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ABSTRACT ComMA (an abbreviation of Component Modeling and Analysis) is an approach for modeling components
and their interfaces in an implementation agnostic notation. The approach is supported by the open-source tool
Eclipse CommaSuite. It supports, for instance, model validation and monitoring to check whether the execution of an
implementation conforms to the specification. In this paper, we describe how ComMA models can be reused for online
Model-Based Testing (MBT). An innovative feature of ComMA is its ability to construct a test application based on existing
component and interface models, which enables reuse and avoids clones. This avoids well-known problems with MBT
such as the validation and maintenance of large test models. The ComMA MBT approach has been applied and improved
based on an application at Philips IGT in the context of a medical system. We report on our experiences and lessons
learned.
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1. Introduction
Software testing is traditionally based on scripted testing
where test cases follow a fixed sequence of test steps. This
provides reproducibility and facilitates regression testing.
Scripted testing, however, suffers from the pesticide para-
dox; over time, insects become immune to pesticides. For
tests, this means that over time scripted tests become less
effective in discovering new defects (AbdelGaber et al.
2021). Another challenge is non-determinism in the tested
implementation, since this will lead to test scripts with
many branches.

Alternatively, exploratory testing is a more adaptive
approach where test steps are chosen on the fly. In this
case, a test application sends a message to the System
Under Test (SUT), checks the response, and dynamically
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determines the next message based on this response. With
this approach, non-determinism is not a problem and it
could find defects other test strategies might miss. A good
test plan combines scripted and exploratory testing.

A common problem with both types of testing is that it
requires a large effort to create and maintain tests. A well-
known idea from the literature is Model-Based Testing
(MBT) (Broy et al. 2005) where models are used to either
generate scripted tests (also known as offline testing) or
perform a long random walk through the state space of a
model (also known as online testing) (Utting et al. 2012).
The latter is an automated way of exploratory testing.

Although test models provide a concise notation and
are typically easier to inspect than a large set of test cases,
the MBT approach is not applied frequently in practice.
One of the reasons is the required investment to create
the models (Alégroth et al. 2022). Effort is also needed
to validate the models, to ensure they match the system
requirements, and to keep them consistent with changing
requirements. Moreover, it is often not possible to reuse
models for different configurations, because often models
are monolithic without a notion of compositionality.
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We propose an approach that avoids these bottlenecks
by using existing design models in the form of interface
and component models that have already been validated
and used for other purposes such as documentation and
monitoring. Test applications can be generated based on
a flexible composition of models.

Although a number of MBT tools have been proposed,
there is still scarce information in the literature about
how the industrial engineers experience the application of
these tools and how they are embedded in a development
process.

The proposed approach has been developed in close
collaboration with industry following the industry-as-lab
approach (Potts 1993). Prototypes have been evaluated
by engineers of Philips on real-life cases of the business
unit Image-Guided Therapy (IGT) where medical systems
for image guided therapy are developed. Such a medical
system consists of software and physical components
(distributed computing hardware, networks, mechanical
parts) that are deeply intertwined. It is a typical Cyber-
Physical System (CPS) with state behavior and real-time
requirements. Hence, the order and timing of events is
important.

Since software components of these medical systems
typically already have a good set of test scripts, the focus
of the proposed approach is on exploratory online testing.
Moreover, we use existing models of components and
their interfaces, using the ComMA (Component Model-
ing & Analysis) approach that was developed in close
collaboration with Philips, starting in 2015 (Kurtev et al.
2024). Tool support for ComMA is provided by Eclipse
CommaSuite® (Eclipse CommaSuite 2025). This tool is
available as open-source to allow other companies to use
the approach and to benefit from joint development. Next
to Philips, ComMA has been applied at other TNO-ESI
partner companies in the Dutch high-tech industry.

The development of ComMA was motivated by the
observation that many system integration issues are due
to unclear software interfaces between components. Well-
defined interfaces are crucial because components are
typically developed by different departments or third-
party vendors – which might be located at different places
in the world – and they will in general have different life
cycles. In ComMA, component interfaces are specified
using three ingredients:

– Signature: specifies the events of the interface.
– Behavior: describes the allowed order of the events in

terms of a state machine.
– Constraints: specifies the timing between events and

restrictions on data.

Component models specify the interfaces of a component
and constraints on the relations between events of dif-
ferent interfaces. Note that the focus of ComMA is not
on code generation and component models may be par-
tial, only specifying important constraints. This allows
an incremental approach where constraints are added

gradually.
From these design models, ComMA can perform model

quality checks and it can generate (Kurtev et al. 2017), for
instance:

– Documentation: based on the models and a template.
– Simulator: to manually validate the specification.
– Monitor: to check if the execution of an implementa-

tion conforms to the ComMA specification.

At Philips, quite a number of components and their
interfaces have already been modeled in ComMA. These
models have been validated by reviewing the gener-
ated documentation, simulation, and monitoring. Since
ComMA models include state machines and constraints
to specify behavior, these models are a suitable candidate
to introduce MBT with a limited investment.

In this paper, we describe how we extended ComMA
with support for automated exploratory testing. We devel-
oped a generator to create an online MBT test application,
and gradually improved and extended the generator based
on feedback from industrial engineers while they applied
it on their use case. By reusing already existing models
for MBT, we capitalize on earlier investments in making
ComMA models. Additionally, different compositions of
design models are supported, allowing a flexible reuse of
the design models for testing different components.

The remainder of this paper is structured as follows.
The ComMA approach and the MBT extensions are de-
scribed in Sections 2 and 3. Section 4 introduces the
industrial context in which the MBT approach was de-
veloped and evaluated. The results and lessons learned
by the industrial application are presented in Section 5.
Section 6 contains related work, with a focus on tooling
for online MBT. Concluding remarks can be found in
Section 7.

