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ABSTRACT Over the last few years, digital twins (DTs) have attracted increasing attention and uptake in both industry and
academia. While several definitions exist for a DT, most of these focus on an exact virtual replica (often called the virtual
entity (VE)) of a real-world object or process, which typically consists of several executable models interacting with each other.
Furthermore, due to the connection and synchronization with their real-world physical counterpart, DTs evolve continuously
across their lifecycle. Often, however, details of construction and internal structure of DTs are left un- or underspecified. Over
time, both these factors (un(der)specification and real-time changes due to synchronization) might lead to misuse, undesirable
behavior, or runtime issues, like errors, and performance problems. This hinders the (re)use of DTs and/or its components
for the intended purpose or any other future purposes. In this paper, we propose a new approach that helps to overcome the
above sketched issues. We do so, in a case-driven way, by addressing a DT of an autonomously driving truck, developed by
several researchers over a longer period of time, and with input of several MSc and PhD students. As it turns out, this DT lacks
overall complete documentation. We demonstrate how logging can be used to learn the actual runtime behavior of a DT and
show how this behavior can differ from its intended behavior at design stage. We explore different passive model learning
techniques, such as state merging and process mining, to automate the process of obtaining behavioral models of the DT. In
addition, we showcase how the learned behavioral model of the DT can be analyzed further to detect underlying causes of
perceived runtime issues in DTs.
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1. Introduction
Recent advances in digital technology, such as cloud computing,
big data, Internet of Things, combined with the oncoming of
artificial intelligence have greatly impacted different sectors in
industry. One such technology that has garnered widespread at-
tention in recent times in both industry and academia are digital
twins (DTs). DTs have been used for a wide range of applica-
tions, ranging from control, monitoring, predictive maintenance,
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optimization, to training, validation and others. Since DT is
a new concept, there are a range of definitions provided to it,
such as a consistent virtual representation of the physical coun-
terpart (Zhuang et al. 2018), models of a physical entity that
are interconnected to effect data exchange (Singh et al. 2021),
integration of models representing the behavior of a real-world
entity (Shafto et al. 2010), a digital replica of a physical entity
(El Saddik 2018) to name just a few. Most of these defini-
tions focus on having a high-fidelity virtual representation of
the real-world entity (which is of interest) and a continuous
synchronization of data between them. The DT undergoes con-
tinuous changes throughout its lifecycle due to this continuous
synchronization with its real-world counterpart. This contin-
uous evolution requires a technique that enables continuous
verification of the DT.
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Alongside its need for continuous verification, the lack of
documentation for DTs is a growing concern. Lack of docu-
mentation affects the use of the DT for its intended purpose or
reusing it for other purposes and leads to additional effort (Reim
et al. 2023). Moreover, a lack of documentation can result in a
lack of interoperability of components within a DT. Given that
DTs are evolving systems, the absence of proper documenta-
tion introduces additional complexity in determining whether
the observed behavior is an intended design decision, a conse-
quence of continuous evolution, or other factors. Furthermore,
it leads to reduced knowledge and a lack of clarity in under-
standing, which in turn leads to resource wastage. Moreover,
considering the fact that DT development is a multi-domain
endeavor, sufficient and effective documentation could help mit-
igate the loss of knowledge due to personnel changes within
an organization (Muctadir et al. 2024). On the other hand, it
is imperative to understand the structure and behavior of a DT
since it provides possibilities for improvements, modifications,
and updating of the DT and its components for other purposes.
Moreover, knowledge of the structure and behavior of a DT
provides possibilities for reusing a DT in its entirety or partially,
for other applications. For observed issues in a DT, it provides
possibilities to detect inconsistencies within its components or
in the interactions between them. Moreover, at runtime, the
interactions between the different components in a DT could
be stochastic and time-critical which may lead to undesirable
behavior, which needs to be detected. Logging that captures
the dynamic aspects of a system can help with detecting the
structure and runtime behavior of a DT when documentation
and knowledge are insufficient. Moreover, logging that captures
up-to-date measurements of runtime interactions enables contin-
uous verification of DTs. As far as we know, there is currently
no literature discussing how to deal with DTs that do not have
proper documentation, nor literature that specifically addresses
how to determine structure and runtime behavior (including
runtime issues) for a DT that lacks documentation. In this pa-
per, we discuss an exemplary DT (of an autonomously driving
truck) for which we lack knowledge and documentation. We
propose using logging and passive model learning techniques to
determine run-time behavior and structure and understand the
perceived run-time issues for this DT.

Contribution:
In our previous work (Gunasekaran & Haverkort 2024), we

discussed how we used logging to detect runtime behavior for
the same DT case study, for manual verification through statisti-
cal model checking. In addition to detecting the structure of the
DT, we also cover these parts of detecting runtime behavior and
uncover runtime behavioral patterns here, since it is essential
to understand the importance of logging as a whole. Further-
more, we highlight the necessity of continuous verification of
DTs as they evolve throughout their lifecycle. We explore and
compare several passive model learning techniques to automate
the process of obtaining behavioral models from the logs ob-
tained from DTs; this comprises a first attempt towards (semi-)
automatic verification of DTs. We use the behavioral model
obtained through passive model learning to perform further anal-
ysis to detect cyclic dependencies (which may lead to runtime

inconsistencies) and to perform a root-cause analysis to detect
underlying reasons for such runtime issues.

Structure: The paper is structured as follows. Section 2 pro-
vides background concerning DTs, logging and passive learning,
and discusses existing work using these techniques in the DT
context. Section 3 describes the DT of an autonomously driving
truck in a distribution center, which is used for our case study.
Section 4 covers the detection of structure and runtime behav-
ior of the DT through logging, elucidates the role of logging
in continuous verification of DTs, and compares the observed
and intended behavior of the DT. Section 5 explores different
passive model learning techniques for learning the behavioral
model from the logs generated from the DT and compares the
results. Section 6 discusses the use of the learned models for
root-cause analysis and for detecting cyclic dependencies in a
DT. Section 7 describes several threats related to the performed
case study. Section 8 discusses the lessons learned concerning
logging and passive model learning and the challenges in apply-
ing these techniques in the DT context. Section 9 summarizes
the results presented and the planned future work.

2. Background
In this section, we provide additional details on DTs and the
problems associated with DTs that lack documentation. Next,
we explain how reverse engineering can help uncover the run-
time behavior of a DT that lacks documentation. Finally, we
introduce the tools we use to reverse engineer a DT: logging
and passive model learning.

