraceDQL query of Fig. 12: this query allows
counting the quantity of hammer heads produced during
the simulation. It selects the SIZE option on Product to
count the quantity of product instances, after filtering
them considering their type, and eliminating duplicates
relying on their id. This query is a Single TraceDQL query,
parametrized with the product type; the requested type in
this case is the Head. The return type is a number.

– The TraceDQL query of Fig. 8: this query (construc-
tion_capture Block) allows retrieving the capture of the
model state when the first hammer was performed. To do
so, another TraceDQL query, named first_ID, is defined to
retrieve the first id of the Products by type. Then, a first
TraceDQL Query (q_pcc_1) filters the Products consider-
ing their id and type. The id must be equal to the return
value of the first_ID of the considered type. The output is
the first product of the specific type. A second TraceDQL
Query (q_pcc_2) selects the first SimulationState that con-
tains the first product retrieved; this SimulationState cor-
responds to the capture when the first product was per-
formed. The query combines two TraceDQL queries. It
is parametrized with the type of product and contains an
internal call to another query (first_ID); the requested type
is the Hammer. The return type is a model state.

5.2. Case study 2: TraceDQL to query Arduino models
execution traces

5.2.1. Arduino xDSL and Arduino model We consider
an Arduino-based application made of an Arduino board, on
which a single red LED is plugged. This LED is plugged to a
Pin named p1. Fig. 13 (a) shows a representation of this model.
The LED exhibits a blinking behavior, depicted in Fig. 13 (b),
where it alternates between two states (i.e., ON and OFF) at
random time intervals. When the value of p1 is set to "0", the
red LED is switched off. Conversely, when p1 is set to "1", the
LED lights up.

Figure 14 Excerpt from the Arduino xDSL metamodel

The domain expert would like to build a model of this Ar-
duino application and simulate it to analyse the desired behavior.
One of the questions he may ask about the behavior of the
model, among others, is the percentage of time the LED was on
or off during the simulation. For this reason, a specific language
is required for building the model of the application. Therefore,
for this second case study, we use the Arduino Designer11 that
was developed and provided as an Arduino xDSL. We apply
TraceDQL querying facilities on this second (Arduino xDSL)
language.

An excerpt from the Arduino xDSL metamodel is shown in
Fig. 14. The full metamodel comprises 59 metaclasses. The
Project metaclass contains a Board metaclass and a set of Sketch
metaclass. The Board is the physical part of the Arduino sys-
tem, it may contain a set of DigitalPin which has a name and
a level attribute representing the signal level; the DigitalPin
may contain a DigitalModule such as a LED. The Sketch is the
logical part of the system, it contains a Block of Instructions.
An instruction may be a ModuleAssignment or a Delay. A Mod-
uleAssignment has a module reference to the DigitalModule and
a value attribute specifying the value to assign to the Pin of the
Module. A Delay specifies a random amount of time to wait.

Before generating the execution trace, we must consider
annotating the runtime state definition of the Arduino xDSL
metamodel. We consider the runtime state definition of the
Arduino xDSL to include the Board that contains the Pins and
the LEDs plugged on them. At each runtime state, the level of
the pin is captured to indicate the state of the LED, the level
value equals "0" meaning the LED is off, the level value equals
"1" meaning the LED is on. We add a currentTime attribute
at the Board to capture the real time in which the LED was
on/off. This updated version of the Arduino xDSL is available
in GitLab repository12, and permanently available via this link
(Ajabri et al. 2025).