2. The ComMA Approach
In this section, we introduce ComMA as far as necessary
to understand this paper. For instance, time and data
constraints, are not discussed here because they are less
relevant for the current paper. For more details, we refer
to (Kurtev et al. 2017; Kurtev & Hooman 2022).

To illustrate the main concepts, we use a vending ma-
chine example which is available in the open-source tool-
ing and includes a demonstration of the model-based
testing features discussed in this paper1. The example
consists of a vending machine component with three in-
terfaces as shown in Figure 1.

The component has two provided interfaces, IService
and IUser, and one required interface, ICoinCheck, which
is used to check coins inserted via IUser. The coin checker
might also report an error called CoinCheckerProblem which
leads to an OutOfOrder event on interface IService.
1 See https://eclipse.dev/comma/site/download.html; the example can

be obtained via File→ New→ Example... → Vending Machine Test
Application Example; the README file of this example contains more
information, e.g., on the execution of the test application.

2 Schuts et al.
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Figure 1 Vending machine example

The ComMA modeling approach is presented in Sec-
tion 2.1. Section 2.2 introduces the generators. The tech-
nology used to implement ComMA is discussed briefly in
Section 2.3.

2.1. Modeling in ComMA
To support a compositional approach, ComMA design
models consist of files for types (Section 2.1.1), signa-
tures (Section 2.1.2), interface behavior (Section 2.1.3), and
components (Section 2.1.4).

2.1.1. Types Basic types such as int, bool, string are
included in the ComMA language. Additional types such
as maps, records and enumerations can be defined in files
with extension "types". An example is shown in Listing 1,
defining three enumeration types and some comments
after the slashes.

1 enum Result {
2 OK // Command is executed successfully
3 FAIL // Command failed
4 }
5 enum CoinResult {
6 ACCEPTED // Coin is accepted
7 NOT_ACCEPTED // Coin is rejected
8 NOT_OPERATIONAL //Machine is not operational
9 }

10 enum ProductName {
11 WATER
12 COLA
13 JUICE
14 }

Listing 1 Part of file "VendingMachine.types"

2.1.2. Signature ComMA supports client-server archi-
tectures. The events that can be exchanged between a
client and a server on a particular interface are defined in
a signature file with the "signature" extension. There are
three types of events:

– Command: a call from client to server, where the client
is blocked until the server sends a reply.

– Signal: a non-blocking message from client to server,
i.e., the server does not send a reply.

– Notification: a non-blocking message from server to
client.

As an example, Listing 2 shows the signature of the IService
interface. Note that commands have a reply value, which
may also be void. Reply values are absent for signals and
notifications. Like commands, signals and notifications
may have parameters.

1 import "VendingMachine.types"
2 signature IService
3 commands
4 Result SwitchOn
5 void LoadProduct(ProductName product)
6 Result Reset
7 signals
8 SwitchOff
9 notifications

10 OutOfOrder

Listing 2 Signature file "IService.signature"

2.1.3. Interface The protocol behavior of an interface
is described by means of a state machine which specifies
the allowed sequences of events that can be exchanged be-
tween a client and a server. The state machine is specified
from the viewpoint of the server, that is, transitions are
triggered by commands and signals of the client. Actions
of the server, i.e., notifications and replies to commands,
are defined in the "do"-part of transitions. As an example,
we show the main part of the behavior of interface IService
as defined in file "IService.interface" in Listing 3.

1 import "IService.signature"
2 interface IService version "1.2"
3

4 machine serviceMachine {
5 initial state Off {
6 transition trigger: SwitchOn
7 do: reply(Result::OK)
8 next state: Operational
9

10 transition
11 do: OutOfOrder
12 next state: Error
13 }
14 state Operational {
15 transition trigger: SwitchOff
16 next state: Off
17

18 transition trigger: LoadProduct(ProductName product)
19 do: reply
20 next state: Operational
21

22 transition
23 do: OutOfOrder
24 next state: Error
25 }
26 state Error {
27 transition trigger: Reset
28 do: reply(Result::OK)
29 next state: Off
30 OR
31 do: reply(Result::FAIL)
32 next state: Error
33 ...

Listing 3 Part of interface file "IService.interface"

Events that are not defined in a state are not allowed. For
instance, in state Off the signal SwitchOff is not allowed.
The OR keyword on line 30 indicates a non-deterministic
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choice; in this case, the Reset command may either reply
Result::OK or Result::FAIL, leading to different states.

As another example, Listing 4 shows part of the inter-
face protocol of ICoinCheck. Observe that the reply value
of command CheckCoin (line 7) is not defined, indicated
by the asterisk (“*”). It means that any value of the reply
type is allowed.

1 import "ICoinCheck.signature"
2 interface ICoinCheck version "3.5"
3

4 machine CoinCheckMachine {
5 initial state CheckCoin {
6 transition trigger: CheckCoin
7 do: reply(*)
8 next state: CheckCoin
9

10 transition
11 do: CoinCheckerProblem
12 next state: Error
13 }
14 state Error { ...

Listing 4 Part of interface file "ICoinCheck.interface"

2.1.4. Component Components can be defined in files
with extension "component". Listing 5 shows a part of
such a file for the vending machine component. It imports
three interfaces and defines the names of three ports, two
for provided interfaces and one for a required interface.
Note that there is no conceptual difference between the
definition of the provided and required interfaces. Their
role depends on how they are used within a component
specification model.

Relations between events of different interfaces can be
expressed by means of functional constraints, which can be
seen as partial specifications of component behavior. A
functional constraint explicitly defines which events are
restricted and specifies the relations between events in
a state machine notation. Constraint ErrorPropagation in
Listing 5 expresses that the CoinCheckerProblem triggers an
OutOfOrder notification and these events may only occur
in an alternating sequence.