2.1. Digital Twins
Since the concept of DT was introduced in 2003, DT has been
provided with several definitions as mentioned in Section 1.
Though several definitions exist for a DT, most of these defini-
tions focus on the existence of a virtual entity that comprises
several inter-connected models that interact with each other dur-
ing execution to affect the purpose of the DT. These definitions
also focus on the aspect of bi-directional synchronization of data
between the real-world entity and its virtual entity, which con-
tributes towards the continuous evolution of DTs. Hence, in this
paper, we focus only on these two aspects of DTs. Moreover,
DTs could exist for any real-world entity such as a physical or
non-physical system, device, or process and at times it could
be a non-existent real-world entity at the design stage (Grieves
2014; Tao & Zhang 2017; Muctadir et al. 2024). Some de-
scriptions of DTs focus on DT being a high-fidelity virtual
representation, while others describe that the level of fidelity
depends on the DT’s purpose and application (Muctadir et al.
2024). Though DTs are perceived to be like any other software
system (such as distributed systems and others) which comprise
several interacting components, the continuous evolution of DTs
across their entire lifecycle sets them apart from other software
systems. Currently, there is neither a clearly established nor
a widely accepted standard methodology for the development,
maintenance and operation of DTs. This makes it imperative
to properly document information on the methodology used for
the development of a DT. However, details on the development,
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purpose and knowledge of DTs are often left unspecified and
under- or even undocumented. This lack of documentation is a
widespread issue in the software domain in general (Aghajani
et al. 2020; Manai 2019; Yang et al. 2021). Lack of documen-
tation leads to the diminution of knowledge and eventually the
disappearance of knowledge, which wastes resources (time and
cost) (Manai 2019). Another disadvantage of lack of documen-
tation is that it leads to an unclear understanding of the software
system, which again leads to increased resource usage (Matule-
viçius et al. 2009). Even with DTs, lack of documentation is a
growing concern as mentioned in several works (Muctadir et al.
2024; Reim et al. 2023; Stadtmann et al. 2023; Guinea-Cabrera
& Holgado-Terriza 2024). Lack of documentation in DT af-
fects the use of a DT for its actual purpose and thus, leads to
additional effort expending time and energy (Reim et al. 2023).
Moreover, lack of documentation in DTs can drastically affect
the possibilities of reuse of software artifacts and could lead to
a perceived lack of interoperability of software components in a
DT (Muctadir et al. 2024). Effectively, lack of documentation
in DT affects both its use for the actual purpose and its reuse
for other future purposes. To the best of our knowledge, there is
currently no literature that discusses how to deal with DTs that
lack documentation.

2.2. Reverse Engineering
Reverse engineering has been defined by (Rugaber & Stirewalt
2004; García-Borgoñón et al. 2023) as the process of com-
prehending software systems and producing a model of it at
a higher abstraction level, suitable for comprehension, docu-
mentation, maintenance, or reengineering. The application of
techniques and principles of model-driven engineering (MDE)
for reverse engineering is called Model-Driven Reverse Engi-
neering (MDRE) (Favre 2005; García-Borgoñón et al. 2023;
Rugaber & Stirewalt 2004). The general process of MDRE
comprises two primary steps and they are: 1) Obtaining a view
or a model of the system through analysis of source artifacts,
and; 2) Exploiting the obtained model for a specific goal or
objective, such as model-based verification, reengineering, doc-
umentation and others (García-Borgoñón et al. 2023; Raibulet
et al. 2017). One of the five main characteristics of MDRE ap-
proaches described by Bruneliere et al. (Bruneliere et al. 2014)
is the level of automation that can be applied to completely or
partially automate the reverse engineering process. Driven by
this automation-oriented MDRE approach, we explored exist-
ing techniques for (semi-)automating reverse engineering of
software systems.

Model learning techniques (discussed in detail in Section 2.4)
such as active or passive learning techniques have been used
in several industrial cases for (semi-)automating reverse engi-
neering. For example, active learning (Aslam et al. 2020) and
process mining (Leemans 2018) have been used to reverse engi-
neer legacy software systems in ASML. Process mining has also
been used for automating the discovery of behavioral models
from software execution data (Liu 2018). Though logging and
passive model learning have been used in the context of software
systems, to the best of our knowledge, we are not aware of any
literature that discusses using these techniques for automating

reverse engineering of DTs.
Considering the above, this paper presents a first attempt to

automate reverse engineering of DTs in this paper. We use the
DT of an autonomously driving truck in a distribution center
that lacks documentation as our main case study. To understand
the behavior and functioning of such a DT, it is imperative to
study the system when it is "on the run". We apply logging
and passive model learning for reverse engineering the structure
and runtime behavior of the DT; (semi-)automate the process
of obtaining behavioral models which can be used for model-
based verification and further behavioral analysis. We define the
runtime behavior of a DT as the emergent behavior arising from
the compositional effect of interactions between the different
components constituting the DT (Gunasekaran & Haverkort
2024). Though the behavior within an individual component
in a DT could also be construed as runtime behavior, as long
as this behavior within a component does not contribute to the
overall observable emergent behavior of the DT, then we do not
focus on this aspect of runtime behavior.

2.3. Logging
Logging is a technique of recording events and activities during
the execution of a (software) system, which helps in understand-
ing the runtime behavior of the system. Logging has been used
for pattern extraction, behavior analysis, root-cause analysis,
diagnosis, anomaly detection, and verification and improvement
of software systems (Yang et al. 2021; Batoun et al. 2024).
Moreover, in the context of DTs, several works, such as Bano et
al. (Bano et al. 2022), Lugaresi et al. (Lugaresi & Matta 2021)
and Park et al. (Park & Van Der Aalst 2021), propose to use
event logs of the real-world system or process to generate a
DT. However, to the best of our knowledge, no work discusses
logging in existing DTs and the use of derived logs for further
behavioral analysis of the DT. In Section 4, we discuss how we
used logging to uncover the runtime behavior of DTs and its
importance in facilitating continuous verification of DTs as they
keep evolving across their entire lifecycle.

2.4. Passive Model Learning
Model learning infers formal models of systems and can be
categorized into two main types: active and passive learning.
In active learning, the model is learned by interacting with the
system using a query-response mechanism (Steffen et al. 2011;
Vaandrager 2017). On the other hand, passive learning pro-
cesses and analyses the execution logs to learn the behavior
of the system (Aslam 2021). There are several passive learn-
ing techniques including state merging algorithms, SAT-based
approaches (Hammerschmidt 2017), process mining, etc.

