
Journal of Object Technology | RESEARCH ARTICLE

Introducing automated testing to video game
development via Behaviour-Driven Development

Michael Mulder and Petra van den Bos
Formal Methods and Tools, University of Twente, Enschede, the Netherlands

ABSTRACT Game Software Engineering has emerged as a specialized field distinct from traditional software engineering,
addressing unique challenges inherent to the creative process of game development, but lagging behind in using new methods of
software engineering. This paper introduces the method of Behavior-Driven Development (BDD) to game software engineering.
BDD is popular in software engineering for modelling and testing software. In this paper, we first propose a development
process for applying BDD in game development. Then, we provide an integration of BDD tooling in Unity 3D, a major platform
for game development. Next, we present a framework for identifying and categorizing game behaviours, to cater for modelling
game behaviours in BDD scenarios. Finally, we show applicability of these three contributions on a real-world case study.

KEYWORDS Behaviour-Driven Development, video game development, automated testing, software engineering

1. Introduction
The gaming industry has emerged as a prominent sector, marked
by a compounded annual growth rate of 13% and a projected
revenue exceeding $366 billion in 2023 (Ballhaus et al. 2022;
Helplama.com 2023). Game Software Engineering is a growing
domain that has evolved distinctly from traditional software
engineering paradigms. While plenty of research has been done
to improve traditional software development methods, game
software engineering lags behind (Chueca et al. 2024). However,
the widespread occurrence of bugs and crashes continues to cast
a shadow over the user experience within this thriving industry
(Murphy-Hill et al. 2014). While some bugs may be innocent,
such as deformed visuals, bugs that affect the functioning of
a game may reduce the game experience significantly, or even
prevent a player from playing the game again, e.g. when a level
cannot be completed, or when progress cannot be saved.

Nevertheless, game developers often opt to deviate from
standard software development techniques, and in particular
(structured) testing, because they see game creation as an art, not
a science, and testing as a waste of money and time (Politowski

JOT reference format:
Michael Mulder and Petra van den Bos. Introducing automated testing to
video game development via Behaviour-Driven Development. Journal of
Object Technology. Vol. 24, No. 2, 2025. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2025.24.2.a5

et al. 2022). If tests are performed, then this is focussed on
testing the fun-factor (Politowski et al. 2021), game rule balance,
user experience, and emotional appeal (Kasurinen et al. 2014).
To this end, methods such as user research and play-testing are
applied (Mirza-Babaei et al. 2020).

In traditional software engineering, Behavior-Driven Devel-
opment (BDD) has been broadly adopted, and is becoming an
established industry practice (Farooq et al. 2023; Binamungu &
Maro 2023). BDD is an agile development approach for mod-
elling and testing software, and consists of three phases. In the
discovery phase, stakeholders brainstorm about concrete exam-
ples of system behaviours, e.g. starting from an abstract feature
description such as a user story. Then, in the formulation phase,
these examples are consolidated as scenarios, written in natural
language, often structured according to a so-called Given-Then-
When style as prescribed by the semi-formal Gherkin standard.
In this way, the scenarios function as small models for system
behaviours, that are easily understandable because of use of
natural language. As a last step, the scenarios are transformed
to automated test cases. This step is supported by existing tools
like Cucumber (Cucumber 2025), and Gauge (Gauge 2025).
When these tests are created before writing code, BDD also
is a Test-Driven Development approach (Al-Saqqa et al. 2020;
North 2006).

In this paper, we investigate how BDD can be integrated in
game development. BDD is interesting and relevant for game

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.2.a5

development for the following reasons. First, BDD’s focus
on system behaviour, rather than units of code, resonates with
the natural approach of testing games, mirroring the manner
in which humans assess games. Second, BDD empowers both
programmers and non-programmers, e.g. game artists, to be
involved in the development process, and to engage in effective
communication about game behaviours. This helps in reducing
misunderstandings between the different stakeholders, and in
discovering relevant details that programmers would otherwise
decide themselves about, while the product owner should have
been involved. Lastly, since scenarios are automated with tests,
BDD is an aid for identifying bugs that may be missed by current
manual, exploratory techniques such as play-testing.

The key contributions of this paper are as follows:

1. We provide a comprehensive development process that inte-
grates BDD with game development practices. It includes
the BDD phases of discovery, formulation, and automa-
tion, but also allows for game development practices like
prototyping and play-testing. This way we balance artistic
freedom from game development with rigorous software
development.

2. We implemented the tool UnitySpec: an open-source ex-
tension for Unity 3D, based on the BDD tool SpecFlow.
Unity 3D is a popular game development platform (Chia
et al. 2020), a.o. because it can be used to create many
different types of games, is multi-platform, and is available
for free. Also, it was used in our case study (our fourth con-
tribution). UnitySpec enables BDD test automation to be
applied directly within Unity 3D. Our choice for SpecFlow
is based on our comparison of available BDD tools.

3. We introduce a framework for categorizing game be-
haviours into three levels of complexity: basic behaviours,
singular interactions, and complete game elements. Com-
plex behaviours need to be described on a higher level of
abstraction. Hence, our framework aids in recognizing
game behaviours, and in identifying at what abstraction
level the corresponding BDD scenario should be written.
This helps in obtaining BDD scenarios of good quality.

4. We apply our Behaviour-Driven Game Development pro-
cess, our tool UnitySpec, and our Game Behaviour Frame-
work on a real-world case study of a game developed in
a governmental institute in the security domain. We eval-
uate the framework by applying it on the game, and we
evaluate the process and UnitySpec via interviews with the
development team of the game.

We note that this paper is accompanied by an artefact (Arte-
fact 2025), that includes UnitySpec and detailed research results
for the framework and case study. UnitySpec is also available
as open-source software on GitHub (UnitySpec 2025).

Related work. The state of testing in video games is inves-
tigated in (Politowski et al. 2021, 2022): there is a degree of
resistance to automated testing for games, because it is seen
as “a waste of time and money”. Also, game development

processes lack well-defined testing strategies, and a focus on
the fun-factor of games. A common test strategy in game de-
velopment is play-testing; in (Mirza-Babaei et al. 2016, 2020)
play-testing is shown to be cost-effective. In (Kasurinen &
Smolander 2014) it is analyzed how game development orga-
nizations approach the testing of their products: exploratory
and usability testing are most common, while technical qual-
ity is only a second concern. Our approach is able to detect
these technical issues, and hence reduce bugs and delays in
development.

The tool Cukunity (Freitas 2013) provides Cucumber-like
BDD support for Unity 3D games. Cukunity is run from the
terminal, and does not offer integration with Unity. The tool has
not been maintained since 2013, and can only be used to test
games that run on outdated phone operating version (Android
2.x or iOS 5.x). Also, Cukunity provides an API with only
limited support for dealing with Unity 3D game structures, such
that it will surely lack support for current Unity 3D games.
Moreover, Cukunity runs as a standalone tool, and uses Ruby as
its language for test implementation. Unity developers are used
to working with the IDE that Unity provides, and the language
C# as scripting language. This will make adoption of Cukunity
by Unity game developers unlikely. Our tool runs within Unity
3D, so that all Unity 3D game structures can be used directly,
and uses C# for test implementation.

We note that above works investigate the state of testing in
game development, with a specific focus, e.g. on play-testing
or on providing a(n outdated) tool. In this paper, we provide
a comprehensive approach: a combination of a process, a tool,
and a game behaviour classification framework, for supporting
and easing the application of BDD in game development from
several different angles. We include existing game development
methods, such as play-testing, into our automated testing ap-
proach. This way, our approach aims at catching more bugs
than in standard game development approaches, so that these
bugs do not bug the users that pay for playing a game.