1 import "IUser.interface"
2 import "IService.interface"
3 import "ICoinCheck.interface"
4

5 component VendingMachine
6 provided port IUser vmUserPort
7 provided port IService vmServicePort
8 required port ICoinCheck vmCoinPort
9

10 functional constraints
11

12 ErrorPropagation {
13 use events
14 notification vmCoinPort::CoinCheckerProblem
15 notification vmServicePort::OutOfOrder
16

17 initial state ErrorForwarding {
18 transition trigger: vmCoinPort::CoinCheckerProblem
19 do: vmServicePort::OutOfOrder
20 next state: ErrorForwarding
21 } }

22 ...

Listing 5 Part of file "VendingMachine.component"

2.2. Generators
Based on ComMA models, a number of artifacts can be
generated such as UML diagrams, documentation, and
proxy code for a particular type of middleware. Model
quality checks can be used to detect, for instance, unreach-
able states and race conditions. Moreover, monitors can be
generated to check whether an implementation conforms
to the specification.

Monitoring can be done online, during system execu-
tion, but in practice it is used offline. To this end, during
execution of the implementation, traces of interface events
are collected, for instance, by logging or sniffing (e.g.,
using Wireshark (Wireshark 2025) to capture and filter
live data from network interfaces like Ethernet). Next
the generated monitor checks these traces and reports
errors when events deviate from what is specified in the
state machines. Violations of time and data constraints
are reported as warnings. The observed values of time
constraints are shown graphically, which is often useful to
get insight in the timing behavior of the implementation.

In Section 2.2.1, we provide more details on the possi-
bility to generate a simulator, because there are a number
of relations with the generated test application.

2.2.1. Simulator Since simulation is useful to validate
design models, ComMA provides the possibility to sim-
ulate interfaces and component specifications. Here we
focus on the generation of a component simulator. Ob-
serve that this requires values for parameters of commands
and signals of provided interfaces. Also values for param-
eters of notifications and reply values might be needed
for required interfaces. To avoid that the user has to pro-
vide these data during simulation manually, ComMA uses
so-called parameters files, with extension "params", where
parameter values can be specified.

As an example, consider the simulation of the vending
machine component, specified in Section 2.1.4. Provided
interface IService needs a value for the parameter of the
LoadProduct command in each state of the state machine
where it is allowed. This can be specified in file "ISer-
vice.params" as shown in Listing 6. Note that multiple
values can be provided.

1 import "IService.interface"
2 interface: IService
3

4 trigger: LoadProduct
5 state: Operational
6 params: ( ProductName::COLA )
7 params: ( ProductName::JUICE )
8 state: Error
9 params: ( ProductName::WATER )

Listing 6 Parameters file "IService.params"
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Figure 2 Generated simulator

Similarly, for provided interface IUser it can be specified
which products the user can order (the parameter of com-
mand OrderProduct). For required interface ICoinCheck,
the machine in Listing 4 does not specify the reply value
for the CoinCheck command. So this has to be provided
in a parameters file, as shown in Listing 7, where two
possible reply values have been specified.

1 import "ICoinCheck.interface"
2 interface: ICoinCheck
3

4 reply to: CheckCoin
5 state: CheckCoin
6 params: (CoinResult::ACCEPTED)
7 params: (CoinResult::NOT_ACCEPTED)

Listing 7 Parameters file "ICoinCheck.params"

The generation tasks are specified in the so-called project
file with extension "prj". In this way, the user can control
what is generated and specify parameters for the generator
tasks. To generate a simulator, the parameters files are
specified in the generator task, see Listing 8.

1 import "VendingMachine.component"
2

3 Project VendingMachineProject {
4 Generate Simulator {
5 Sim_Vending_Machine for component VendingMachine
6 { params: "IService.params"
7 "IUser.params"
8 "ICoinCheck.params"
9 } } }

Listing 8 Project file "VendingMachine.prj"

This generator task leads to a simulator as shown in
Figure 2. On the left the user can select an action (event
with a concrete parameter value). Note that all possible
values specified in the parameters files can be selected.
In addition, there are a few control buttons, e.g., to step
back, show the current state, and list variable values of
the model. On the right, a sequence diagram shows the
simulated steps.

2.3. Technology
ComMA is implemented using the Eclipse Language Work-
bench with the Xtext and Xtend plugins (Bettini 2016). It

also provides a command-line tool for integration into,
e.g., Continuous Integration / Continuous Deployment
(CI/CD) pipelines. Graphical representations of compo-
nent diagrams, state machines, and sequence diagrams
are rendered using PlantUML (PlantUML 2025).

The semantics of the state behavior of interfaces is
based on Petri nets, which are defined and executed using
the SNAKES Petri net Python library (Pommereau 2015).
Both the model quality checks and the simulator use this
Petri net representation. The simulator presented in Sec-
tion 2.2.1 has been realized through generated Python
code where the state machine of each interface is imple-
mented in SNAKES. Functional constraints of components
are directly represented in Python.

3. Model-Based Testing with ComMA
In this section, we describe the extensions made to ComMA
to support online Model-Based Testing (MBT). We start
with a general overview of the approach in Section 3.1. The
structure of the generated test application can be found in
Section 3.2. Next, in Section 3.3 we sketch the algorithm
used to generate the test state machine models used by
the test application. Section 3.4 describes the algorithm
used for testing the System Under Test (SUT).

3.1. Overview of the MBT approach
The general idea is shown in Figure 3, using the vending
machine example which is - as mentioned in Section 2 - part
of the open-source tooling (see footnote 1). The example
contains a Java implementation of the component which
serves here as the SUT.

The test application is generated based on the ComMA
models of the interfaces, the functional constraints of the
component, and the parameters files. To connect the test
application to a SUT which is not implemented in Python,
an adapter is required. The test application keeps track of
the current state of all state machines, i.e., of the interface
and the functional constraints. Based on this information,
the set of possible actions is determined, one of them
is selected randomly and sent to the adapter in JSON
format (Pezoa et al. 2016). The adapter translates this
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Figure 3 Single Test Application

JSON event into a Java method call to the SUT. Similarly,
responses of the SUT are translated by the adapter to
a JSON message to the test application. Similar to the
simulator, the test application is a Python program using
the Petri net semantics represented in the SNAKES library.