5.2.2. TraceDQL and Arduino xDSL Before the domain
expert may apply the overall approach (see Fig. 7), the necessary
prerequisites must be in place: The given xDSL, i.e. the Arduino
language, is available, the Arduino model has been designed

11 https://github.com/mbats/arduino
12 https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/

Language_Workbench/xArduino

Navigating the trace of executable domain specific languages through a trace domain query language 9

https://github.com/mbats/arduino
https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/Language_Workbench/xArduino
https://gitlab.univ-nantes.fr/rodic/evaluationKPIxDSL/-/tree/master/Language_Workbench/xArduino

Figure 15 A TraceDQL query to extract the simulation dura-
tion from an execution trace of an Arduino xDSL model.

and simulated, and the corresponding execution trace has been
generated. In a new Data Library Getter, the domain expert
imports both the SimpleTrace language and the Arduino xDSL,
then she specifies the path to the generated execution trace. The
following are examples of TraceDQL queries that the domain
expert may write to extract data from the execution trace of the
Arduino model (Fig. 13), using the terminology of the Arduino
xDSL domain (e.g. Board, DigitalPin, level, etc.). These two
query examples (Figures 15 and 16) may assist in calculating
the percentage of time the LED was on/off, thereby answering
the previous question (see Subsection 5.2.1).

– The TraceDQL query of Fig. 15: This query is similar to
the one in Fig.11, which retrieves the simulation duration
by selecting the final time capture. The key difference
between them lies in their structure: the query in Fig.11
includes a Source instruction, while this one does not. Both
ways are possible.

– The TraceDQL query of Fig. 16: this query allows extract-
ing a list of captured timestamp when a particular LED was
on/off. This query is a nested parametric TraceDQL query,
where the TraceDQL Block consists of three TraceDQL
Query: (1) The first applies a filter on the LEDs, which
considers the name and level of the related DigitalPin. (2)
The second considers the Board captures that satisfy the
filter of the first TraceDQL Query, i.e., the Board captures
which contain the particular LED on/off. (3) The third
query selects the currentTimes from the output of the sec-
ond. The return type is a List. This helps to compute the
period in which the LED was on/off during the execution.

5.3. TraceDQL and reusability
The reusability aspect of our proposal appears in different ways:

The use of parameters: A parametric query can be reused for
new values of parameters. For example, considering the SMS
xDSL case study, if the domain expert asks for the produced
products of other types, e.g., the Hammer; we can compute
these data by passing a new value of the typ parameter to the
data of the TraceDQL query of Fig. 12:

Data PP (typ:"Hammer") = produced_products;

The reuse of queries: A TraceDQL Query may be called
from outside the TraceDQL Block in another TraceDQL Block.
For example, considering the Arduino xDSL case study, we may
define a new TraceDQL query that reuses the query query_2 of
the TraceDQL query in Fig. 16, as follows:

Figure 16 A TraceDQL query to get the list of captured
timestamp when the LED was on/off from an execution trace
of an Arduino xDSL model.

Block timestampList_version_2(id,lev){
query query_times{

FROM QUERY timestampList.query_2,
SELECT ON currentTime

}
}

The reuse of the outputs: The output of a query can be
reused in another query as an input, depending on its type.
For example, we consider a data that retrieves the quantity of
hammer produced before a specific timestamp (e.g., 13 units
of time). To compute this data, we first retrieve a subtrace
corresponding to the model states recorded before that particular
timestamp. This is achieved by using the following TraceDQL
query:

Block subtrace(timestamp){
query query_subtrace{

SELECT SimulationState,
WHERE (currentTime) LESS_THAN (value timestamp)

}
}

Thereafter, we may update the TraceDQL query of Fig. 12 to
compute the quantity of hammer produced products, relying on
the output of the obtained subtrace.

Block produced_products(timestamp, typ){
query query_pp{

FROM DATA subtrace[timestamp],
SELECT SIZE Product,
WHERE (type.name) EQUAL (value typ),
REMOVE REDUNDANCY BY id

}
}
TransitData subtrace () = subtrace;
Data PP(timestamp:"13",typ:"Hammer")=produced_products;

6. Discussion and Assessment
In this section, we give an initial assessment of the results, and
we examine the advantages and disadvantages of our proposal.