2. A process for Behaviour-Driven Game Devel-
opment

In this section we propose a process that integrates game de-
velopment with Behaviour-Driven Development (BDD). We
first find out, via existing literature, what makes game develop-
ment unique, and different from standard software engineering.
Our process should include these unique characteristics. Af-
ter that, we outline how BDD fits into agile in general, and
in Test-Driven Development (TDD) specifically. We include
TDD in our process because of its strong correlation with BDD,
and our goal of improving testing in game development. Then,
we discuss our new process that integrates all these elements.
Finally, we discuss the benefits and drawbacks of our process.

2.1. Unique aspects of game development

In this subsection we investigate via literature what game devel-
opment entails, and what unique traits for game development
should be included in a process.

2 Mulder and van den Bos

Experimentation and prototyping Game developers consider
their work as a means of expression, and see developing games
as a creative process. Many ideas may be generated in the
beginning, for which prototypes are developed. Then, only
a few prototypes are selected to be implemented in the game
(Kasurinen & Smolander 2014). Implementation of prototypes
is required, because prototypes are usually unpolished artefacts
that should be deleted after the experimentation phase.

Also in (Lewis & Whitehead 2011), the authors conclude
that the key to a good game design is the constant experi-
mentation of new features instead of preset requirements and
best practices. Additionally, from interviews with practitioners
in Massive Multiplayer Online Games it was concluded that
“paper-prototyping” is essential for game development (Daneva
2014). We note that experimentation fits well in the iterative
way of working in an agile development approach. In practice,
agile-like approaches are already used in game development
(Kasurinen & Smolander 2014).

Fun-factor and user-experience via play-testing The main
characteristics of a good game design are the fun and enjoyment
players of the game experience (Draper 1999; Callele et al. 2006;
Hooper 2017). Game developers focus on play-testing (Daneva
2014; Mirza-Babaei et al. 2020; Santos et al. 2018), since hu-
mans, and especially testers with much experience with and
intrinsic knowledge about games, can much better assess this
than computers (Politowski et al. 2021). Also, user-feedback
from, and collaboration with, players (i.e. users) is critical for
development (Daneva 2014).

Lack of attention for functionality While in traditional soft-
ware engineering there is much focus on delivering features
(functionality), there is little attention for functionality in game
development practices (Politowski et al. 2021; Lewis & White-
head 2011; Hooper 2017). In game development, third party
engines and platforms may be used to minimize (functionality)
bugs, and required effort to implement functionality in soft-
ware.(Kasurinen & Smolander 2014). However, use of such
platforms and other applied approaches like play-testing, are
not sufficient to prevent numerous bugs in games (Murphy-Hill
et al. 2014; Politowski et al. 2021).

Conclusion From literature we conclude that a process for
game development should take into account the importance of
the fun-factor and enjoyment of games, and allow for exper-
imentation. The employed methods in game development to
achieve this are prototyping, play-testing, and idea generation
and selection. Hence, a process for game development should
include these methods. An agile approach would fit well with
the experimental nature of game development. Automated tests
for functionality will catch bugs not found via play-testing.

2.2. Processes for Agile, TDD, and BDD
In this subsection we summarize background on the SCRUM
agile approach, test-driven development, and Behaviour-Driven
Development, to define a new process for game development in
the next subsection.

We use SCRUM as a base for our new process, since SCRUM
is the most common agile approach used in practice (Srivastava

et al. 2017). SCRUM has the following three phases (Al-Saqqa
et al. 2020):

1. Define: The general objectives are outlined and the re-
quired team, tools, and resources are indexed. Also, a
backlog is created with features, often formulated as user
stories.

2. Sprints: This phase consists of a series of sprints, executed
by the team, each adding value for the user to the system.
Sprints have a fixed length of 2 to 4 weeks.

3. Release: When the backlog features have been achieved,
the implemented system is prepared for release.

The sprint phase consists of the following sub-phases:

1. Planning The team creates a planning from features from
the backlog.

2. Development This phase takes the majority of the allo-
cated time for the sprint. The team implements each of the
planned features of the system. Also, the team holds daily
meetings, called stand-ups, to discuss progress.

3. Review The team analyzes and collects feedback on its
sprint output, and reviews its process and collaboration.

Since, SCRUM does not prescribe how development should
be done, we study Test-Driven Development (TDD), for its
method-likeness to BDD (since BDD originates from TDD
(North 2006)). TDD takes the following steps for each feature
(Al-Saqqa et al. 2020):

1. Write tests: Write automated tests for the feature.

2. Test: Run all test cases to check failure (because the feature
has not been implemented yet).

3. Implement: Write the code that implements the feature.

4. Test: Run all test cases to check that the feature has been
implemented correctly, and that there is no regression.

5. Refactor: Refactor to improve code structure for maintain-
ability.

6. Test: Run all tests to check that there is no regression.

While TDD starts with creating tests, BDD starts with writing
scenarios. A main benefit is that scenarios can be formulated
to match closely with user requirements, while tests tend to be
much closer to the low-level structures of the code, which may
result in tests deviating from the user requirements.

BDD prescribes the following steps (Cucumber documenta-
tion 2025; Nagy & Rose 2018, 2021):

1. Discover: The team discusses the feature: concrete exam-
ples should be generated, and they should reach agreement
on the details of what should be implemented.

2. Formulate: Document the examples using scenarios.

3. Automate: Create automated tests from the scenarios.

Introducing automated testing to game development via Behaviour-Driven Development 3

Define Release

Sprint

Pl
an

nin
gReview

Develop

Feature

Idea clear? Create prototypes

Discover examples Play-testing

Formulate scenarios

Create tests from scenarios

Execute all tests

Implement feature

Execute all tests

Refactor

Execute all tests

Idea generation
and selection

Play-testing

Color legend:
Agile SCRUM

Game development
Behaviour-Driven

Development
Test-Driven
development

Feature selected No

Yes

Fail

Pass

Pass

Fail

Pass,
feature
done

Fail

Figure 1 BDD game development process

The results of these three steps are scenarios and tests. TDD
can then be continued from step 2. Listing 1 shows an example
BDD scenario. We further discuss this example, and details on
scenario formats and automation tools in section 3 and section 4.

The BDD philosophy (Nagy & Rose 2018) stresses the impor-
tance of collaboration of different roles within the team (Lenka
et al. 2018). Specifically, three roles, also called the “Three
amigos”(Nagy & Rose 2018; Cucumber documentation 2025).
These three roles are (Pyshkin et al. 2012): the product owner,
the tester, and the developer. The product owner is concerned
with the providing value to the user through the created system,
the tester is skilled in finding edge cases, and the developer can
see the details of how a requirement can(not) be implemented
in the system. They should all three be involved in discovery
and formulation.

2.3. Process for behaviour-driven game development
Figure 1 shows the new process that we define for behaviour-
driven game development. Below we explain this proces, and
explain how it addresses the unique traits of game development,
as discussed in subsection 2.1.

The new process includes the phases of SCRUM as a basis
(in yellow), to take into account the experimental nature of
game development, that requires flexibility and adaptation. The
bottom circle depicts that multiple sprints are executed. In the
development phase of a sprint, each feature of the sprint is
implemented, according to the top circle. In the boxes on the
right we elaborated what happens when implementing a feature.