Initially, passive learning was used to learn a language from
a set of positive and negative examples (Gold 1967). In recent
years, this technique has been used to infer state machines
representing real-world systems from execution logs (Yang et
al. 2019; Biermann & Feldman 1972; Van der Werf et al. 2008;
Walkinshaw et al. 2016; Daniele et al. 2024). Several tools
support passive learning algorithms such as AALpy (Muškardin
et al. 2022), FlexFringe (Verwer & Hammerschmidt 2017),
Jajapy (Reynouard et al. 2023), ProM (H. Verbeek et al. 2010),

Behavioral Analysis of a Digital Twin using Logging and Model Learning 3



Disco (Günther & Rozinat 2012) and others.
State merging algorithms build a prefix tree from the ex-

ecution logs and iteratively merge states in the tree until no
additional consistent merges are available. The merging pro-
cedure folds the logs into a more succinct representation of
the behavior of the system. State merging algorithms vary in
their definition of a ‘consistent merge’. For example, the RPNI
algorithm (Oncina et al. 1992) can merge almost every pair of
states if the logs are sparse. Later algorithms, like EDSM (Lang
1998), prioritize merging states with high evidence. Initially,
state merging algorithms were used to learn Deterministic Fi-
nite Automata (DFA) (Gold 1967). Recently, the scope of
learnable models has broadened. For instance, Mealy machines,
Markov chains and labeled Markov decision processes can now
be learned (Carrasco & Oncina 1994; Mao et al. 2012). The
automata learning library AALpy (Muškardin et al. 2022) im-
plements several state merging algorithms to learn various types
of state machines from logs.

Process mining is another passive learning technique that
extracts knowledge based on the observed actual behavior of a
system or process, which is recorded in event log data. Event
logs form the starting point for process mining. There are three
important techniques of process mining which include process
discovery, conformance checking, and enhancement. Process
discovery is a mining technique of automatically constructing
models based on observed event log data. The constructed
model helps in understanding the behavior of the system/process
which is captured in the raw event logs. Moreover, this model
could also be useful for conducting further analyses such as
timing analysis, resource performance analysis and others.

Processes discovered through process mining can be repre-
sented in a variety of process models, e.g., Petri nets, Statecharts,
UML activity diagrams, YAWL, EPCs, cf. (W. Van Der Aalst
2012; W. M. Van Der Aalst & Dustdar 2012; Leemans 2018). In
Section 5, we discuss the usage of passive learning for learning
behavioral models from DT execution logs.

3. A DT Case Study
We use a DT of an autonomously driving truck in a distribution
center (see Figures 1 and 2) as our driving case study. This
DT was developed at TU Eindhoven1 over the past several
years, by a large group of PhD and MSc students, to test the
autonomous driving and docking in a distribution center with
several obstacles.

This DT is a highly modified version of the DT developed
by Barosan et al. (Barosan et al. 2020). As mentioned before,
there is no complete or structured documentation on this DT,
hence, only limited information is available for our analysis.
Below, the initially known details about this DT are discussed.
The following sections cover additional information uncovered
about this DT and the methods used for discovery.

The complete description of this DT case study after discov-
ery including its structure and behavior can be found in our
previous work (Gunasekaran & Haverkort 2024). The DT of

1 See https://www.tue.nl/en/research/research-labs/the-automotive-technology
-at-lab/facilities/conference-table.

Figure 1 Autonomously driving truck in a truck distribution
center - Real-world Entity (Barosan et al. 2020)

Figure 2 Digital twin of an autonomously driving truck in a
truck distribution center - Virtual Entity (Barosan et al. 2020)

the autonomously driving truck has three main components as
described:

– Controller model: The controller model in Simulink con-
trols the motion of the truck in the simulation environ-
ment. This is achieved through a control feedback loop
with tuned proportional gains to ensure optimal controller
performance.

– Path planner model: To navigate the truck from point
A to point B, a path must be planned from the starting
position to the desired destination dock, while avoiding
obstacles. The path planner model in Simulink determines
the route the truck needs to follow.

– 3D simulation model: The 3D simulation model in Unity
Game Engine is a virtual simulation environment of the
autonomously driving truck in a distribution center filled
with static obstacles such as a pedestrian, walls and others.

– Python Server: A Python server was used for the commu-
nication between components in the DT. It is the only com-
ponent through which the user interacts with the DT. The
user provides two inputs for the DT execution, namely, the
Loading Dock (destination information) and Kill Switch (a
boolean value) which controls the initiation of autonomous
driving.

All communication within the DT happens through the con-
nectionless User Datagram Protocol (UDP). While the commu-
nication protocol is known, there was no information on how
these components were interconnected with each other (which
component interacts with which other component in the DT or
which components do not interact with each other) and how
they interact with each other to achieve a coordinated overall
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system simulation (whether it is with the use of an orchestrator
or whether it is following any schedule or others).

4. Applying Logging in DTs
In this section, we first determine the internal structure of the
DT and describe how we generate the event logs. Then, we
describe how we determined behavioral patterns and compare
the observed behavior with the intended behavior. Finally, we
elucidate how logging enables continuous verification of DTs
as they evolve across their entire lifecycle.

4.1. Determining the DT Structure
With limited information on the DT at hand, the first step was
to determine the structure of the DT, i.e., which components
are present and how are they connected. As mentioned in Sec-
tion 3, UDP was the protocol used for the interaction between
the components within the DT. While investigating the UDP
communication in the Simulink models, we found that masking
function blocks were used for UDP communication, using C
programs. Similarly, the Unity model was developed in C# and
among the 12,541 project files in Unity, we found a couple of
C# programs responsible for handling the UDP communication
in the Unity model. From matching the UDP port numbers,
and the incoming and outgoing variables in the seven program
files (C, C# and Python programs) in these models, we could
establish the internal structure of the DT. Figure 3 shows the
discovered internal structure of the DT, the interactions between
the components and the data variables exchanged between these
components. The interactions within the DT have been depicted
through letters [A-H] listed in Figure 3, we use these letters to
refer to the interactions in the remainder of the paper.

Figure 3 Internal structure of the DT (Gunasekaran &
Haverkort 2024)

4.2. Generating Event Logs
As discussed in Section 2.3, event logs help in behavior analysis
and pattern extraction, aiding in the comprehension of DT run-
time behavior. To be consistent with our definition of runtime
behavior as described in Section 2.2, we log the interactions
between the components in our DT.