Note the dual role of provided and required interfaces;
for provided interfaces, the test application sends com-
mands and signals and it receives replies and notifications,
while for required interfaces it is the other way around.

During the execution of the test application, a GUI
shows the steps taken, with timestamps, the current and
next states, events names, parameter and reply values, and
updates of functional constraints. Moreover, it dynami-
cally updates coverage information such as the number of
covered states, events, and transitions. The test applica-
tion stops when an error has been detected, there are no
possible actions anymore, or the user manually stops it.
Then more detailed coverage information can be saved,
such as a list of all executed and not executed transitions,
and a list of all visited and not visited states.

Note that exhaustive exploration of all possible states
by means of a model-checking approach is in general not
feasible. Since ComMA models may contain variables
over an infinite domain (e.g., integers) the state space
may be unbounded. For instance, in the vending machine
example there is an integer that keeps track of the number
of inserted coins and, moreover, the number of available
products in the machine is not bounded.

3.2. Structure of the test application
Figure 4 shows the class diagram of the test application.

The main class is called TestApplication; it creates in-
stances of all other classes and records the current state of
all state machines. Moreover, it creates and updates the
GUI. The Walker class determines the next test step using
the TestStrategy class and checks if the responses of the
SUT are correct. The algorithm of the Walker is described

Figure 4 Class Diagram of the Test Application

in Section 3.4. The set of possible test steps is obtained
from the TestStateMachine classes of the interfaces and
the FunctionalConstraint classes of the component. The
Debugger class allows the user to select the next test step,
instead of using the TestStrategy class. The TestStateMa-
chine and FunctionalConstraint classes are dynamically
generated from the ComMA models as described in Sec-
tion 3.3. All other classes are static and hence the same for
every generated test application.

3.3. Algorithm to generate test state machine models

This algorithm generates the TestStateMachine classes in
Figure 4. For every interface and its parameters file, a test
state machine is generated and then encoded in a Petri
net. Informally, the algorithm works as follows.

For a given event and a given interface state, the pa-
rameters file specifies a number of tuples with values to
be used as event parameters. The idea of the algorithm
is that a parameters file is merged with the interface state
machine model by replacing the event variables in the
transitions with concrete values from the parameters file.
The result is called test state machine model.

The states in the test model are the same as the states
in the interface model. The transitions are obtained as
follows. If the parameters file provides values for a given
event Ev in a given state S, every transition T in S triggered
by Ev produces one transition in the test model for every
tuple of parameter values. The body and the possible
guard of the created transitions are the same as those of T.

This algorithm is applied for every pair of interface
state machine used in a component and its corresponding
parameters file. An example of the generated Python code
can be found in Appendix A.
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3.4. Algorithm of Walker class for test execution
This section informally explains the algorithm used by
the Walker class to generate a test sequence. It uses the
test state machines generated by the previously described
algorithm and the functional constraints state machines
(class FunctionalConstraint).

Once the test application is connected to the SUT via
the adapter, the algorithm first checks if an event has
been received from the SUT. If this is the case, it checks
the following conditions: (i) there is a transition in the
corresponding test state machine that can be traversed for
the given event and its parameter values and (ii) for each
functional constraint state machine there is a transition
that can be traversed for the given event and values. If
the conditions are satisfied, all the identified enabled
transitions are traversed and the current state variables
are updated (recall that the TestApplication class keeps
information about the current state of all state machines).
If the conditions are not satisfied, an error is reported that
the received event is not allowed and testing stops.

If there is no event received from the SUT, the algorithm
proceeds with determining an event that can be sent to
the SUT. Two possibilities are considered:

– An enabled transition for event Ev and parameter
values V is identified in the test state machines. All the
functional constraints must have a transition enabled
for Ev and V. In general, more than one transition can
satisfy the mentioned conditions. The Walker uses the
TestStrategy class to select the transition. In the basic
version of the test application this is a random choice.
A second strategy will be explained in Section 5.1.
The walker sends the event and the parameters to the
SUT. The chosen transition from the test state machine
is traversed along with the enabled transitions in the
functional constraints. The algorithm then proceeds
to the first described step, waiting for a response from
the SUT.

– There is no enabled transition in the test state ma-
chines with event and parameters that enable transi-
tions in each functional constraint. Then the algorithm
gives a message that no more steps are possible and
testing stops.

Note that the description above is just a sketch of the
basic algorithm, it abstracts away timeouts for waiting for
events from the SUT and the fact that the transition bodies
have statements like assignments and if-then-else. These
statements can be encoded based on Petri nets.

4. Industrial Application
The ComMA online MBT approach has been evaluated in
the context of the Azurion system of Philips IGT. Figure 5
shows one possible hardware configuration of this type of
medical system.

The system is used for image-guided procedures for
the treatment of vascular and cardiac diseases, such as

Figure 5 Interventional X-ray system

placing stents when the flow of blood is compromised.
A catheter is navigated through a leg vein of the patient
towards the heart using live X-ray videos displayed on a
large screen in the operating room. A foot pedal can be
used to turn X-ray on or off and joysticks are employed to
position the X-ray generator and detector.

In Section 4.1, the use of ComMA within Philips IGT is
described. Next, Section 4.2 presents the subsystem on
which the newly developed online MBT techniques have
been evaluated. The approach to the case study can be
found in Section 4.3.