In particular, upon selecting a feature from the sprint, the
three amigos determine whether the idea of the feature is clear
enough to be worked out into examples and scenarios. We
note that this is no standard step in BDD, but we introduce
this to decide whether we need game development steps (in
red) to clarify the idea, or can continue with BDD (in blue)

straightaway.
If the idea is not clear, we apply the game development

steps (in red) of prototyping and play-testing. This way, we
explicitly cater for the creative nature of game development, and
its emphasis on fun and enjoyment, that is already facilitated
for with prototyping in current game development processes.

Then, if the idea is clear, the BDD process (in blue) is exe-
cuted: discover examples, formulate scenarios, and create tests
from scenarios. Here we use BDD to ease and facilitate the
creation of automated tests. In particular, the examples can be
matched with the prototypes that were made (if any), and the
idea for the game that this feature is about. After, the game
design can be expressed in natural language BDD scenarios,
such that all relevant stakeholders, including (non-technical)
game designers can stay involved. Because of the shared un-
derstanding obtained from formulating the scenarios, the tester
(or developer) of the game development team should be able to
relatively easily create tests that match this understanding.

After creating the tests, the TDD process follows (in green),
such that the feature is implemented and refactored, while tests
are run to detect any introduced bugs. This ensures that the tests
are kept up to date, and that the tests keep being used until the
feature is done. Also, if tests needs updates, the updates are
relatively little work. When the refactored implementation is
done, and all tests pass, it is decided that the feature is done.

We then return to the development phase of the sprint (in
yellow), where a next feature may be selected, or, at the end
of the sprint, the review phase is entered. This phase includes
game development steps (in red) play-testing, such that fun
and enjoyment is tested each sprint. Also, to again cater for
experimentation, and to specifically allow creation of ideas, we
include a step for this in the review phase. From the generated
ideas, a selection of viable ideas is made, so that these can be
added as features to the backlog, and can be implemented in

4 Mulder and van den Bos

some next sprint(s).

2.4. Trade-offs of proposed process

A main argument of game developers against testing is that
it costs time that would otherwise be spent on developing the
game. Table 1 lists some important benefits and drawbacks of
our process, and in particular of applying Behaviour-Driven
Development for game development. Below, we use this table
to reason about the time argument.

In the drawbacks column all elements cost time: meetings
need to be held, and scenarios and test cases need to be created
and maintained. However, each of the corresponding benefits
also indicated where spent time may be reduced:

– The communication in meetings will help to prevent mis-
understandings, that would have lead to work being redone
or being unnecessary at all.

– Scenarios provide information that may aid the developer
to implement a feature more quickly, than if he would have
needed to find out details himself.

– When the automated tests are run, this helps in discovering
bugs early, when it is cheaper and less time-consuming to
solve them. Moreover, late discoveries of discrepancies
between what was expected to be implemented and what
has actually been implemented are prevented because of
having test cases that test the agreed behaviour as described
in a scenario.

– Scenarios provide documentation that captures the knowl-
edge that would otherwise reside only in people’s heads.
With scenarios, anyone can read about the implemented
behaviours by himself, while without any such documenta-
tion, it would involve finding the people that know how it
works, and discussions with those people.

– BDD will help to correctly implement complex game situ-
ations, e.g. by expressing complex conditions or rules in a
BDD scenario. For checking simple game details, e.g. the
color of an object, BDD should not be used. Such simple
details could already be covered by play-testing.

We note that introducing a team to BDD in general, and our
new process in particular, will cost a significant time investment
at the start. Time for designing and testing behaviours will
be spent upfront, while only later in the process, the issues,
prevented by this design and testing, would have arisen.

Also, we discuss arguments for using BDD in any develop-
ment process here, while benefits and drawbacks may be very
specific to e.g. the game being developed, or the experience of a
team member. We think that our proposed process is especially
worthwhile the time investment for complex games.

In section 5 we discuss abstraction levels for game be-
haviours. We think that for more abstract (and usually more
complex) behaviours it is especially useful to apply the full
process. For very simple features, e.g. adding a button to the
user interface, steps could be skipped. The discussion of devel-
opment processes in this section should provide helpful insights
to make an informed decision.

Benefits Drawbacks

Less misunderstanding be-
tween team members and
stakeholders

Meetings to discover ex-
amples and formulate sce-
narios for all features

Scenarios provide guidance
for implementing features

Scenarios need to be for-
mulated

The test cases of a scenario
provide proof that the scenario
has been implemented as spec-
ified

Test cases need to be cre-
ated

Scenarios provide documenta-
tion

Scenarios and tests need
maintenance

BDD helps to deal with the
complexity of games

BDD costs too much effort
for simple game details

Table 1 The main benefits and drawbacks of the proposed
new process of Figure 1.

3. Selecting a BDD tool for integration with
Unity 3D

To select a suitable BDD tool for integration with Unity 3D, we
compared the five tools of Table 2. These tools are open-source,
support C#, and were available and maintained at the time of
the research (Mulder 2024), so that the tool could be integrated
in Unity 3D.

For ‘BDD tools’ we consider tools that offer some specifi-
cation language (i), a binding method (ii), and test generation
(iii). The specification language enables description of tests or
scenarios in a format that is easily readable for non-technical
experts, e.g. by using natural language. The binding method
is a templating system that facilitates the transformation of the
specification parts into test code. The tool generates test code
automatically by applying the bindings on the specification.

As discussed in related work, Cukunity is not suitable for
Unity 3D game developers, and in particular does not support C#,
so that it cannot be integrated in Unity 3D. We note one positive
point about Cukunity: it supports default step implementations.
UnitySpec does not have this, hence, this is to be considered in
future work.

Below, we compare the BDD tools of Table 2 on specification
language, their binding method, and usability properties of
tools, like documentation and user community. In particular, for
specification languages, we evaluate whether game behaviours
can be formulated in the language, and whether the language is
something Unity 3D developers would be familiar with.

Concordion Concordion is an open-source tool for automat-
ing “Specification by Example”, a way of working supported by
BDD. Concordion enables expressing specifications without a
predefined structure. It supports HTML for specification writing
for C# code (while it also offers Markdown in Java). Instead
of matching structured steps to definitions, Concordion uses
annotations within the specifications themselves. This approach

Introducing automated testing to game development via Behaviour-Driven Development 5

Tool name Description Specification
format

Bindings URL

Concordion Write executable specifications in a wiki format HTML Inline https://concordion.org

FitNesse Fully integrated standalone wiki and acceptance
testing framework

Tables Table headings https://fitnesse.org/

Gauge Run specifications written in Markdown Markdown Annotations https://gauge.org

SpecFlow Use annotation-based bindings from feature files
to target language

Gherkin Annotations Available at time of re-
search; currently end-of-life

Xunit.Gherkin.
Quick

Use annotation-based bindings from feature files
to target language

Gherkin Annotations https://github.com/ttutisani/
Xunit.Gherkin.Quick

Table 2 Compared BDD tools

allows users to view specifications in a wiki-like environment,
presenting a more user-friendly experience for non-technical
team members who can browse a website with regular text and
embedded examples. However, this flexibility also has the po-
tential to introduce ambiguity. While viewing is very accessible,
using HTML to write scenarios may distract or even hinder
users from the actual formulation of scenarios.

FitNesse FitNesse is a standalone wiki and acceptance testing
framework. Its core is written in Java, but it can run tests in any
language via the Fit or SLIM protocol. Its tests are expressed
as tables of input data and expected output data. The table title
refers to the class under test, while the column headers refer
to methods on this class. Each row in the table is an example
that is executed. Like Concordion, FitNesse users write tests
in a wiki-based environment. This simplifies the interaction
for non-technical users. However, FitNesse enforces that all
tests are written in tables. This might work well for data-driven
systems, but we expect it to be challenging to express game
behaviours in a table, e.g. actions like moving the player, and
picking up an object have to be formulated as data values.