For generating logs in software, Leemans (Leemans 2018)
discusses four techniques: external monitoring, tracing, log
files provided by existing systems, and instrumentation (such
as software profilers). While exploring the modeling tools that

are part of this DT, we found that Simulink provides options for
profiling. However, these profiling options focus more on the
timing aspects of the individual components (such as Simulink
blocks) rather than the inter-model communication. Since the
UDP interactions between the three models have been config-
ured through programs in C, C# and Python, this provided a
feasible option to log these interactions by instrumenting these
programs with logging commands. The logged interactions
were directly written into a text file. The specific attributes that
were logged include the direction of communication (whether
it is an input or output for that specific tool), timestamp of
that event (interaction) in microsecond precision and variables
exchanged during the interaction. To prevent the generation
of multiple logs for the same interaction in different locations,
logs were meticulously planned to be generated only at two
components that do not directly interact with each other, the
Unity and Python components. The log files were exported
into spreadsheet calculation software, where they were merged
based on the timestamps (Gunasekaran & Haverkort 2024) and
finally converted into CSV format with UTF-8 encoding.

4.3. Behavioral Pattern Detection
The expected behavior in the execution of a DT, would be a
non-erratic and seamless interaction between the components
in the DT. This coordinated interaction could be based on a
schedule (time) or event or a combination of both. However,
when analyzing the pattern of occurrence of interactions from
the event logs, we detected a non-fixed, repetitive and atypical
behavior in the interactions between Unity and Simulink. This
interaction behavior was in the form of an on/off pattern and
occurred only in the interactions between the two Simulink mod-
els and the Unity model. During the on-state, the Unity model
communicates with the Simulink controller model for a certain
period of time. During this period of communication, there is
absolutely no interaction happening between the Simulink path
planner model and Unity model. This behavior continues for a
non-fixed period of time or a varying number of iterations. After
a while, there is a switch in the interaction and the DT goes into
the off-state and the Unity model starts communicating with
the Simulink path planner model. Again, during this period of
communication, there is no interaction occurring between the
Simulink controller model and Unity model. After a non-fixed
period of time, it goes into the on-state again. This unusual and
unexpected pattern of alternation in communication within the
DT between the on- and off-state occurs repeatedly during the
entire period of the DT execution.

4.4. Comparing Observed and Intended Behavior
The intended behavior of DT at design stage is to have a seam-
less non-erratic timely interaction between the different models
involved in the cosimulation. This design intention is to ensure
that there is a smooth, continuous, collision-free movement of
the truck in the Unity simulation environment. However, the
observed behavior of the DT significantly deviates from this
intended behavior. The detected on-off interaction pattern is
clearly not an intended behavior, as the internal structure of the
DT, illustrated in Figure 3, indicates that communication from
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the Simulink controller model to the Unity model is critical.
This is because steering angle and acceleration variables, which
are communicated from the Simulink controller model to the
Unity model are responsible for driving the motion of the truck
in the simulation environment in Unity. However, due to the
described on-off pattern, this critical communication may not
occur for a non-fixed (variable) period of time, which possibly
affects the motion of the truck in the simulation environment.

We performed multiple co-simulation runs to observe the
motion of the truck in the Unity model. Surprisingly, we ob-
served that in almost all of the runs, the truck collides with
an obstacle, although at different points in time in relation to
the starting point of the co-simulation. This kind of behavioral
pattern is never desirable in a DT. Again, this observed behavior
is clearly not the intended behavior of the DT and the DT would
have been devoid of this behavior at design stage. The reason
for the change in the observed behavior from the intended be-
havior at the design stage is unclear. However, we speculate
that this could be a consequence of the continuous evolution
of the DT across its lifecycle, where the DT could have been
updated or modified somewhere along its lifecycle. We discuss
this evolution of DTs in the following Section 4.5.

We understand that this observed runtime behavioral pattern
in the DT cannot be ascertained from only its individual com-
ponents. Rather, as discussed by Van den Brand et al. (Van
Den Brand et al. 2021) and by Gunasekaran & Haverkort (Gu-
nasekaran & Haverkort 2024), this is the emergent behavior
arising from the compositional effect of interactions occurring
between the components within a DT during runtime. In the
following section, we describe verifying the runtime behavior of
this DT to check for adherence to deadlock freeness, timeliness
and functional correctness properties.

4.5. Continuous Verification of DTs Enabled by Logging
As described in Section 1, DTs are systems that undergo con-
tinuous synchronization with their physical counterpart across
their entire lifecycle. This bi-directional synchronization with
the real-world entity coerces the DT to evolve continuously to
remain its faithful twin. Furthermore, the DT’s evolution could
be influenced by bug fixes, improvements, modifications and
other changes made to both the entities that stay as faithful
twins. Both Zhang et al. (Zhang et al. 2021) and Mertens et
al. (Mertens et al. 2024) discuss three types of evolution that
DTs undergo across their entire lifecycle. The continuous evo-
lution of DTs indicates that verification and validation (V&V)
only at the time of development is insufficient; they must be
verified continuously throughout their entire lifecycle. Cur-
rently, no literature explicitly discusses techniques to enable the
continuous verification of DTs.

One of the advantages of logging is that it provides up-to-date
measurements of interactions occurring in a system at runtime.
This means that even when DTs evolve continuously, logging
would provide up-to-date measurements of the runtime interac-
tions. The logs generated from DTs at any point of time in their
lifecycle can thus be used to understand and model the runtime
behavior of DTs. Behavioral models created through gener-
ated logs can be verified using techniques such as (statistical)

model checking. Effectively, in this way, the DT can be verified
at any point in their lifecycle to check whether they behave
consistently at runtime. Thus, logging enables the possibility
for continuous verification of DTs. In our recently concluded
research, we used logging to generate event logs in this DT at
runtime. These logs were then used to model its behavior as
a network of stochastic timed automata (STA). The network
of STAs was then verified using statistical model checking to
check for timeliness and functional correctness properties (Gu-
nasekaran & Haverkort 2024). The results indicate that this
DT adheres only to properties of functional correctness and not
to timeliness properties. However, since properties related to
deadlock freeness and liveness cannot be verified using SMC
and can only be verified using classical model checking, we
also modeled the runtime behavior captured in the generated
logs as a network of timed automata (TA). This network of TA
was verified using classical model checking to check for dead-
lock freeness and liveness properties (Gunasekaran & Haverkort
2025). We found that there is no deadlock in this DT at runtime.
Thus, the role of logging to enable continuous verification of
DTs across their entire lifecycle is imperative.