4.1. Use of ComMA at Philips
As a medical systems manufacturer, Philips operates in a
regulated environment. Therefore, it has an established
Quality Management System (QMS) with processes and
document templates to ensure compliance with regula-
tions. The Microsoft Word documentation template is
part of the Philips ComMA tool and used to generate
documents according to the QMS guidelines. Moreover,
the Philips ComMA tool is formally validated against its
intended use according to FDA 21 CFR Part 11 (FDA 2003).

The use of ComMA is incorporated into the software
development process. A ComMA training is part of the
on-boarding curriculum of new software designers and
architects. The Philips ComMA tool is installed on all
developer laptops for creating and modifying ComMA
models.

Philips has developed its own middleware for inter-
process communication. To support the Philips interface
middleware, a generator has been created to generate
proxy code (basically C++ macros) for this middleware
based on ComMA signature models. This generator is
part of the tool Philips ComMA which is small extension
of the open-source tool Eclipse CommaSuite.

During a build, the proxy code for the Philips interface
middleware is automatically generated to ensure a single
source of truth and to prevent manual changes. Regres-
sion tests are frequently executed and the interactions
between subsystems are logged during these tests. Next
the command-line tool generates a monitor, based on the
ComMA models, and uses this monitor to check the logged
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interactions for conformance with the models. The results
of monitoring are reported by means of a dashboard.

4.2. Subsystem Used to Evaluate Online MBT
The Philips Azurion system consists of the following three
subsystems:

– Movements: Responsible for positioning the X-ray
beam with respect to the patient’s region of inter-
est. This subsystem moves the patient support and
the stand with X-ray generator and detector using a
joystick or programmed movements.

– Camera: Responsible for making live X-ray videos by
controlling the X-ray generator and detector.

– Workflow: Responsible for managing workflow, dis-
playing the Graphical User Interface (GUI) on the
large screen and controlling the Movements and Cam-
era subsystems.

More than twenty key interfaces of the Philips Azurion
system have been formally modeled using ComMA.

The ComMA MBT approach has been applied to the
Workflow subsystem which can run a number of built-in
features and allows control by so-called "Apps" of third
parties. Because of confidentiality, we cannot disclose
all details and only describe the general structure. The
Workflow subsystem has the following four main interfaces:

– IApps: A set of interfaces with six provided interfaces
and one required interface. They are used by the
Apps to control the system.

– ICamera: A required interface, which is provided by
the Camera subsystem.

– IMovements: A required interface, which is provided
by the Movements subsystem.

– IWorkflow: An interface to the GUI.

The first three interfaces, so except IWorkflow, are im-
plemented using the Philips middleware and have been
modeled in ComMA. An interesting aspect of interface
IApps is that it can be used by multiple applications simul-
taneously. ICamera is a large and complex interface; it has
22 commands, 22 notifications, and 17 states.

4.3. Approach of the Case Study
The approach has been developed in close collabora-
tion with industry following the industry-as-lab ap-
proach (Potts 1993). The TNO-ESI researchers focused on
understanding the problem domain, reviewing literature,
constructing prototypes, and testing them on the Vending
Machine case. The Philips engineers applied these proto-
types to the Workflow subsystem introduced in Section 4.2.
Evaluated and improved prototypes have been integrated
into the official releases of the open-source tool. Details
of the lessons learned and the tool improvements can be
found in Section 5.

The application was done in an iterative, incremental
way to gradually cover a larger part of the interfaces of

the Workflow subsystem. We started with the IApps inter-
faces, because they include both required and provided
interfaces. Since multiple Apps can use these interfaces,
the Philips engineers also experimented with running
multiple test applications. Note that the other interfaces
of the Workflow subsystem are stubbed with simulators.
Next interface ICamera was added, as a good example of a
complex required interface, including large and complex
data structures. In a separate step, interface ICamera was
also tested separately as a provided interface of the Camera
subsystem.

Initially, we generated a separate test application for
each interface. To illustrate this and contrast it with
Figure 3, we show this approach for the vending machine
in Figure 6.

Figure 6 Multiple Test Applications

This avoids the construction of a large and complex
adapter for all interfaces and makes it easy to start experi-
menting fast. Moreover, this approach makes it possible to
dynamically add and remove applications during testing.
A disadvantage is that functional constraints about rela-
tions between interfaces cannot be checked. As a next step,
a ComMA component model was used to create a single
test application, as shown in Figure 3, and we investigated
the automatic generation of adapters for the Philips mid-
dleware. At the time of writing this paper, we are in the
process of adding the IMovements interface. Since interface
IWorkflow does not use the Philips middleware and has
not yet been modelled in ComMA, it will be addressed
later.

5. Lessons Learned
This section reports about the lessons learned during
the application of the ComMA tooling for online MBT
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at Philips IGT, as described in the previous section. We
explain how the feedback obtained resulted in tool exten-
sions and improvements. These adaptations are illustrated
by the vending machine example. Based on the indus-
trial case, we concluded that it would be beneficial to get
more control over the test execution; this is discussed in
Section 5.1. Topics related to scalability and debugging
are presented in Sections 5.2 and 5.3, respectively. Results
related to the subsystem that was used to experiment with
online MBT can be found in Section 5.4.

5.1. Control over Test Execution
As mentioned in the introduction, online MBT is a con-
venient way of exploratory testing where test steps are
chosen randomly on the fly. Our initial tooling first col-
lects all enabled transitions from all interface models and
next randomly chooses one of them. During our first
industrial experiments, it became clear that it would be
beneficial to get some insight and control over the selec-
tion of these test steps. As a first step, we implemented
a second strategy which prioritizes transitions that have
not been taken before. The GUI of the test application
has been extended such that the user can choose one of
the available strategies. In future work, we intend to add
more refined selection strategies.

The industrial case indicated that users would like to
have more control over the set of transitions that can be
taken. Hence, a mechanism is required to indicate which
subset of the transitions is included in testing. For instance,
to focus first on the happy flow, ignoring failure scenarios,
or removing transitions that would reset or restart the
system. To enable that, we added a skip statement to
the parameters file; it can be used to skip transitions that
are triggered by a certain event in a certain state. As an
example, in Listing 9 the command SwitchOn is skipped
in state Error. Hence, transitions with this trigger will not
be selected in state Error. Similarly, for signal SwitchOff in
state Operational.