SpecFlow and Xunit.Gherkin.Quick Cucumber (Cucumber
2025), a BDD tool for Java, has several extensions in different
languages, most notably, SpecFlow and Xunit.Gherkin.Quick for
C#. Like Cucumber, both tools support Gherkin as specification
language. This language is a plain-text, structured language,
which allows specifying a scenario as a sequence of a Given-
, When-, and Then-step. It uses annotations with regex-like
patterns to bind a method for executing a step to the natural
language step itself.

Xunit.Gherkin.Quick is a lightweight framework with usage
documentation on their GitHub page.

At the time of research, SpecFlow had a large community
for support and documentation, and offered plugins for IDE
integration. However, Tricentis, the company that developed
SpecFlow, decided to end the support of tool1. We note however
that the Reqnroll tool offers the SpecFlow functionality as a
‘reboot’ of the SpecFlow tool2.

1 https://support-hub.tricentis.com/open?number=NEW0001432&id=post
2 https://reqnroll.net/

Gauge Gauge is an open-source test automation framework
that supports C#. Gauge specifications are written in a syntax
similar to Markdown. A specification exists out of a specifica-
tion heading, optionally tags and comments, and scenarios. A
scenario has a name, optionally tags and comments, and steps.
Steps can have parameters. Gauge also allows defining con-
cepts, which are composite steps. Gauge does not diferentiate
between Given, When, and Then steps, like in Gherkin; all steps
are of the same kind. This gives more freedom in the defining
steps, but may reduce precision and clarity in specifying BDD
scenarios. Gauge links specifications to code using annotations.
It can run tests in an editor or via the command-line. It shows
test results in an HTML-dashboard or the command-line.

Conclusion on selection of BDD tool FitNesse uses table
headings for input and output data, which make it difficult
to express behaviours, so we deem this unsuitable. Further,
Concordion uses HTML for expressing the specification, which
may hinder writing of specifications; MarkDown would be
much easier to use, because it requires use of less syntax, but is
not supported in the C# version of Concordion. Also, we expect
that game developers of Unity 3D are unfamiliar with HTML.
So we also deem Concordion unsuitable.

Then Gauge, and Cucumber’s C# variants SpecFlow and Xu-
nit.Gherkin.Quick remain. All these tools offer a specification
language with steps, and lightweight annotations as binding
method. SpecFlow and Xunit.Gherkin.Quick use Gherkin, so
distinguish between Given, When and Then steps. We think
this structure can be especially beneficial for specifying game
behaviours, since these can have lots of different game events,
and complex conditions and rules. In the Given-step, the con-
dition for a game scenario or event can be expressed, while
with the When-step the events or application of a game rule
can be specified. By requiring the formulation of a Then-step,
also game developers unfamiliar to testing, will express the ex-
pected results explicitly. This is important, since a test without
any check on expected result will detect few bugs, e.g. it will
maybe catch a crash of the game, but no violations of game
rules. At the time of research (Mulder 2024), we preferred for
SpecFlow over Xunit.Gherkin.Quick, because the community
support and IDE integration of SpecFlow was helpful for inte-

6 Mulder and van den Bos

https://concordion.org
https://fitnesse.org/
https://gauge.org
https://github.com/ttutisani/Xunit.Gherkin.Quick
https://github.com/ttutisani/Xunit.Gherkin.Quick
https://support-hub.tricentis.com/open?number=NEW0001432&id=post
https://reqnroll.net/

gration in Unity 3D. Because we copied SpecFlow into our tool
(see subsection 4.4 for details), SpecFlow’s end of life has no
effect on the functioning of our tool.

4. UnitySpec: Behaviour-Driven Development
tooling for Unity3D

This section introduces UnitySpec, our open source tool that sup-
ports Behaviour-Driven Development in Unity 3D. UnitySpec
builds upon the foundation of SpecFlow. Next, we first intro-
duce both Unity 3D and SpecFlow in more detail. Then we
describe the workflow of our tool UnitySpec, we discuss its
design, and the obstacles we overcame in its implementation.
Lastly, we describe a validation of UnitySpec with two sample
BDD scenarios. We apply the tool in the case study of section 6.

We note that the artefact (Artefact 2025) includes instructions
to install and run UnitySpec, and contains the two samples dis-
cussed in subsection 4.6. Moreover, it includes a video showing
the test execution of the scenario from Listing 1. UnitySpec is
also available as open-source tool on GitHub (UnitySpec 2025).

4.1. Introduction to Unity 3D
This introduction is a summary from online resources (Unity
2025; Conceptartempire.com 2025; Juegostudio.com 2025).

Unity 3D is a versatile platform for creating interactive, real-
time 3D content, running on multiple operating systems and
platforms. Unity is not only used for video games but also for a
wide range of applications including simulations, virtual reality,
augmented reality, film, architecture, and education.

Unity 3D is a game engine, offering a robust environment
for creating and manipulating 3D graphics, physics, sound, and
other multimedia elements. Unity has a flexible editor that
allows developers to design, edit, and test their projects in real-
time. This real-time aspect is particularly crucial, as it means
creators can see the results of their work immediately, making
the development process more dynamic and iterative.

The scripting in Unity 3D is primarily done using C#. Unity’s
documentation, tutorials, and community further support its
user base, providing resources for learning and problem-solving.
Developers can exchange assets, plugins and tools for Unity,
allowing for rapid prototyping and production.

4.2. Introduction to SpecFlow
In SpecFlow, BDD scenarios are formulated in natural language,
structured according to the Given-Then-When style as used in
the Gherkin language. The Given step prescribes a context of,
or condition on the system. It may be omitted if the system can
show the behaviour of the scenario from any possible context. If
multiple conditions need to be satisfied, these can be combined
with “And”. The When step consist of one or more action that
prescribe the behaviour of the scenario. If multiple actions are
described, the action sentences are connected with “And”, which
denotes that the actions happen in sequence. The Then step
prescribes the outcome or result after the When actions. If there
are multiple outcomes, they can all be stated using link word
“And”. If actions and/or outcomes comprise of combinations of
specific values, these can be given in an accompanying table.

1 Feature: WASD moves player
2 As a user
3 I want to be able to move using wasd-keys
4 Scenario Outline: Basic movement
5 Given I load the level "MoveTest"
6 And I have a position
7 When I press <key> for 1 second
8 Then I have moved <direction>
9 Scenarios:

10 | key | direction |
11 | w | forward |
12 | a | left |
13 | s | backward |
14 | d | right |

Listing 1 Example feature file with a BDD scenario about the
behaviour of moving the player

Listing 1 shows an example BDD scenario. Besides the
Scenario itself, in Given-When-Then format, it also gives
the scenario a name: “Basic movement”. The scenario is
called “Scenario outline” because it has parameters <key> and
<direction>, which can have any of the value-pairs from the
table listed for “Scenarios”. Listing 1 also contains the descrip-
tion of the feature the scenario was formulated for, in terms of a
feature name, and a user story. User stories are often formulated
in the following format: As a [user], I want to [goal], in order to
[reason], where a specific user, goal and reason are given. The
[reason]-part of the sentence is optional. A feature file consists
of a feature, and one or more scenarios.