10 AJABRI et al.

6.1. Assessment
Our proposal aimed to answer two research questions. RQ#1
is about the genericity of a trace query language. We designed
TraceDQL as a language that uses a domain xDSL as a parame-
ter. Therefore, domain experts can use TraceDQL with various
trace models. However, in this paper, we illustrate its applicabil-
ity only with two xDSLs, the SMS xDSL and the Arduino xDSL;
the experiments were conducted with the EMF framework and
the Ecore metamodel; TraceDQL was succesfully used to han-
dle traces from the model xDSL used as a parameter; which
showcases the potential of our generic approach. Nevertheless,
further experiments have to be done with a broader range of
xDSLs and possibly with other implementation frameworks.

The second research question (RQ#2) targets TraceDQL
querying facilities, which aims to evaluate the query structure
and the reusability feature. We illustrated the use of TraceDQL
through the SMS xDSL and Arduino xDSL case studies, which
showcase the use of different application domains. We have
also highlighted the reusability aspect of the TraceDQL queries
in different ways. However, right now we have examined a
limited set of data that may be extracted from the execution
trace. We have considered covering different data types in the
trace model, but this could lead to an extension of TraceDQL.
We are postponing the compromise solution because we want
to keep the syntax of TraceDQL easy to use.

Expressivity The first case studies show that we are able
to express with TraceDQL, the usual queries of domain ex-
perts without difficulties. The use of TraceDQL to navigate
through the model execution traces was also easily tractable.
The TraceDQL is translated into OCL to be executed over the
execution trace, but it does not replace OCL, it rather comple-
ments it. TraceDQL is inspired by OCL query language and
Structured Query Language (SQL), offering an intuitive syntax
that incorporates OCL and SQL keywords, along with other
self-explanatory terms, a syntax that uses domain terminology
and close to natural language. The TraceDQL focuses on the
navigation in traces (mainly by abstracting the trace structure,
and providing operators to analyse and navigate through several
runtime states over time). Once TraceDQL has been used, it
is still possible to apply OCL to the returned model for further
analysis.

Description of TraceDQL execution times We have con-
ducted first experiments on the evaluation of TraceDQL queries,
focusing on their execution times considering various scalability
metrics:

– Trace Size (in MB): it is the size of the execution trace in
megabytes (MB).

– Model State Capture: it represents the number of model
states recorded in the execution trace.

– Number of Object: it shows the number of objects gathered
in the execution trace.

Table 1 presents preliminary results. These experiments were
conducted using the SMS xDSL as the given xDSL. The execu-
tion traces were produced from an SMS xDSL model containing

30 objects. In each model state capture, 12 objects are consis-
tently present, while other objects, i.e. instances of Product and
Task, may dynamically appear or disappear between captures.
We consider two execution traces:

– An execution trace, with a trace size of 3.316MB, captures
500 model states and contains 20,350 objects.

– An execution trace, with a trace size of 33.820MB, captures
5,000 model states and contains 133,975 objects.

To compute the number of objects that are dynamically present
or absent in each execution trace, i.e., instances of Product and
Task, we have used two TraceDQL queries illustrated in Fig. 17.

Different execution times are evaluated:

– tload represents the time required to load the trace;
– ttrans f orm refers to the time needed to transform the

TraceDQL query into an OCL query;
– texec is the time taken to execute the OCL query on the

trace.
– Finally, ttotal denotes the overall time, it is the sum of the

three previous execution times.

These time measurements are valuable for explaining the
overall execution time of a TraceDQL query. They help to
identify which part of the process is most time-consuming, and
therefore where optimization efforts should be focused.

Three main types of TraceDQL queries are observed:

– Single, which refers to a TraceDQL Block containing a
single TraceDQL Query ;

– Nested, where a TraceDQL Block contains multiple
TraceDQL Querys (in this study, we evaluate a TraceDQL
Block with four TraceDQL Querys); and

– Combined, where a TraceDQL Block (referred to as Q2) in-
cludes an internal call to another TraceDQL Block (referred
to as Q1).

For the Single type, we evaluate three variations of TraceDQL
queries: one containing only a Selection instruction (referred to
as S); another containing both Selection and Condition instruc-
tions (referred to as SC); and a third containing Selection and
Suppression instructions (referred to as SR). For the remaining
types, the TraceDQL queries include Selection and/or Condition
instructions.