The above two works on continuous verification of DTs
require manual effort for modeling the behavior of DTs from
the obtained logs at runtime. Moreover, manually modeling
the behavior of DTs obtained from event logs may require
some level of expertise and knowledge, which may affect the
adoptability of these continuous verification techniques. To
avoid this manual effort for modeling, we explore the possibility
of applying model learning techniques which may help in (semi-
)automating the process of obtaining behavioral models from
generated logs. The following section explores various passive
learning techniques for obtaining behavioral models from the
generated event logs.

5. Exploring Passive Model Learning
Learning behavioral models of verifiable systems is a costly
affair with several applicable techniques. Considering that logs
have already been generated for the DT, the same set of logs
was used to generate behavioral models using passive model
learning. We explored two main classes of passive learning:
state merging and process mining. We discuss these techniques,
the tools used, the obtained results, and our observations from
applying these techniques to the generated logs.

5.1. Exploring State Merging
State merging techniques can be used to infer several types of
state machines and have frequently been used to infer software
models (Walkinshaw et al. 2013). The nature of the interactions
in the DT determines the ideal type of state machine. For ex-
ample, if there is no randomness or variability in the system, a
Deterministic Finite Automaton (DFA) can be used to model
the system. Initially, the RPNI implementation of AALpy was
used to infer a DFA from the DT logs. However, this led to
unsatisfactory results: either a 1-state DFA where all possible se-
quences of interactions are accepted or an uninterpretable DFA
with over 100 states that accepts exactly the logs and rejects all
other sequences of interactions. In the DT scenario, ‘accepted’
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Figure 4 The Markov Chain obtained using Alergia. Tran-
sitions with probabilities under 0.05 are excluded for read-
ability. The arrow entering the state labeled A indicates that
A is the first interaction in the logs. Red transitions indicate
the transition with the highest probability from a state and are
added for readability.

traces may be produced by the DT while ‘rejected’ traces cannot
be produced by the DT. For example, in the considered DT, a
trace never contains two consequent A interactions because the
Simulink Control Model will wait for a B interaction before
sending the next A. Thus, all traces that contain A A cannot be
produced by the DT and should be rejected by models inferred
from the DT. Usually, both accepted and rejected traces are
needed to have enough information to distinguish behavioral
states and infer a sensible automaton. However, some tech-
niques are designed for situations where only accepted traces
are available (Avellaneda & Petrenko 2019). Initially, we be-
lieved the unsatisfactory results were caused by the absence
of rejected traces. However, a closer examination of the logs
indicates that the stochastic nature of the DT’s interactions was
the root of the unsatisfactory results. Section 4.3 describes
how Unity communicates with the Simulink Control Model
for some time and then switches to communication with the
Simulink Path Planner Model. Since this switch does not occur
after a fixed amount of steps but after an approximate num-
ber of milliseconds, the DT behavior is better explained by a
stochastic state machine than a deterministic one. Due to these
findings, we set out to learn a Markov Chain (MC) instead of a
DFA. MCs can be used to model finite stochastic state machines
where the states represent interactions that occur in the system.
MCs can be learned using the Alergia algorithm (Carrasco &
Oncina 1994) implemented in AALpy (Muškardin et al. 2022).
Alergia can be viewed as the probabilistic version of RPNI and
mainly differs in the use of a probabilistic prefix tree and statis-
tical tests to determine whether two states in the prefix tree are
consistent (Verwer & Hammerschmidt 2017).

However, for this DT, the logs cannot be used to directly
infer an MC using Alergia because the logs are often too long
which leads to hitting the maximal recursion depth due to the na-
ture of the state-merging algorithm. Pre-processing the logs to
have at most (around) 2000 interactions makes it possible to run
Alergia. However, some logs start with over 1000 repetitions of
C D (as shown in Figure 3) meaning that the shortened logs do
not include all the interactions. Therefore, we pre-process the
logs by removing highly repeating cycles and then shortening
the logs to 2000 interactions. After pre-processing, the Alergia
algorithm can be executed on the logs and produces an MC.
Additionally, a post-processing step is needed to recalculate the
probabilities for the inferred model on the original logs. The
resulting MC is displayed in Figure 4. To create these pre- and
postprocessing steps and obtain a state machine, visual inspec-
tion of the logs and expert knowledge of the DT were needed.
Therefore, these processing steps are highly specific to this DT,
and applying state merging techniques to other DTs might re-
quire different processing steps to make the logs suitable to infer
a state machine. We briefly looked at Jajapy (Reynouard et al.
2023) with the hopes that this has less problems with the long
logs and highly repeating cycles. Jajapy is a Python library that
can infer MCs but does not use state merging but the statistical
Baum-Welch algorithm. However, this approach ran into similar
problems and the resulting models after post-processing missed
interactions between several components while the interactions
were present in the logs.

Figure 5 Statechart obtained from process mining using the
statechart workbench. Equivalent to the statechart for case 2,
depicting cyclic dependencies in a DT with four components.
5.2. Exploring Process Mining
We use the ProM (H. Verbeek et al. 2010) as our process mining
tool of choice. One of the reasons for selecting this tool is its ca-
pability to customize existing plugins. The CSV file containing
the event logs is imported into ProM, using a plugin to convert
CSV files into XES2 format (Gunther & Verbeek 2014). One of
2 The XES format has been adopted by the IEEE Task Force on Process Mining

as the standard to store and exchange event logs (Leemans 2018).
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the challenges with process mining is to identify the mapping of
event logs to so-called cases3. To analyze the complete runtime
behavior of the DT, all event logs from a single execution were
mapped to a single case, which is generally unusual in process
mining due to the high number of logs.