Given some feature file, SpecFlow can generate bindings:
place holder code for each step of a BDD scenario of that file.
The user of the tool needs to replace the place holder code
by code that executes the system in accordance with the step.
The bindings are also called step definitions. SpecFlow can
automatically combine bindings into a test case that executes a
particular BDD scenario from the feature file.

4.3. Workflow in UnitySpec
A user can add UnitySpec to an existing Unity project through
the Unity Package Manager. A user of UnitySpec typically takes
the following steps:

1. Write scenarios: the user first creates a new feature file
via the Unity menu. Then the user writes BDD scenarios
in this feature file, using the Gherkin language.

2. Generate test files: the user presses the generation button
in the UnitySpec window. This triggers generation of files
with test cases. Such a test case consists of calls to step
definitions, and has tags for referring back to the steps
from the feature file. Also files with method headers for
step definitions are generated.

3. Write step definitions: Because the generated step def-
inition methods do not have an implementation, the user
needs to add the code for executing a step. Also, the user
may change the return type of the step definition.

Introducing automated testing to game development via Behaviour-Driven Development 7

4. Run tests: the user invokes the running of tests using
Unity’s own test runner. UnitySpec then outputs which sce-
nario steps have been executed and which corresponding
step definition methods has been called.

Note that above steps match with the steps “Formulate sce-
narios”, “Create tests from scenarios” (in two steps), and “Run
all tests” from Figure 1.

4.4. Design of UnitySpec
UnitySpec is based on the last alpha-release of SpecFlow, at the
time of creating UnitySpec, namely SpecFlow version 3.9.74,
which was available on GitHub at that time.

Since Unity 3D does not provide testing capabilities by itself,
we use the Unity Test Framework in Unity 3D. The Unity Test
Framework is a tool within the Unity 3D ecosystem that is built
upon the NUnit library, a well-known open-source unit testing
library for .NET languages. The framework facilitates testing in
both Play Mode and Edit Mode. Play Mode tests are executed in
the application’s runtime environment whereas Edit Mode tests
are executed directly in the editor’s environment. The advantage
of Edit Mode tests is that they are quicker, because they do not
have to launch a separate environment, and that the tools and
methods of the Unity Editor are available. With this framework,
the user of UnitySpec can implement the step definitions.

Currently, UnitySpec has been developed for Windows. In
future work we would like to make it multi-platform, like Unity.

UnitySpec can be run in Unity, because it is a Unity package,
i.e. a plugin that can be loaded in Unity 3D. To put SpecFlow in
such a package, we adjusted SpecFlow’s project structure, de-
pendencies and code. Therefore, we could not design UnitySpec
as a fork of SpecFlow, but instead needed to copy SpecFlow’s
files into the Unity package and adjust them accordingly.

Unity 3D requires a meta file for each of SpecFlow’s files
that we included. We therefore created C# libraries of the part
of SpecFlow’s code that did not need to depend on Unity. We
could then import these libraries in the Unity package, and this
way avoid creating meta files for those library files.

UnitySpec consists of the following components:

– The UnitySpecWindow includes code for supporting .fea-
ture files, for defining user file settings, and for the custom
window with the generation button. The code is included
directly in the Unity package of UnitySpec.

– The Generator library implements the generation of the
test files. It parses the feature files, and generates all test
files. The generator is set up as a library: it is compiled
separately from Unity, and included as a .dll file.

– The Runner contains code for running the test cases. The
generated test case files call the Runner to match steps
to their definitions for executing these definitions. The
Runner also generates the output seen in the Unity test
execution window. Since the Runner depends on Unity for
logging and asserting, it is included in the package.

– The General component contains utility code shared be-
tween Runner and Generator. It is included as a library.

We remark that the majority of UnitySpec’s code has not
been written by ourselves, because most code originates from

SpecFlow. Our contribution in creating UnitySpec lies promi-
nently in organizing, configuring, and adapting SpecFlow’s
code, such that it functions as a Unity package in Unity 3D.

4.5. Conquered obstacles in implementing UnitySpec
We solved three main obstacles for creating UnitySpec:

1. SpecFlow is written to be used on C# class libraries. A
Unity project is an entirely different kind of project, even
though both use C#. To resolve this, we adjusted the project
discovery and file generation. This also guided the decision
to create a new project instead of forking SpecFlow.

2. The Unity Testing Framework works differently from regu-
lar C# testing frameworks. SpecFlow expects all methods
to have a return type of void or Task. However, the Unity
Testing Framework uses methods with return-type void or
IEnumerator. This is mostly used to allow tests to wait
for one or more frames or seconds. This means that step
definitions should be able to have this return type. To allow
for this, both the Generator and Runner had to be adjusted.

3. UnitySpec has been based on SpecFlow 3.9, which supports
.Net Core 2.1 and 3.1. Meanwhile, Unity has the option
to use .Net Standard 2.1 and .Net Framework. In order
to support both UnitySpec has to target .Net Standard 2.0.
This change made it impossible to use the code-generation
library from SpecFlow. This means that all code generation
had to be rewritten to use Roslyn instead, which is included
in .Net Standard. For this change, some features were also
no longer available, like the null-coalescing operator. This
change required some minor rewrites.

4.6. Samples for UnitySpec
We tested UnitySpec in Unity 2022.3 for both the .Net Standard
2.1 and .Net Framework API. In particular, we executed Uni-
tySpec on two sample feature files: the sample from Listing 2,
which is a classic BDD example about addition, and the sam-
ple from Listing 1 describing player movement. We took the
workflow steps of subsection 4.3.

From the addition sample we learned that we can successfully
create feature files, and press the generated button, such that
UnitySpec parses the feature files and generates test files in
readable layout. In particular, there is a test case for the Addition
scenario, that compiles successfully. When running the test
case, correct test execution output is obtained. This indicates
that UnitySpec was able to correctly bind the test cases with
step definitions, and that the output has the method calls and
corresponding steps from the scenario.

With the player movement sample we test two special ca-
pabilities of UnitySpec: the usage of a scenario outline, and a
step definition with return type IEnumerator. We learn that
this scenario outline is successfully parsed and results in step
definitions with the expected parameters. Test execution, with
the IEnumerator step definitions, is successful, and the output
has the expected values from the table inserted in the scenario
steps and method calls.

8 Mulder and van den Bos

1 Feature: Addition
2 Scenario: Add two numbers
3 Given the first number is 50
4 And the second number is 70
5 When the two numbers are added
6 Then the result should be 120

Listing 2 Classic BDD scenario

Some relevant implementation details for the scenario of
Listing 1 in UnitySpec are as follows. In the Update function
that executes code for the game every frame (the game loop),
we use a custom input control object, such that either the imple-
mentation of the When step can provide a key press, or a normal
keyboard. Checks for Given or Then steps can be performed
by inspecting properties of relevant game objects, e.g. with
GameObject.Find("Player") the game object of the player
is retrieved such that its position, and hence its relative move-
ment can be determined. In Listing 3 we provide an excerpt
of the implementation of a step definition for the scenario of
Listing 1 in UnitySpec.

5. Game Behaviour Framework
To integrate BDD practices into game development, a first step
is to find out how BDD scenarios can be used for describing
game behaviours. We note that the quality of BDD scenarios,
written for systems in any application domain, are always de-
pendent on the practitioner writing the scenarios (Nagy & Rose
2021). However, one generic key element for good quality BDD
scenarios is the principle of conservation of proper abstraction
(Binamungu et al. 2020; Bezsmertnyi et al. 2021). Here a golden
mean between too abstract and too concrete has to be found. Our
game behaviour framework aims to support in finding the right
abstraction level of an identified game behaviour. Therefore, we
created a categorization of behavioural patterns in games.