Figure 17 TraceDQL queries to compute numbers of prod-
ucts and tasks in an SMS model execution trace.

Navigating the trace of executable domain specific languages through a trace domain query language 11

Analysis of TraceDQL execution times Most query types
demonstrate good scalability with different trace sizes. For
example, the Nested type performs efficiently, with execution
times remaining under one second, even if it comprises four
TraceDQL Queries. The Combined type shows similar perfor-
mance. The only TraceDQL Query that exhibits a performance
limitation as trace size increases is the one containing the Sup-
pression instruction. For the larger trace (5,000 model state
captures), execution time texec reaches 446 seconds, which is
consistent with the O(n²) complexity of the Suppression instruc-
tion. Consequently, future work should focus on optimizing
such TraceDQL instructions.

6.2. Discussion
It would be possible to use the Object Constraint Language
(OCL)13 queries directly on the execution trace without resort-
ing to TraceDQL queries. The problem remains in the com-
plexity of the OCL queries for the domain expert with poor
programming skills. Besides, the TraceDQL suggests instruc-
tions that embed logics and shorten a long OCL query.

For example, considering the execution trace of the Hammer
SMS model (see Fig. 3). An example of data to extract from
this execution trace is the quantity of hammer heads generated
during the simulation (see algorithm in Fig. 6). However, the
same hammer head is captured several times (see Fig. 1). Each
capture is a new instance. Therefore, to remove duplicates and
keep only one instance for each hammer head when counting
their quantity, a simple asSet() OCL operation is not sufficient.
One way to remove this redundancy, using OCL, may be found
in Listing 3. In this example, the variable c represents the OCL
query that retrieves Product instances from the execution trace.
Its two parts are illustrated in Listings 1 and 2.

1 #OCL query to remove redundancy of products by id
2 c−>iterate(p;product:Sequence(runtime :: Product)=c
3 | let idList:Sequence(Integer) = product
4 −>iterate(pr;acc:Sequence(Integer)=Sequence {}
5 | acc −>including(pr.id))
6 in if(idList −>count(p.id) >1)
7 then product −>excluding(p)
8 else product
9 endif)

10 −>size()

Listing 3 OCL query to remove redundancy of instances of
Product relying on the value of the id attribute.

Two OCL queries are identified to extract the required data: (1)
the OCL query c to select Product instances (Listings 1 and 2),
and (2) the OCL query to remove redundancy (Listing 3). The
OCL query c implements the two parts (1 and 2) of the algo-
rithm in Fig. 6, whereas the OCL query to remove redundancy
implements the rest of the algorithm (part 3) dedicated to ex-
clude the products duplicated by their id when counting. The
OCL query to remove redundancy is complex and it becomes
larger as much as the OCL query c becomes larger. There-
fore, the domain expert may use two TraceDQL instructions,
using the domain terms, instead of the two OCL queries: (1)
SELECT SIZE Product, (2) REMOVE REDUNDANCY BY id. Note

13 https://www.omg.org/spec/OCL/

that these two TraceDQL instructions with their options are
internally transformed into OCL queries in Listings 1, 2 and 3.

Furthermore, asking the domain experts to directly write
OCL queries to query the execution trace forces them to under-
stand the trace structure. In addition, this method does not offer
any reusability aspect, each time the domain experts have a new
request for data, they will have to rewrite either a portion or the
entire OCL query.

Scalability The scalability aspect has been a major concern
when dealing with trace generation (Freitag et al. 2002). The
efficiency of trace generation impacts the scalability of the
approaches. In this work, we do not deal directly with the gener-
ation of the execution trace, we reuse existing components, on
which our scalability depends. In the same way, we inherit from
the scalability and performance of OCL querying tasks for large
execution traces. This has been discussed (Chimiak_Opoka
et al. 2008), and some solutions have been provided (Kolovos
et al. 2013; Daniel 2016). But, the frameworks that we have
chosen for the implementation of TraceDQL, either the EMF
framework or the OCL framework, are all frameworks that are
widely used and well-researched with very active communities.
This is important to tackle scalability aspect in future work.