1 import "IService.interface"
2 interface: IService
3 ...
4 trigger: SwitchOn
5 state: Operational
6 state: Error skip
7 trigger: SwitchOff
8 state: Operational skip
9 state: Error

Listing 9 Parameter file for IService with skip
statements

For convenience, the "skip"-statement can also be used for
parameters, to remove some values temporarily. This is
shown in Listing 10 line 10. Observe that this is a required
interface, so skipping commands and signals has no effect
since these are under control of the SUT. Instead, in this
interface the CoinCheckerProblem notification and a reply
value of the CheckCoin command are skipped.

1 import "ICoinCheck.interface"

2 interface: ICoinCheck
3 ...
4 notification: CoinCheckerProblem
5 state: CheckCoin skip
6 state: Error skip
7 reply to: CheckCoin
8 state: CheckCoin
9 params: (CoinResult::ACCEPTED)

10 params: (CoinResult::NOT_ACCEPTED) skip

Listing 10 ICoinCheck.params with skip statements

This supports an iterative way of working. For instance,
by using two different parameter files, users can generate
two test applications: one that excludes error and recovery,
and another one that includes it.

5.2. Scalability
The industrial application of our online MBT approach
revealed a number of scalability issues, leading to tool
improvements and extensions. We found out that the
parameter files may become large and difficult to manage,
especially when dealing with complex data structures that
have to be provided for the parameters of events. To solve
this issue, we created a separate parameters file where
large data structures can be assigned to variables. This file
can then be imported in a regular parameters file where
these variables can be used.

While applying the approach to industrial interfaces,
it became clear that the manual construction of adapters
was time consuming and error prone. To avoid that
this would become a bottleneck for the adoption of MBT,
we investigated if it would be possible to generate the
adapter automatically. Since the ComMA models contain
all necessary information, this turned out to be successful
for the Philips middleware. In a number of iterations,
adapter generation was gradually improved and is now
available in the Philips ComMA tooling.

The Philips case showed that it would be very useful to
scale the MBT approach to cases where the components
may accept connections from multiple clients or servers
to a specific port. This leads to complex scenarios which
are difficult to test manually. Hence, automated support
in ComMA for such situations would be very useful.

To this end, we extended the syntax of the project tasks
to include the possibility to specify multiple clients or
servers, as shown in Listing 11. Each client or server must
have a unique name and should be connected to a specific
component port. They can use the default parameter file
(specified after the params keyword) or define a path to
another parameter file.

1 import "VendingMachine.component"
2

3 Project VendingMachineProject {
4 Generate TestApplication {
5 testAppTask for component VendingMachine {
6 params: "IService.params"
7 "IUser.params"
8 "ICoinCheck.params"
9 adapter: "java -cp vm.mbt.VMAdapter"

10 client s1 ports vmServicePort default_params
11 client u1 ports vmUserPort "IUser2.params"
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12 client u2 ports vmUserPort default_params
13 server c1 ports vmCoinPort "ICC.params"
14 server c2 ports vmCoinPort default_params
15 } } }

Listing 11 Example project file for testing a component

Similarly, the generation of the simulator has been ex-
tended to allow the simulation of multiple clients or
servers on a single port. Since this simulator uses the
same underlying Petri net, it provides a convenient way
to validate the models.

5.3. Debugging
Since the test application basically selects test steps ran-
domly, typically every run of the test application will be
different. This hinders reproducibilty of detected errors,
debugging of issues, and checking solutions to issues. To
improve this, we added the possibility to store a run of
the test application in a so-called recording file. Such a
recording can be rerun and the user can decide to stop at
the end of the run, for instance to inspect the SUT, or to
continue.

We also extended the simulator with the possibility
to store a simulated sequence as a recording. Since this
recording can be used by the test application, it can be
useful to bring the SUT to a particular state, for instance to
test a particular scenario. This feature can also be useful
in cases where the SUT requires a long and complicated
initialization sequence.

Debugging is also supported by the possibility to add
break statements to recording and parameter files, see
Listings 12 and 13.

1 C: c.vmServicePort.SwitchOn()
2 C: c.vmUserPort.insertCoin() break
3 R: c.vmCoinPort.CheckCoin(CoinResult::ACCEPTED)
4 ...

Listing 12 Recorded file with break statement

1 import "IUser.interface"
2 interface IUser
3 trigger: OrderProduct
4 state: AcceptUserCommands break
5 params: ( ProductName::COLA )
6 ...

Listing 13 Parameter file with break statement

The user can indicate the use of breaks in the GUI and
then the test application halts when a break statement is
encountered. Typically, a developer will use this feature
to attach a debugger of the used Integrated Development
Environment (IDE) to the SUT. In the IDE, the call stack,
threads and values of variables can be inspected. After at-
taching the IDE’s debugger, the execution can be resumed
step by step. After each step, the state of the SUT can be
examined for changes.

Since parameter files tend to become rather complex,
we have added a number of validation rules to check if the
required values have been provided correctly and the skip
and break statements are used as intended. Finally, based

on its application, the model coverage information has
been improved by organizing transition coverage per state
and adding data. For instance, when there are multiple
clients or servers on a single port, it turned out to be useful
to show percentages for the amount of covered states and
transitions.

5.4. Results Related to Industrial Application
As described before, the application of the ComMA online
MBT approach to the Workflow subsystem led to many
useful observations and improvements of our approach.
Although the subsystem is more than five years old and
installed on thousands of systems in the field, one issue
was found during testing. Since the issue was not trivial
to fix, it was put on the backlog to be planned in. In the
meantime, testing could continue because the erroneous
transition was temporarily skipped in the parameters file.