ProM is a rich tool comprising a plethora of plugins for pro-
cess discovery. We experimented with several process discovery
plugins from ProM and their results were similar to those from
RPNI, which were having only a single state. Due to this reason,
we omit these results in this paper. One of the plugins that we
had used was the statechart workbench (Leemans et al. 2018)
for discovering a statechart of the interactions from the provided
logs. While most plugins in ProM provide support for logs
from business processes, this workbench is one of the plugins
that can work with both software and business event logs. This
was one of the main reasons for selecting this plugin. Since
this plugin was developed for handling software logs, it accom-
modates hierarchical, recursive, error-handling or cancellation
behavior in software. The hierarchical discovery is based on
the traditional inductive miner framework’s (IMF) divide and
conquer approach where given a log L, it is divided into sub-
logs which when combined together with a process tree operator
can possibly reproduce the same log L again. The cancellation
discovery is an extension of IMF which works with a cancella-
tion trigger oracle. For complete details on the algorithms used
for hierarchical, cancellation and recursive discovery, we refer
the readers to this literature (Leemans 2018). Considering the
feature-rich discovery algorithms in this plugin, we chose to use
it to learn behavioral models from the generated logs in DTs,
rather than reinventing the wheel. However, as this plugin is
tailored for handling software event logs, its applicability for
logs from DTs was experimentally evaluated. The results from
the statechart workbench are shown in Figure 5.

5.3. Comparing State Merging and Process Mining
When comparing the models obtained by state merging (Fig-
ure 4) and process mining (Figure 5), we notice that both models
are high-level overviews of the interactions within the DT. Ev-
ery state in the models contains the name and direction of the
interaction (sending or receiving parameters) which is separated
by ‘|’ symbol from the letters [A-H] denoting the interactions
shown in Figure 3. Both models have a state for every inter-
action logged in the DT and the transitions are related to the
frequency of the observed interactions. Furthermore, the order
of interactions as observed from the logs and recursive behavior
has been captured to some extent in both models. We observe
that each of these models contains the cycles A B, F G H E and
C D. However, we also observe that the interactions A, B, C and
D which are part of the on-off behavioral pattern (as described in
Section 4.3) are not completely interconnected in both the mod-
els. The models share many similarities, but there are also some
differences. For example, the techniques capture the frequency
of interactions differently. The process mining model depicts
the load of interactions occurring in the DT by specifying the
number of each interaction. While the state merging model

3 A case in process mining refers to a process instance that comprises several
activities or event logs

captures the frequency in a state-dependent way, the transition
probabilities represent the chance of seeing the interaction in the
destination state label as the next interaction. For example, the
transition from state B to A indicates that 94% of the time, inter-
action B is followed by interaction A. Additionally, the process
mining tool automatically makes a readable figure by excluding
outliers and adding colors based on how often an interaction
occurs in the logs (more information on the state colors can be
found in Section 6.2), while transitions with low probability
were manually removed in the state merging result to make it
readable. We conclude that both models are informative and
can be used for visual analysis. However, there is a significant
difference in the ease of use between the techniques. To obtain
the state merging model from Alergia, pre- and post-processing
steps specific to the DT needed to be added. Therefore, using
state merging techniques may require a considerable amount
of manual effort. This issue becomes particularly problematic
if we want to automatically infer a model of the DT whenever
changes are detected, as the necessary pre- and post-processing
steps may need to be adjusted accordingly. Moreover, these
processing steps require some level of knowledge about the
specific DT. Considering the motivation of this paper is to eval-
uate passive learning techniques that can aid in the behavioral
analysis of DTs in an automated manner, our conclusion is that
process mining edges over state merging techniques as it is more
easily applied in scenarios where little is known about the DT.
Therefore, we use the model obtained by process mining for the
analyses in the following sections.

6. Analyses of Learned Models
The experimentation of applying process mining on logs gen-
erated from DTs was primarily focused on obtained behavioral
models which are verifiable through model-based verification
techniques and for further behavioral analysis. The obtained
models are not sufficiently mature for verification through model
checking, as they do not encompass the complete runtime behav-
ior of the DTs, such as the on-off interaction pattern discovered
through logging. Furthermore, these models do not capture the
timing information of the runtime interactions which makes it
not suitable for verification of temporal properties which are
critical. However, further behavioral analysis of obtained pro-
cess models could possibly help with several applications. In the
sections that follow, we describe how we used process mining
to detect cyclic dependencies (Section 6.1) and for root cause
analysis (Section 6.2) in the DT.

6.1. Detecting Cyclic Dependencies
Van den Brand et al. (Van Den Brand et al. 2021) discuss avoid-
ing undesirable behavior in DTs at runtime and specify deadlock
freeness as one of the properties to be ensured at runtime for
this. Muctadir et al. (Muctadir et al. 2024) also found dead-
lock freeness as an important property to ensure consistent
behavior at runtime, from an interview research conducted with
19 interviewees in the field of DTs from both industry and
academia. Several papers explicitly indicate that cyclic depen-
dencies may lead to a deadlock or live-lock situation, which is
undesirable (F. Verbeek & Schmaltz 2012; Sánchez et al. 2006;
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Duato 1995). Cyclic dependencies are highly likely in a DT, as
during execution, multiple models interacting with each other
may require data from another model to progress to the next
step. Likewise, the latter model may also be dependent on the
former model for the progress of its next step, which eventually
leads to a lock situation. Consequently, to prevent deadlocks in
DTs, it is crucial to detect cyclic dependencies during runtime
interactions. The recursive aware discovery algorithm in the
statechart workbench has been developed to detect such recur-
sive behavior which includes circular/cyclic dependencies. The
recursive aware discovery algorithm checks whether an event’s
activity label refers back to an existing named sub-tree during
the divide and conquer approach discussed in Section 5.2. In
that case, it detects that the event at the current level of the hier-
archy represents a recursive reference. Moreover, this algorithm
ticks the boxes of guarantees for process mining algorithms
such as soundness, termination, fitness and polynomial runtime
complexity and is scalable too (in terms of the number of exe-
cution logs that can be handled) (Leemans 2018). To check the
effectiveness of this workbench in detecting cyclic dependencies
and specifically, detecting changes to an already existing cyclic
dependency, we took two separate cases which are discussed in
the following two subsections.

6.1.1. Case 1: DT Comprising Three Components
In this case, the existing DT (discussed in Section 3) was mod-
ified by removing the Simulink path planner model from the
DT. This modified DT could be used in the case where there are
no obstacles in the path and the path to each of the destination
docks is already specified. The effect of this modification is that
all interactions from and to the Simulink path planner model
also ceased to exist. We generated event logs for this modified
DT and observed the obtained statechart with ProM, as shown
in Figure 6. Comparing Figures 3 and 6, it can be observed that
there are four interactions in this modified DT and the miner
has extracted and represented all these four interactions as tran-
sitions. Moreover, it detects which interaction is dependent on
the other and based on this, it shows the cyclic dependencies.
As it can be observed, there are two cyclic dependencies in the
modified DT, which corresponds to the interactions between the
three components in the DT.