7. Related Work
There have been a considerable amount of research that was
considering extracting important data from an execution trace.
A prominent work in this field was the proposal of Goldsmith
et al. (Goldsmith et al. 2005); they have suggested a query lan-
guage Program Trace Query Language (PTQL), that exempts
the developer from manually instrumenting the program to un-
derstand program behavior. The PTQL allows the developer
to write expressive and declarative queries to answer her/his
question about the program. The article suggests a compiler
that instruments the program automatically and dynamically to
generate a "runtime trace" based on what the query required.
The PTQL queries are supported by a data model based on the
structures of a program: class, method, and parameters etc. As
a result, PTQL queries are restricted to this program structrure.
It is not the case for TraceDQL, where the queries are struc-
tured with a specific domain terminology which is related to
the parameter used for TraceDQL. PTQL helps developers to
better understand the structure and behaviour of their program.
However, it has a sophisticated syntax, and therefore unlike
TraceDQL, it requires significant programming skills.

In their work, Dou et al. (DOU et al. 2014) proposed to
query an offline trace considering a model-driven approach with
OCL. The article presents TemPsy, a language for the specifi-
cation of temporal requirements of business processes. Here,
it is an offline process based on execution traces. These traces
conform to a conceptual model and capture events that occur
during the considered business process. They implement a trace
checking procedure where the temporal requirements written in
TemPsy are mapped into OCL constraints on execution traces;
the latter are then evaluated with an OCL cheker. Mainly, re-
garding trace checking, compared to TraceDQL which has a
state-based trace model, the trace checking approach of TemPsy

12 AJABRI et al.

https://www.omg.org/spec/OCL/

Trace Size (in MB) Model State Capture Number of Objects Single Nested Combined
S SC SR (4 queries) Q1 Q2

3.316 500 20350

tload < 1s < 1s < 1s < 1s < 1s
ttrans f orm < 1s < 1s < 1s < 1s < 1s < 1s
texec < 1s < 1s 179s < 1s < 1s < 1s
ttotal < 1s < 1s 179s < 1s < 1s

33.820 5000 133975

tload 1s 1s 2s 1s 1s
ttrans f orm < 1s < 1s < 1s < 1s < 1s < 1s
texec < 1s <1s 446s < 1s < 1s <1s
ttotal 1s 1s 450s 1s < 1s

Table 1 Execution times (in seconds) for different types of TraceDQL queries on two trace sizes.

is event-based and requires less works as it relies on OCL cheker.
However TraceDQL offers more trace navigation facilities. In-
deed, TraceDQL queries navigate through traces that include
states filled with data, in order to offer greater freedom of inter-
rogation to domain experts. TraceDQL may be used to check
trace properties as TempPsy, but can also be extended to com-
pute performance indicators (KPI), for diagnostics, etc. This
possibility of using TraceDQL in multiple contexts is supported
also by its parametric aspect.

In the literature, there are languages designed to query spe-
cific models rather than traces. For instance, Kling et al. (Kling
et al. 2012) suggested a textual domain-specific language Mo-
Script, for querying mega-models. It allows writing and execut-
ing queries on model repositories to retrieve model, information,
and to manipulate them, and if necessary generated results and
store them in the repository. MoScript uses the OCL query lan-
guage by extending its abstract syntax. The syntax of MoScript
is an OCL syntax and its queries are applied to the mega-model
domain-specific language, hence such language cannot be ma-
nipulated with modest programming skills. Another example
is the one introduced in (Deutsch et al. 1999). This article
proposes a query language for eXtensible Markup Language
(XML) specific language, named XML-QL. The syntax of this
language combines query operators with XML fragments. The
language consists of two parts, one for querying and retrieving
the results and the other for storing the result in a new XML file.
Although the XML-QL queries allow the use of XML-related
elements with XML syntax, writing these queries is not a sim-
ple undertaking and requires a good understanding not only of
XML-QL but also of XML. This language is devoted to XML
and cannot be used in another language context.