We also discovered a few discrepancies between the
ComMA models and the SUT; these were solved by small
adaptations in the model. It is important to have correct
interface models, because they serve as contracts between
different development groups within Philips IGT. Finally,
we observed that the XML data structures in the ICamera
interface hide state behavior, which makes it challenging
to create parameter files and test complex behaviors using
ComMA. The reason for this hidden state behavior is that
this interface was designed before ComMA was introduced
at Philips IGT.

6. Related Work
A large number of methods and techniques have been de-
veloped to support online MBT, using different notations
to express the desired behavior of the System Under Test
(SUT). For instance, the open-source tool PyModel (Jacky
2011) employs the Python language to describe a transition
system. MISTA (Xu et al. 2012) is another open-source
tool that utilizes Petri nets. The authors report on two
industrial case studies: the library management system
and the auction sale management system, both from the
telecom domain. In ComMA, we use Petri nets (Peterson
1977) as the underlying semantic domain; they are hidden
behind domain-specific languages and not visible for the
user.

Many tools use a transition-based notation. We men-
tion the open-source tools TEMA (Pajunen et al. 2011),
which focuses on testing graphical user interfaces, and
ModelJUnit (Sagardui et al. 2017) which was applied to an
industrial case at the Orona company involving an eleva-
tor controller. The commercial tool TestOptimal (Rayhan
et al. 2024) was applied to the Wiz connect app, an internet
of things controller for smart light systems. Java Stream
X-Machine (Dranidis et al. 2012) has a transition-based
notation in XML and supports inline Java code. TGV (Jard
& Jéron 2005) has been employed in various industrial
cases, such as testing a military implementation of ISDN
at multiple industrial partner companies.
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UPPAAL-Tron (Larsen et al. 2005; Guin et al. 2025) is
a commercial tool featuring a graphical transition-based
notation. It was applied to an electronic thermostat reg-
ulator from the Danfoss company, and on a real climate
control system. The open-source tool GraphWalker (Zafar
et al. 2021) was applied to a fire indication system within
a train control management system developed by the
company Bombardier. Microsoft Research developed a
closed-source commercial tool called SpecExplorer (Veanes
et al. 2008). It uses Spec# and the Abstract state machine
Language (AsmL) (Barnett et al. 2004) as modeling lan-
guages and supports both test case generation and online
MBT. The commercial tooling of Axini (Bachmann et al.
2022; Ruys & van der Bijl 2024) is used in the finance and
high-tech industry. It has the same origin as the open-
source tool TorXakis (Tretmans 2017) which is dedicated
to online MBT.

A tertiary survey study on MBT (Villalobos-Arias et al.
2019) states that test walks generated by MBT tools are
typically of higher quality than manually written tests, as
tools can generate large test sets with good coverage more
consistently than a human tester. This paper and (Alégroth
et al. 2022) both observe that there is significant academic
research on test algorithms but only a few MBT tools have
been incorporated into industrial practice. They report
that MBT is considered as being costly due to the need
for modeling twice; once for system design and once for
testing. Typically, this requires knowledge of two different
modeling languages. In our ComMA approach, we reuse
models that have already been constructed during the
design phase for other purposes (in our case for interface
management and monitoring).

The taxonomy described in (Utting et al. 2012) includes
an overview of notations and technologies. For instance,
various techniques are used for test data generation, such
as actual data from previous executions, the category-
partition method, or boundary values. Additionally, con-
straint solving can be used for selecting data values. An
approach to generate data parameters on the fly using SMT
solvers has been described in (van den Bos & Tretmans
2019). In our context, data parameters include complex
XML structures with settings or treatment data. Meaning-
ful data values for such parameters are difficult to generate
and hence we did not focus on this aspect and leave the
specification of useful data values to the users. Exploring
variations of these data values is a topic of future work.

The approach described in (Khorram et al. 2022) auto-
matically derives new tests from manually written ones by
modifying test data or event sequences (a process known
as test amplification) with the goal to improve the muta-
tion score. This idea can be applied to the data manually
given in the parameters files. This is a topic of future
investigation.

To avoid that testers have to learn a new modeling
language, several approaches use UML-based notations.
For instance, Conformiq (Huima 2007) is a commercial
tool that utilizes an UML-based graphical statechart no-

tation along with textual object-oriented programming.
A systematic study on the use of UML activity diagrams
can be found in (Ahmad et al. 2019). They mention that
most of the proposed approaches are not evaluated on
industrial cases, so it is difficult for practitioners to make
decisions on the adoption of these approaches. Our MBT
approach has been developed in close interaction with en-
gineers of Philips, to get immediate feedback on industrial
applicability.

Observe that in the research cited above on the use of
design modeling notations such as UML diagrams, these
diagrams are used to construct test models from scratch.
As far as we know, we are the first that reuse models
that are originally constructed for system design. This
approach implies that our starting models are complete
interface models that include, for instance, the behavior
in case of errors. To be able to test basic or happy flow
behavior, we have unique features to allow users to skip
certain transitions. In the cited approaches, multiple
models have to be created to test both happy flow behavior
and error behavior.

7. Concluding Remarks
We presented our industrial experiences with the devel-
opment of online MBT based on existing ComMA design
models, while applying it at Philips IGT. This collabora-
tion revealed a few unexpected aspects, such as the need
for some control over exploratory testing as reported in
Section 5.1. Aspects concerning scalability and debugging,
can also be found in the literature. In Section 7.1 we relate
our approach to a few papers from the literature and focus
on our modeling approach in Section 7.2. Future work
can be found in Section 7.3.

7.1. Positioning
The publications (Villalobos-Arias et al. 2019) and (Alé-
groth et al. 2022) mention a number of reasons for
the gap between research and applications. For in-
stance, most MBT tools require manual implementation of
adapters (Villalobos-Arias et al. 2019). In ComMA, this has
been solved by the generation of adapters for the Philips
middleware, as mentioned in Section 5.2.