In the process of Figure 1, this categorization may help
to discover relevant examples of game behaviours, and will
especially help to formulate scenarios of good quality, which
may significantly impact the quality of the implementation and
tests developed in the next steps.

We took the following steps:

1. Examine example projects to identify game behaviours.

2. Extract a categorization for game behaviours from the
found behaviours.

3. Develop scenarios that articulate these behaviours.

In the first step, we collected game behaviours from projects
used in Unity’s “Create with Code” course (Unity 3D course:
Create with Code 2025). We chose this course for three reasons:

– The course aims to be a general introduction, showing
different kinds of games with different behaviours;

– The course builds a number of games from scratch, giving
insight and access to all components of the games;

– The course is structured in a way that introduces one be-
haviour at a time to each of the games, this allows us to
easily extract behaviours.

The result of the first step was a database of collected behaviours,
which is provided in the artefact (Artefact 2025).

In the second step, we applied an informal form of grounded
theory (Strauss & Corbin 1994). This means that, first, we
created abstract behaviours (concepts) from our database of
behaviours. Then, we identified categories of these abstract
behaviours. The result was that we identified three categories,
which we call levels. We present these levels in subsection 5.1,
each with a list of abstract behaviours. We note that these
lists are non-exhaustive: analysing more games may lead to
more abstract behaviours. We expect that these behaviours
can be placed in one of the (generic) levels. We note that it is
impossible to identify the behaviours of all existing games. In
subsection 5.2 we discuss how to determine what the level is of
a (newly identified) game behaviour.

In the third step, we applied our framework on an example
game, and formulated one BDD scenario for each of the levels.
This way we do a first sanity check that it is possible to formulate
BDD scenarios for the identified game behaviours. We discuss
the behaviours for the example game in subsection 5.3. Note
also that in section 6, we apply our framework on the case study,
to evaluate its applicability.

5.1. Levels of game behaviours
We discuss the three identified levels of game behaviours below.

Level 1: Basic controls The first level contains very basic
behaviours. These behaviours concern only one object or asset,
or span only one frame. We give examples of abstract level
1 behaviours in Table 3. The table shows e.g. Player move-
ment, which means that one object is moved. With Independent
behaviour, it is described that an object, not controlled by the
player, performs a level 1 behaviour, e.g. moving. Furthermore,
when loading a scene or playing a sound happens in a single
frame, it is a level 1 behaviour.

Level 2: Singular interactions The second level contains sin-
gular interactions: 2 or more objects, or an object and event
interact. This interaction takes place or can be evaluated in
a single moment. Table 4 gives examples of abstract level 2
behaviours. The table includes various forms of triggers, where
something happens due to some event, e.g. an object moving.
An interaction between two objects can be e.g. collision.

Level 3: Game elements Level 3 describes game elements
which span multiple frames and concern multiple objects. The
behaviours in this level are built upon multiple behaviours from
any level, so behaviours from level 1 or 2 and even behaviours
from level 3. For example, the spawning of a Non-Player Char-
acter (NPC) may lead to more spawning of NPCs, when an
NPC reaches some location. Then, spawning may continue this
way, unless the player prevents this, or until some game over
condition is satisfied. See Table 5 for some more examples of
abstract level 3 behaviours.

Introducing automated testing to game development via Behaviour-Driven Development 9

1 [Given(@"I load the level ""(.∗)""")]
2 public IEnumerator GivenILoadTheLevel(string level) {
3 var scene = AssetDatabase.GUIDToAssetPath(AssetDatabase.FindAssets(level).First());
4 EditorSceneManager.LoadSceneInPlayMode(scene , new LoadSceneParameters(LoadSceneMode.Single));

Listing 3 Excerpt of implementation of step definition in UnitySpec

Abstract Behaviour Explanation

Player Movement Moving a player object using keys

Camera Movement Moving the camera using user input

Scene Loading Successfully load a scene

Assets Exist Check that assets are in scene at boot

Booting Starting application

In-menu Navigation Menu interactions that stay in scene

Out-menu Navigation Menu interactions that lead out of
the current scene

Independent Be-
haviour L1

Object constantly shows a level 1
behaviour without input

Persistent storage Something is stored and persists in
another level

Sound A sound plays

Spawning A new object is created

Table 3 Examples of abstract level 1 game behaviours

Level 3 is a very broad category: any behaviours above level
2 fits here. One could conceive more levels to further divide the
level 3 behaviours. The highest level would be to play the game
from start to finish. However, it is unclear how many levels
would be needed, since abstractions can be nested endlessly in
games. For a specific game it might be possible to discover
additional levels, but with this framework we aimed to keep it
generic for all games, so we stop at level 3.

5.2. Categorizing game behaviours
To apply the Game Behaviour Framework on a new game be-
haviour, we recommend asking two questions on interactions,
as shown in Figure 2. We focus on interactions, because the
interactions of a behaviour are the key for identifying its level.
If that results in doubts, one can also look at the tables with ex-
amples, to see if there is a similar abstract behaviour. When still
in doubt, one can inspect our database of concrete behaviours
(Artefact 2025), to search for similar examples.

5.3. Levels for behaviours of example game
In this section, we identify behaviours and their levels for an
example game that has a basic fight mechanic. This imaginary
game has a player, a shooting mechanic, and some enemy. Sup-
pose that the player needs to shoot (and hit) the enemy two
times to “kill” it. The following BDD scenario formulates this:

Abstract Behaviour Explanation

Independent
Behaviour L2

Object constantly shows a level 2
behaviour without input

Special Control A user interaction trigger

Colliding Two or more objects collide

Simple Condition A level 1 behaviour depends on cur-
rent state

Throwing/shooting A user interaction spawns object that
moves in a direction

Counter A counter is updated or read

Collision Trigger Something happens when objects
collide

Movement Trigger Something happens when an object
moves

Location-based
Trigger

Something happens when an object
reaches a location

Time-based Trigger Something happens due to an inter-
nal timer

View-based Trigger Something happens due to what is
in view

Table 4 Examples of abstract level 2 game behaviours

“Given an enemy in range of the player, When the player shoots
the enemy two times, Then the enemy dies”. Clearly, there is
more than 1 interaction, so it is a level 3 behaviour.

The previous scenario provides no specification of how the
shooting mechanic works. Let’s imagine our game is a first-
person shooter. We could now describe the shooting behaviour
with the following BDD scenario: “When the left mouse button
is clicked, Then a bullet is spawned from the player, And moves
in the view direction”. Table 4 has a level 2 abstract shooting
behaviour which matches with this concrete scenario.

The shooting scenario abstracts from how the view direction
is changed. We specify this as the following BDD scenario:
“When the mouse is moved left 1cm Then the view is moved
left 10 degrees”. This behaviour corresponds with the abstract
level 1 behaviour “Camera Movement” from Table 3.

6. Case study
We first introduce the subject of our case study: the serious
game Virtual Brigade. Then, we apply our game behaviour

10 Mulder and van den Bos

Abstract
Behaviour

Explanation

Independent
Behaviour L3

Object constantly shows a level 3 be-
haviour without input

Fight A fight between the player and enemy

NPC Creation Condition triggers asset creation at a
specific location

Powerup Pickup item which then has effect

Extended Condition A behaviour depends on factors be-
yond Simple Condition

Table 5 Examples of abstract level 3 game behaviours

framework on the Virtual Brigade. Lastly, we evaluate our
BDD game development process and UnitySpec, by having
the development team of the game implement a feature, by
following the steps of the process, and by using UnitySpec. We
note that with the case study we performed an evaluation only;
we did not adapt our framework, process or tool (obtained from
our research) based on evaluation results.