Figure 6 Statechart for Case 1, depicting cyclic dependencies
in the DT with three components.

6.1.2. Case 2: DT Comprising Four Components
In the second case, we do not make any modifications to the DT
as described in Section 3. We generated event logs for the DT
to obtain the statechart as shown in Figure 5; we can observe

the three cyclic dependencies in the DT corresponding to the
interactions between the four components in the DT. The pres-
ence of the Simulink path planner model in case 2 alters the
interactions within the DT compared to case 1. This change in
interactions and the resulting alteration in cyclic dependency
have been detected by the statechart workbench. In Figure 6, a
cyclic dependency concerning interactions F and G can be ob-
served (shown with red transitions). However, with the addition
of Simulink path planner model in case 2, as can be observed in
Figure 5, the same cyclic dependency now has four interactions
(E, F, G and H) contributing to it (shown with red transitions).
From this, we can understand that the statechart workbench
is capable of not only detecting cyclic dependencies in a DT
but also it can be used to detect changes in a specific cyclic
dependency in a DT.

6.2. Root Cause Analysis in a DT
We encountered a consistent runtime issue in the DT related
to restarting the simulation. We understand that this problem
has been reported by several others (former students and re-
searchers) and has been an unresolved issue for a long time.
During execution of the DT, there is an option in the Unity
model to reset the simulation, which puts the truck back in its
original position. This reset simulation option can be used at
any time, to reset the simulation when the truck collides with an
obstacle and is not able to move any further. However, whenever
the simulation is reset in the Unity model, the truck starts show-
ing anomalous behavior, where it starts driving circles around
its original position (See Figure 7). This is a recurring issue that
happens whenever the simulation is reset in the Unity model.

As mentioned in Section 6.1, we used process mining to
obtain statecharts representing the interaction behavior within
the DT. The statechart workbench in Figure 5 provides details
on the number of occurrences of each interaction within the DT
on the transitions. For several runs, we observed the statecharts
and we found a peculiar imbalance in the number of interac-
tions. This load imbalance is visualized in Figure 5, where
the colors of the states represent the number of occurrences of
interactions: dark blue represents a high number of occurrences,
light blue a moderate number of occurrences, and the greyish
color represents a very low number of occurrences. We found
consistent light grey colors for the interactions between the
Simulink controller model and the Unity model (the number of
occurrences of these interactions can be found in the green tran-
sitions). As discussed in Section 4.4, the interactions between
the Simulink controller model and the Unity model are critical.
Hence, it was remarkable to observe these critical interactions
occurring significantly less often than the other interactions.
After this observation, we started logging the action of resetting
the simulation in Unity. We separated these newly generated
logs into two sets: one set of logs comprising interactions that
occurred before the simulation was reset, and another set of logs
comprising interactions that occurred after the simulation was
reset. The statechart obtained for the first set of interactions is
shown in Figure 8; likewise, the statechart obtained for the sec-
ond set of interactions is shown in Figure 9. When comparing
these two statecharts, we can find a difference in the number
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Figure 7 Aerial view of the anomalous behavior of truck where the truck is driving erratically in circles around its original posi-
tion in Unity simulation environment, whenever the simulation is reset.

Figure 8 Statechart representing interactions within the DT before simulation reset.

Figure 9 Statechart representing interactions within the DT
after simulation reset.

of states in both the models, with Figure 8 depicting states for
all interactions and Figure 9 depicting states for only six of the
interactions in the DT. From this, it is clear that the interactions
between the Simulink controller model and the Unity model
(interactions A and B) cease to occur after the simulation is
reset in Figure 9. From this observation, we conclude that the
C# program for handling the UDP communication between the
Simulink controller model and the Unity model does not exe-
cute anymore after the simulation is reset, somehow, it has been
stopped. This is the root cause of the truck’s abnormal behavior
in the Unity simulation environment: after the reset function
is executed, a crucial part of the communication in the DT is
switched off. As a result, information about the steering angle
and acceleration is no longer communicated, causing the truck
to drive in circles endlessly. We would like to emphasize here
again that, in this scenario as well, we were able to uncover the
root cause of the runtime issue with the help of the logging and
the subsequent process mining and visualization.

7. Threats to Validity
In this section, we discuss the threats to validity related to the
application of logging and model learning performed on this
digital twin case study and the measures to mitigate the threats.

Construct Validity This validity concerns the quality of the
measurement of the constructs for the experiment and whether
it may have unintended effects on the results. The logging
that was used in the experiment could require a high level of
comprehensiveness to ensure that all the interactions within
the DT are logged. Moreover, logging can be invasive and
introduce some level of overhead. This could lead to observing
and consequently logging the DT interactions with an overhead
(slightly modified behavior) than the actual behavior of the DT.
Werner (Schutz 1991) describes this as an inevitable effect of
observing the behavior of a system.

Choice of Learners. In this case study, we only explore
state merging and process mining while other techniques such
as SAT-based (Biermann & Feldman 1972; Verwer & Ham-
merschmidt 2017) approaches might also result in meaningful
models. The used learners were chosen because they were used
to infer state machines of software models in the past (Yang
et al. 2019; Leemans 2018) and due to previous experience
with the tools. We did briefly explore the statistical approach
Jajapy (Reynouard et al. 2023) but this did not lead to promising
results as stated in Section 5.1. Internal Validity To control
the variables within our case study and ensure the techniques
have access to the same information, we used the same CSV file
containing the execution logs to infer the models obtained by
state merging (Figure 4) and process mining (Figure 5).

External Validity This type of validity concerns the gener-
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alization of our conclusion. The presented results in this case
study, though encouraging, are from a single DT case study
which could be a threat. In addition, the results from this case
study only provide a single example of the root cause analysis
of the runtime issue which occurs whenever the simulation is
reset (not from the same simulation), which could also pose a
threat. We plan to apply the learning techniques and analyses
to a wider set of DTs from varied domains in the future such
that more reliable and generalizable conclusions can be made.
However, this paper describes preliminary research that can
be used to facilitate further study of using logging and passive
model learning of DTs.