Other research has mentioned querying the trace as an auxil-
iary work of their main work, which was based on constructing
the trace. Andjelkovic et Artho (Andjelkovic & Artho 2011)
had built a trace of the program execution; their approach sug-
gest to store the trace information in an existing database (e.g.,
neo4j database) and the query part was delegated to the query
mechanism of the database. Montplaisir et al. (Montplaisir et al.
2013) work was devoted more to trace the behavior of a system
based on its states not the occurred events. But states and their
history are constructed from the traces of events, made up of
various changes, previously stored. The part of the article that
discusses querying the trace is rather poor. The authors have
explained how to query data from the trace in both tracing mode,
online and offline, and mentioned that the procedure requires

the timestamp and the key of the data (i.e., the key is computed
using the multilevel hash-map mechanism) since the trace has
been organized in a tree structure. Therefore, their approach
cannot provide a query capability when the required data is the
timestamp where specific conditions are met. The TraceDQL
querying facilities allows extracting such data which are rele-
vant in many cases, from the execution trace; an example may
be found in Fig. 16.

8. Conclusion and Future Work

This paper examines how domain experts can extract relevant
data from an execution trace to fulfill many purposes. For that
reason, we have studied the parametric aspect and the structure
of an execution trace, and we have introduced an approach that
assists the domain experts to write queries with an expressive
syntax close to the natural language, which incorporates OCL
and SQL keywords, along with self-explanatory terms. The
approach provides the parametric language TraceDQL with tex-
tual facilities and operational semantics to ensure that domain
experts may write queries using the domain terminology and
without the need to manage the entire structure of the execution
trace, which may include elements not related to their specific
domain. Our proposal allows querying an execution trace for
which the executed model conform to a given xDSL. We illus-
trate the feasibility of the proposal with two cases: the SMS
xDSL and the Arduino xDSL.

In the present article, we have limited our research to the
execution trace generated by the SimpleTrace framework. We
are also considering the use of TraceDQL to extract data needed
for on-demand KPI computation. The idea here is an automatic
generation and execution of TraceDQL queries to provide spe-
cific data for the KPI computation process. Among the future
work, we plan to investigate a way to generalize our approach
and TraceDQL operational semantics to consider any given
trace language provided that it met given criteria, such as strong
typing, hierarchical relationship between object types, etc. This
will open the possibility to use TraceDQL queries on other
generated execution traces.

Acknowledgments

This work was supported by the French National Research
Agency (ANR)[grant number ANR 21 CE10 0017].

Navigating the trace of executable domain specific languages through a trace domain query language 13

References

Ajabri, H., Mottu, J.-M., Attiogbe, C., & Berruet, P. (2025).
Tracedql tool on zenodo. Retrieved from https://doi.org/
10.5281/zenodo.15183458 (Accessed: 2025-04-11)

Ajabri, H., Mottu, J.-M., & Bousse, E. (2024). Defining
KPIs for Executable DSLs: A Manufacturing System Case
Study. In Proceedings of the 12th International Conference
on Model-Based Software and Systems Engineering. Rome,
Italy: SCITEPRESS - Science and Technology Publications.
doi: 10.5220/0012361000003645

Akehurst, D. H., Howells, G., & McDonald-Maier, K. D. (2005).
Supporting OCL as part of a Family of Languages. In Pro-
ceedings of the MoDELS (Vol. 5).

Alawneh, L., & Hamou-Lhadj, A. (2009). Execution Traces:
A New Domain That Requires the Creation of a Standard
Metamodel. In Advances in Software Engineering (Vol. 59).
Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
978-3-642-10619-4_31

Aljamaan, H., Lethbridge, T. C., Badreddin, O., Guest, G., &
Forward, A. (2014). Specifying trace directives for UML
attributes and state machines. In 2014 2nd International
Conference on Model-Driven Engineering and Software De-
velopment (MODELSWARD).