6.1. Virtual Brigade
The serious game Virtual Brigade facilitates training of gov-
ernmental security professionals. The game includes various
scenarios, e.g. on border control, and for securing important
events. Virtual Brigade is a configurable game. Educational
instructors create trainings in the Unity Editor, by selecting pre-
defined locations, objects, non-player characters, events, and
dialogues. The resulting serious game is then used as a training
for security professionals that need to perform their job in a
certain situation, or execute a certain task.

6.2. Applying the game behaviour framework
For applying the framework, we used the roadmap with require-
ments that was used for developing the Virtual Brigade. We
first classified the requirements with our framework, and then
reflected on its applicability with these results.

Classifying requirements Table 6 shows a selection of re-
quirements, from various roadmap categories, and their respec-
tive levels. With the requirements in the table we illustrate their

Is there an interaction?

Are there multiple interactions?

Level 1

Level 2

Level 3

Yes

No

No

Yes

Figure 2 Decision diagram to decide what level a game be-
haviour belongs in

variety. The classification of the complete list of requirements
is included in the artefact (Artefact 2025).

The first requirement describes the behaviour of loading an
airport scene, and checking if key objects, such as an immigra-
tion desk, are present. Both are Level 1 behaviours, for abstract
behaviours Booting, and Asset Exists respectively.

The second requirement is a singular interaction between
the player and the immigration desk, which cause something to
happen, i.e. taking place. Thus this is a level 2 behaviour for
abstract behaviour Special Control.

The third requirement consists of three separate behaviours:
(i) the player picks up objects, (ii) the player places picked-
up objects into his inventory, and (iii) the player moves items
from his inventory to his hands. Each of these behaviours on
their own could be classified as a level 2 behaviour (Special
Interaction). Behaviour (iii) could be more complicated, but in
this case, we believe it to mean moving items from inventory
back to the hands of the player.

We classified the fourth requirement as a level 3 behaviour
(Independent Behaviour), since no player interaction is needed
for the behaviour to occur. If we were to describe this feature
we would likely say something like “First the person is walking
according to its pattern, then it reaches the queue, it joins the
queue, moving forward as the queue does, and when it is in
front of the desk, the person walks towards the player”. This
sequence of actions motivates our choice for level 3.

The last requirement is about an appealing look. It is no
behaviour, so our framework is not applicable. A human is
better at assessing appeal than a computer, so this should not be
captured with an automated test (see subsection 2.1).

Reflection We were able to classify all 42 requirements from
the roadmap (Artefact 2025), except the mentioned appeal re-
quirement, and another one on ease of use. Based on the di-
versity of the requirements, we conclude that the framework is
rather flexible. While some requirements, on player movement
and interactive objects, clearly described game behaviours, this
was less obvious for requirements on loading visual worlds, or
the user interface.

The relatively simple questions of Figure 2 for classifying
behaviours in one of the levels helped to identify the levels, also
for the more complex and dynamic behaviours of the require-
ments on player movement and interactive objects.

Although many behaviours did not fit neatly into the pre-
defined example categories, the framework was still adaptable
enough to classify these behaviours effectively. This adaptability
is crucial in real-world scenarios where game requirements can
be highly variable. This also shows an area of improvement for
the framework: having more abstract behaviours would ease
categorization. Examples could be obtained from additional
case studies.

6.3. Applying our process and UnitySpec
To evaluate our BDD game development process, and our tool
UnitySpec, we have employed the help of the development team
of Virtual Brigade. We took the following steps:

1. Identify the three amigos among the team members;

Introducing automated testing to game development via Behaviour-Driven Development 11

Category Requirement Level

Visual worlds 1. The visual world for Schiphol exists and contains key objects Level 1: Asset Exists

Player movement 2. The player can enter an immigration desk and take place. Level 2: Special Control

Player movement 3. The player can pick up objects, place them in their “bag”, and later use them Level 3

Interactive objects 4. People can queue and walk towards the player one by one Level 3

User interface 5. There is a visually appealing menu structure based on task fields Not applicable

Table 6 Selected requirements and their levels

2. Select a feature for applying our new process;

3. Explain the process and tool to the team members;

4. Support and observe the team in creating the feature ac-
cording to the process, using UnitySpec;

5. Interview the team members to obtain feedback

We identified the three amigos based on the availability and
preferences of the team. These three amigos had experience
with game development through developing Virtual Brigade.
They used agile as a way of working, but did not apply BDD
before. For testing, they only applied some play-testing.

Then we selected an available feature from the backlog at
the time of the experiment: add a tutorial to the Virtual Brigade.
After an introduction meeting (step 3), we followed our process
for a feature from Discovery, since the idea for the tutorial
was deemed clear enough. We supported the three amigos
in formulating scenarios, since they had no prior experience
with BDD. Then we held our first set of interviews to collect
feedback from the three amigos, see Table 7. Next, we explained
UnitySpec, and gave the team time to implement the feature,
and to use UnitySpec. When the team indicated the feature was
done, we held our second set of interviews, see Table 8.

Interview results Below we discuss the main conclusions
from the interviews. To obtain these, we transcribed the inter-

Nr Aim for feedback

1.1 How they felt about the method thus far

1.2 If they felt they were able to express their expectation
of the feature

1.3 If they felt that the discussion was useful

1.4 How they felt about creating the scenarios

1.5 If the method had any impact on their confidence in
the successful implementation of the feature

1.6 What their expectation was going forward

Table 7 Aims for feedback to be gathered in interviews after
scenario formulation

views, summarized them, and then extracted below conclusions.
The interview summaries are provided in (Artefact 2025).

The three amigos indicated that the new process, despite
some initial challenges, offered considerable benefits. All three
acknowledged that the method introduced a learning curve, par-
ticularly during the initial meeting, which began with some
ambiguity. However, as the meeting progressed, clarity im-
proved significantly. The developer was not concerned with the
upfront time investment, believing it would save time in the long
run by reducing the need for ongoing discussions and rework.
The product owner valued the methodology for its ability to
bring clear definitions and structure to tasks, which is crucial for
effective implementation. The tester also saw potential, espe-
cially for larger organizations with external stakeholders, though
he noted challenges in their current context where features are
often generated internally.

A key takeaway from the interviews is the enhanced ability
of the team to express and align expectations for the feature. The
collaborative discussions during the meeting ensured that all
participants had a clear and shared understanding of the feature
requirements. This alignment reduced the risk of discrepancies
during implementation and provided a solid foundation for the
testing process. Both the tester and developer reported increased
confidence that the feature would turn out as envisioned, attribut-
ing this to the structured approach and detailed documentation
process. The developer found the scenarios particularly useful
to systematically check during implementation that each part of

Nr Aim for feedback

2.1 How the developer felt about the feature and its align-
ment with the expectations of the other team members

2.2 What the effect of the method was during development

2.3 How the team members experienced the method

2.4 If a positive/negative impact was felt due to the method

2.5 If they would use the method again

2.6 What the experience was with using UnitySpec

Table 8 Aims for feedback to be gathered in interviews after
feature implementation

12 Mulder and van den Bos

the feature was completed as intended.
Despite recognizing the initial time cost, all participants saw

value in the process for its potential to save time and improve
accuracy in the long term. The product owner and developer
expressed a willingness to use the process again, particularly
for new products or in larger teams where its benefits would be
more pronounced. However, the tester highlighted challenges
in testing: step definitions could not successfully be imple-
mented, because the Virtual Brigade had not been set up with
enough support for automated testing. There were no issues
encountered with UnitySpec itself; the tool fulfils its goal and
effectively supports BDD in game development. Overall, the
team acknowledges the process’ value in enhancing efficiency
and reducing errors, suggesting that with further practice and
adaptation, it could become an integral part of their development
process.