8. Discussion
In this section, we discuss the lessons learned from applying
logging and model learning techniques in a DT. Logging in
DTs play a key role in enabling continuous verification, behav-
ioral pattern discovery and detecting the evolution of DTs by
comparing intended behavior with observed behavior. For this
DT logging the interactions between the different models was
possible because we could adjust the UDP protocol used for
co-simulation. However, current practices of development of
DTs do not provide the required level of importance for logging.
Many existing modeling tools do not support the possibility of
logging inter-model interactions in a DT. This is because DTs
are often composed of interconnected cross-domain models in
heterogeneous tools and considering that DT is being devel-
oped by experts from a wide range of domains who may lack
knowledge and expertise in software, it may not be possible to
always use/develop relevant software (such as additional soft-
ware or servers) which could support logging. In such cases,
the possibility of logging inter-model interactions by model-
ing and simulation tools would be a great addition. Currently,
logging can support the continuous verification of DTs as they
evolve throughout their entire lifecycle. However, one of the
challenges with this application is that whenever a DT evolves,
new components (models, databases, and others) may become
part of the DT, leading to new interactions. This necessitates
the manual logging of these new interactions within the DT.

Applying passive model learning techniques to this DT and
the associated execution logs reveal that the obtained models
do not capture the complete behavior of DTs. As described in
Section 6, the learned models do not encompass the on-off inter-
action behavior pattern described in Section 4.3. A tailor-made
algorithm could possibly detect such patterns in interactions,
which could help in learning such patterns in the behavior of
DTs. Moreover, the results indicate that state merging algo-
rithms are more challenging to apply to DTs. Inferring the
correct type of state machine is non-trivial as DTs are not nec-
essarily expressed by Markov chains; several studies use Mealy
machines to model real-world systems, see (Vaandrager 2017)
for an overview. Additionally, the pre- and post-processing steps
required to obtain Figure 4 are highly specific to this DT and set-
ting up befitting pre- and post-processing steps require manual
effort and expert knowledge which may affect its adoptability
for other DTs but also for a continuously changing DT.

Even if a suitable model can be generated, there would still

be several challenges that need to be overcome to use the model
for V&V. For example, the model would need to be extended
to include interaction timing information to fully verify the
runtime behavior. This might be possible by computing mean
values of time between interactions which are already stored in
the logs. However, in our recent work for modeling STA for ver-
ification of runtime behavior of DTs, the obtained timing values
were highly stochastic in nature with a wider range of values,
and the arithmetic mean values do not necessarily express the
actual observed stochastic temporal behavior (Gunasekaran &
Haverkort 2024). Therefore, we speculate that to obtain such
stochastic temporal behavior in behavioral models which can
then be used for model-based verification, some level of human
intervention may be required to assess this aspect of modeling
and thus, a complete automation may not be feasible. Hence,
one of the challenges with obtaining verifiable models through
model learning is to capture the varying temporal behavior of
interactions between components in the DT at runtime.

Though the (semi-)automatically derived models were not
suitable for performing model-based verification, further behav-
ioral analysis helped in detecting underlying causes of runtime
issues and cyclic dependencies in the DT. We speculate that
this behavioral analysis could also help with other applications
with DT engineering, maintenance and operation. For exam-
ple, behavioral analysis helps in understanding the issues in
the runtime behavior of a DT possibly arising from bad design
decisions. Finding such runtime issues could help in the re-
design of the DT when developing DTs for similar product lines.
Similarly, behavioral analysis can detect anomalies that may
arise due to the evolution of DTs and therefore helps with the
maintenance of DTs.

9. Conclusion, Challenges & Future Work
In this paper, we proposed to using logging and model learn-
ing to (semi-)automate the reverse engineering of a DT for an
autonomously driving truck in a distribution center that lacks
structured documentation. This approach involved detecting the
DT’s structure, runtime behavior, runtime issues, and identify-
ing the root causes of these issues. We showcased the impor-
tance of logging to understand the runtime behavior of DTs and
detect the evolution of DTs by comparing the observed behavior
and intended behavior of the DT. In addition, we elucidated on
the key role that logging plays for enabling continuous verifica-
tion of DTs as they keep evolving across their entire lifecycle.
We investigated state merging and process mining techniques
to (semi-)automate the process of obtaining models that encom-
pass the runtime behavior of DTs, which can be used for further
behavioral analysis or model based verification. Our conclusion
was that process mining was a better suitable technique than
state merging for this DT due to the high level of manual ef-
fort required with state merging. Moreover, we demonstrated
how further behavioral analysis of the obtained models can be
used for performing root cause analysis and detecting cyclic
dependencies in the DT.

We believe there is currently a lack of awareness regarding
the importance of documentation for DTs. Additionally, there
is no standard for documenting DTs, given the myriad of def-
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initions and descriptions that exist. We see documenting DTs
as a crucial step towards improving their long-term usability,
enabling their reuse for purposes beyond their initial intention,
and facilitating their aggregation in the virtual space for com-
plex applications, which has been predicted for the future in
works such as Muctadir et al. (Muctadir et al. 2024). We plan to
conduct a survey on DT documentation to understand what in-
formation academicians and industry practitioners from various
domains believe should be included in DT documentation.

Moreover, given that DTs consist of various heterogeneous
cross-domain models, one of the primary challenges we fore-
see with logging in DTs is obtaining modeling tool support for
generating logs for inter-model interactions. Currently, only
a handful of modeling tools support logging activities within
a model. With the increasing interest in DTs across various
domains and their expansive applications within the engineering
spectrum, it is imperative for developers of modeling tools to
start considering the perspective of DTs rather than simply mod-
eling. This includes providing support for logging interactions
between models within the same or different tools, which make
up the DT, as well as providing options for processing collected
logs to analyze runtime behavior of DTs. This could also help
with the future trend of combining several DTs for a particular
purpose to form federated (Vergara et al. 2023) and aggregated
DTs (Redelinghuys et al. 2020).

Additionally, model learning to obtain verifiable models is in
general a costly affair that is still gathering great interest among
researchers in V&V of systems. We attempted to learn the run-
time behavior of DTs from event logs using passive learning
techniques. However, these models were not mature enough
to be used for runtime verification yet. We plan to investigate
methods to learn verifiable behavioral models by, for instance,
modifying the statechart workbench in ProM. Additionally, we
aim to explore the usefulness of the methods described in this pa-
per on more DTs. The above-mentioned future work represents
only the initial steps toward analyzing the dynamic behavior of
DTs; the next steps will also involve exploring additional con-
tinuous validation and verification techniques to ensure runtime
consistency for DTs, as well as to automate the detection of
anomalous behavior of DTs based on learned models.
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