An, K., Trewyn, A., Gokhale, A., & Sastry, S. (2011).
Model-Driven Performance Analysis of Reconfigurable Con-
veyor Systems Used in Material Handling Applications. In
2011 IEEE/ACM Second International Conference on Cyber-
Physical Systems. doi: 10.1109/ICCPS.2011.12

Andjelkovic, I., & Artho, C. (2011). Trace server: A tool for
storing, querying and analyzing execution traces. In JPF
Workshop 2011.

Bousse, E., Combemale, B., & Baudry, B. (2014). Towards
scalable multidimensional execution traces for xDSMLs. In
11th Workshop on Model Design, Verification and Validation
Integrating Verification and Validation in MDE.

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni,
J., & Combemale, B. (2016). Execution framework of the
GEMOC studio (tool demo). In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language
Engineering. Amsterdam Netherlands: ACM. doi: 10.1145/
2997364.2997384

Chimiak_Opoka, J., Felderer, M., Lenz, C., & Lange, C. (2008).
Querying UML Models using OCL and Prolog: A Perfor-
mance Study. In 2008 IEEE International Conference on
Software Testing Verification and Validation Workshop. doi:
10.1109/ICSTW.2008.33

Cleenewerck, T., & Kurtev, I. (2007). Separation of concerns
in translational semantics for DSLs in model engineering.
In Proceedings of the 2007 ACM symposium on Applied
computing. Seoul Korea: ACM. doi: 10.1145/1244002
.1244218

Combemale, B., Cregut, X., & Pantel, M. (2012). A De-
sign Pattern to Build Executable DSMLs and Associated
V&V Tools. In 2012 19th Asia-Pacific Software En-
gineering Conference. Hong Kong, China: IEEE. doi:
10.1109/APSEC.2012.79

Daniel, G. (2016). Efficient Persistence and Query Techniques
for Very Large Models. In ACM Student Research Competi-
tion (MoDELS’16). Saint-Malo, France.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., & Suciu, D.
(1999). A query language for XML. Computer Networks, 31.
doi: 10.1016/S1389-1286(99)00020-1

DOU, W., BIANCULLI, D., & BRIAND, L. (2014). A Model-
Driven Approach to Offline Trace Checking of Temporal Prop-
erties with OCL (Tech. Rep.). SnT Centre - University of
Luxembourg.

Ezzati-Jivan, N., & Dagenais, M. R. (2012). A Stateful Ap-
proach to Generate Synthetic Events from Kernel Traces.
Advances in Software Engineering, 2012. doi: 10.1155/2012/
140368

Freitag, F., Caubet, J., & Labarta, J. (2002). On the Scalability of
Tracing Mechanisms. In Euro-Par 2002 Parallel Processing
(Vol. 2400). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/3-540-45706-2_10

Goldsmith, S. F., O’Callahan, R., & Aiken, A. (2005). Rela-
tional queries over program traces. ACM SIGPLAN Notices,
40. doi: 10.1145/1103845.1094841

Kaiser, B., Reichle, A., & Verl, A. (2022). Model-based auto-
matic generation of digital twin models for the simulation of
reconfigurable manufacturing systems for timber construc-
tion. Procedia CIRP, 107. doi: 10.1016/j.procir.2022.04.063

Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., & Cabot,
J. (2012). MoScript: A DSL for Querying and Manipulating
Model Repositories. In Software Language Engineering (Vol.
6940). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:
10.1007/978-3-642-28830-2_10

Kolovos, D. S., Wei, R., & Barmpis, K. (2013). An approach
for efficient querying of large relational datasets with ocl-
based languages. In XM 2013–Extreme Modeling Workshop.
Citeseer.