Concerning debugging, (Villalobos-Arias et al. 2019)
report that the longer test walks of MBT lead to the dif-
ficulty to replicate them when a failure has been found.
Often manual replication is very time consuming and
automated replication may not be supported by an MBT
tool because of the random character of test walks. Hence,
it is relevant to check if a proposed MBT tool has the
possibility to rerun test walks or if such functionality can
be added easily. The paper (Alégroth et al. 2022) also
identifies rerunning as a research topic for academia to
provide ways of capturing random test walks, methods
for achieving test walk minimization and perhaps novel
analysis methods. Our approach has been described in
Section 5.3 which also includes the possibility to construct
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an initialization sequence of test steps, since such a se-
quence is unlikely achieved by a random selection of steps
– especially because our interface models are complete
and typically also contain error behavior. Reducing and
improving recordings is a topic of future research.

Both papers mention that most challenges in MBT con-
cern model specification. According to (Alégroth et al.
2022), abandoning MBT happens when models grow too
large and complex to maintain. Also (Villalobos-Arias et
al. 2019) reports that models for MBT become increasingly
more complex as the SUT grows and state machine nota-
tions can suffer from a state space explosion problem. This
becomes a prominent problem, which affects almost all
MBT-related tasks such as model maintenance, checking,
reviewing, and achieving coverage criteria.

7.2. Modeling
In ComMA, modeling is done only during system design
and the same models are reused for online MBT. These
models serve multiple purposes, such as document gener-
ation and monitoring. By doing so, ComMA capitalizes on
existing design models and reduces the cost of introducing
online MBT into an organization. It eliminates the need to
learn a new language for test models or generate a model
in a tool specific notation. Confidence on the models is
further improved by using the same Petri net semantics
for model-quality checks, simulation, and testing.

To avoid model complexity, in ComMA the test applica-
tion is generated based on multiple design models. This
compositional approach avoid the construction of a single
complex model, allows for the reuse of design models,
and avoids cloning of model or file parts. As an example,
Figure 7 presents three interface models (A, B, and C),
each describing a state machine in a separate file. It also
shows two component models (1 and 2), each describing
functional constraints in terms of state machines stored in
separate files.

Figure 7 Composed design models

To test Component 1, the ComMA tooling can generate a
test application for Composition I, which includes models of

provided Interface A, required Interface B and Component 1.
Note that Interface B is a provided interface for Component
2. During test application generation, the role of this
interface is taken into account and different code will be
generated. In this way, ComMA has an unique approach
in that it generates a test application based on composed
design models while other MBT tools load a single model
into an existing test application.

7.3. Future Work

In future work, we will investigate ways to improve the
test algorithms, to achieve better coverage faster, and im-
prove debugging support. In the context of model-based
graphical user interface testing, debugging strategies have
been presented (Heiskanen et al. 2010). They observe that
MBT allows long tests, which might lead to a long error
trace in case of a failure. Such a long trace, however, makes
the debugging process more complicated. An interesting
strategy is to investigate whether it is possible to construct
a shorter run by starting from the last action of the error
trace and gradually extend it with more actions from the
error trace until the error occurs. An alternative is to
zoom in on the problem using delta debugging (Zeller &
Hildebrandt 2002). Also relevant is the bug trace mini-
mizer presented in (Chang et al. 2005) which includes the
removal of cycles from the error trace.

An important topic is the embedding of our online MBT
approach into the industrial workflow with integration
into CI/CD pipelines. For such an embedding, it is also
important to obtain a wider applicability by also support-
ing other types of middleware. Current work includes
support for the industry-standards OpenAPI for RESTfull
interfaces (OpenAPI 2025) and AsyncAPI for event-driven
architectures (AsyncAPI 2025).

Finally, after demonstrations of our approach to indus-
trial partners, there is interest in using the test application
as an intelligent stub during the implementation of a
component. Initially, most transitions can be skipped (as
explained in Section 5.1) to test an initial implementa-
tion. Gradually, a larger part of the specification can be
implemented and tested. This will be explored in future
work.
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A. Appendix: Python Code
Listing 14 provides a Python code fragment for "ISer-
vice.interface" from Listing 3 and "IService.params" from
Listing 6. This code creates a Petri net. It adds places
for the states, transitions, inputs and outputs. Observe
that COLA and JUICE are the only valid options for the
LoadProduct command in the Operational state.

1 def net_c_vmServicePort():
2 n = PetriNet("N")
3 def add_place(place: Place, meta: Dict[str, Any]):
4 n.add_place(place)
5 place.meta = meta
6 def add_transition(transition: Transition, meta: Dict[str,

Any]):
7 n.add_transition(transition)
8 transition.meta = meta
9 # Places

10 add_place(Place(’P_Operational_LoadProduct’, [Parameters([
"ProductName:COLA"]), Parameters(["ProductName:JUICE"
])]), {’type’: ’parameters’, ’interface’: ’IService’})

11 ...
12 # Transitions
13 add_transition(Transition(’T9_event_LoadProduct’), {’type’:

’event’, ’machine’: ’serviceMachine’,’event’: Event(
EventType.Command, ’IService’, ’vmServicePort’, ’c’, ’
LoadProduct’, [Parameter(’enum’, ’p[0]’)],
PortDirection.Provided, False)})

14 ...
15 # Inputs
16 n.add_input(’T_Operational_1_LoadProduct()’, ’T10’,

Variable(’gl’))
17 ...
18 # Outputs
19 n.add_output(’T_Operational_1_LoadProduct()’, ’

T9_event_LoadProduct’, Expression(’g.gl(p.v(["product"
]))’))

20 ...
21 return n

Listing 14 Fragment of generated Python code

14 Schuts et al.
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