Lübke, D., & Van Lessen, T. (2017). BPMN-Based Model-
Driven Testing of Service-Based Processes. In Enter-
prise, Business-Process and Information Systems Modeling
(Vol. 287). Cham: Springer International Publishing. doi:
10.1007/978-3-319-59466-8_8

Montplaisir, A., Ezzati-Jivan, N., Wininger, F., & Dagenais, M.
(2013). Efficient Model to Query and Visualize the System
States Extracted from Trace Data. In Runtime Verification
(Vol. 8174). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-40787-1_13

Plotkin, G. D. (2004). The origins of structural operational
semantics. The Journal of Logic and Algebraic Programming,
60-61. doi: 10.1016/j.jlap.2004.03.009

14 AJABRI et al.

https://doi.org/10.5281/zenodo.15183458
https://doi.org/10.5281/zenodo.15183458

About the authors
Hiba Ajabri is a Software Engineer and currently a Ph.D. student
in the NaoMod team at IMT Atlantique, and the Velo team at
Nantes University (France). She is also involved in the RODIC
ANR project that consists of assisting the operator of the in-
dustry in the reconfiguration of production lines. Her current
research targets the performance evaluation using Model-Driven
Engineering, Domain-Specific Languages (DSLs) and Query
languages. You can contact the author at hiba.ajabri@ls2n.fr or
visit https://hiba-coder.github.io.

Jean-Marie Mottu is an Associate Professor in Computer Sci-
ence at Nantes University, where he researches and teaches
software engineering. His research interests include MDE, low-
code engineering, domain-specific languages, software qual-
ity, and test verification, focusing on both functional and non-
functional properties. He is a member of the NaoMod group
within the LS2N research laboratory.You can contact the author
at jean-marie.mottu@ls2n.fr or visit http://pagesperso.ls2n.fr/
~mottu-jm/welcome-en.html.

J. Christian Attiogbe is Professor of Computer Science at Uni-
versity of Nantes (France). He hold a PhD from University
of Toulouse, France in Computer Science (1992). In 1999,
he joined University of Nantes as an associate professor. His
research interests include formal approaches for software mod-
elling and analysis, heterogeneous systems modelling and

correct-by-construction of complex systems using refinement
techniques. He published several peer-reviewed papers on these
topics and co-organised several workshops and conferences
on these topics. He has been involved in several research and
development projects involving PhD students and industrial part-
nerships. He led the Reliable Software Group at the laboratory
of Digital Sciences of Nantes (LS2N) from 2007 to 2022.You
can contact the author at christian.attiogbe@univ-nantes.fr.

Pascal Berreut is full Professor at Université Bretagne-Sud
(University of South Brittany, France). From 2012 to 2016, he
served as Vice President for Social and Economic Affairs at Uni-
versite Bretagne-Sud. His research focuses on supervision and
automatic control generation for reconfigurable discrete event
systems as part of a Human System Cooperation team, with a
particular interest in modelling, simulation, piloting and indus-
trial security. Through these activities, he contributes in col-
laborative and innovative projects for Energy Efficiency, Smart
Home Automation, Ambient assisted living, Reconfigurable
Manufacturing and industrial Systems in the context of Industry
5.0. He is also involved in transfer platforms and valorization
projects. You can contact the author at Pascal.Berruet@univ-
ubs.fr.

Navigating the trace of executable domain specific languages through a trace domain query language 15

mailto:hiba.ajabri@ls2n.fr?subject=Your paper "Navigating the trace of executable domain specific languages through a trace domain query language"
https://hiba-coder.github.io
mailto:jean-marie.mottu@ls2n.fr?subject=Your paper "Navigating the trace of executable domain specific languages through a trace domain query language"
http://pagesperso.ls2n.fr/~mottu-jm/welcome-en.html
http://pagesperso.ls2n.fr/~mottu-jm/welcome-en.html
mailto:christian.attiogbe@univ-nantes.fr?subject=Your paper "Navigating the trace of executable domain specific languages through a trace domain query language"
mailto:Pascal.Berruet@univ-ubs.fr?subject=Your paper "Navigating the trace of executable domain specific languages through a trace domain query language"
mailto:Pascal.Berruet@univ-ubs.fr?subject=Your paper "Navigating the trace of executable domain specific languages through a trace domain query language"