Learned lessons Based on our experience in this case study,
we have two recommendations for future case studies:

– Adopt the BDD game development process from the very
beginning of the project. This ensures that team members
grow comfortable in their roles, as the project is growing.
This also ensures that the project gets built with automated
testing in mind, thus ensuring that BDD scenarios can be
automated.

– Invest ample time in onboarding team members in the new
process. This prevents any initial confusions due to ambi-
guity, and ensures a clear understanding of expectations
and process, such that time is saved later on.

Threats to validity The development team only applied our
process for one feature, so we did not evaluate whether the
process will fulfill the team’s long term expectations that it will
save time and improve accuracy. Further, above learned lessons
could be different, i.e. more specific to game development and
our process, for a team that already has sufficient experience
with BDD and testing. Also, the game was a serious game, and
no entertainment game, so results for the latter may deviate.

7. Conclusions
In this paper we showed how Behaviour-Driven Development
can be integrated into game development. We proposed a
new process for behaviour-driven game development, we im-
plemented the tool UnitySpec for BDD support within game
development platform Unity, and we provided a framework to
identify and classify game behaviours for BDD scenarios. We
showed applicability of these contributions on a real-world case
study with serious game Virtual Brigade.

For future work, we are interested in doing more case studies.
In particular, we like to investigate the maintenance challenges,
when BDD is applied over a longer period of time. Also, we are
interested in whether our process can be customized to different
situations, with respect to e.g. available time, experience of
developers, and complexity of the feature. Additionally, we note
that a serious game may be different than an entertainment game,
and thus a case study on an entertainment game could yield
different results. Also, we are interested in larger games, and

whether the abstraction levels of our game behaviour framework
still apply. Finally, we would also like to validate the levels
and corresponding abstract behaviours of our game behaviour
framework on a larger set of games.

Acknowledgments
This paper is based on the master thesis of Michael Mulder
(Mulder 2024).

References
Al-Saqqa, S., Sawalha, S., & Abdelnabi, H. (2020). Agile soft-

ware development: Methodologies and trends. International
Journal of Interactive Mobile Technologies, 14, 246-270. doi:
10.3991/IJIM.V14I11.13269

Artefact of this paper. (2025). Retrieved from https://doi.org/
10.5281/zenodo.15187759

Ballhaus, W., Chow, W., & Rivet, E. (2022). Perspectives
from the global entertainment & media outlook 2022–2026:
Fault lines and fractures: Innovation and growth in a new
competitive landscape (Tech. Rep.). PwC.

Bezsmertnyi, O., Golian, N., Golian, V., & Afanasieva, I. (2021,
10). Behavior driven development approach in the modern
quality control process. 2020 IEEE International Conference
on Problems of Infocommunications Science and Technology,
PIC S and T 2020 - Proceedings, 217-220. doi: 10.1109/
PICST51311.2020.9467891

Binamungu, L. P., Embury, S. M., & Konstantinou, N. (2020).
Characterising the quality of behaviour driven development
specifications. Lecture Notes in Business Information Pro-
cessing, 383, 87-102. doi: 10.1007/978-3-030-49392-9_6

Binamungu, L. P., & Maro, S. (2023, 9). Behaviour driven devel-
opment: A systematic mapping study. Journal of Systems and
Software, 203, 111749. doi: 10.1016/J.JSS.2023.111749

Callele, D., Neufeld, E., & Schneider, K. A. (2006). Emotional
requirements in video games. In 14th IEEE international
conference on requirements engineering (RE 2006), 11-15
september 2006, minneapolis/st.paul, minnesota, USA (pp.
292–295). IEEE Computer Society. Retrieved from https://
doi.org/10.1109/RE.2006.19 doi: 10.1109/RE.2006.19

Chia, A., Keogh, B., Leorke, D., & Nicoll, B. (2020). Plat-
formisation in game development. Internet Policy Rev., 9(4).
Retrieved from https://doi.org/10.14763/2020.4.1515 doi:
10.14763/2020.4.1515

Chueca, J., Verón, J., Font, J., Pérez, F., & Cetina, C. (2024,
1). The consolidation of game software engineering: A sys-
tematic literature review of software engineering for industry-
scale computer games. Information and Software Technology,
165, 107330. doi: 10.1016/J.INFSOF.2023.107330

Conceptartempire.com. (2025). What is Unity 3D & what is
it used for? Retrieved from https://conceptartempire.com/
what-is-unity/

Cucumber - BDD testing & collaboration tools for teams.
(2025). Retrieved from https://cucumber.io/

Cucumber documentation - Behaviour-Driven Development.
(2025). Retrieved from https://cucumber.io/docs/bdd/

Daneva, M. (2014, 9). How practitioners approach gameplay
requirements? an exploration into the context of massive

Introducing automated testing to game development via Behaviour-Driven Development 13

https://doi.org/10.5281/zenodo.15187759
https://doi.org/10.5281/zenodo.15187759
https://doi.org/10.1109/RE.2006.19
https://doi.org/10.1109/RE.2006.19
https://doi.org/10.14763/2020.4.1515
https://conceptartempire.com/what-is-unity/
https://conceptartempire.com/what-is-unity/
https://cucumber.io/
https://cucumber.io/docs/bdd/

multiplayer online role-playing games. 2014 IEEE 22nd In-
ternational Requirements Engineering Conference, RE 2014
- Proceedings, 3-12. doi: 10.1109/RE.2014.6912242

Draper, S. W. (1999). Analysing fun as a candidate software
requirement. Pers. Ubiquitous Comput., 3(3), 117–122. doi:
10.1007/BF01305336

Farooq, M. S., Omer, U., Ramzan, A., Rasheed, M. A., & Atal,
Z. (2023). Behavior driven development: A systematic
literature review. IEEE Access.

Freitas, M. (2013). Cukunity : Cucumber for Unity. Retrieved
from https://github.com/imkira/cukunity

Gauge. (2025). Retrieved from https://gauge.org/index.html
(https://gauge.org/index.html)

Helplama.com. (2023). Game industry usage and revenue
statistics 2023. Retrieved from https://helplama.com/game
-industry-usage-revenue-statistics/

Hooper, S. (2017). Automated testing and validation of com-
puter graphics implementations for cross-platform game de-
velopment (Unpublished doctoral dissertation). Auckland
University of Technology.

Juegostudio.com. (2025). Unity 3D: A comprehen-
sive guide to Unity’s features and uses. Retrieved
from https://www.juegostudio.com/blog/what-is-unity-3d-a
-comprehensive-guide-to-unitys-features-and-uses

Kasurinen, J., Maglyas, A., & Smolander, K. (2014). Is re-
quirements engineering useless in game development? Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8396 LNCS, 1-16. doi: 10.1007/978-3-319-05843-6
_1

Kasurinen, J., & Smolander, K. (2014, 9). What do game
developers test in their products? International Symposium
on Empirical Software Engineering and Measurement. doi:
10.1145/2652524.2652525

Lenka, R. K., Kumar, S., & Mamgain, S. (2018, 10). Behavior
driven development: Tools and challenges. Proceedings -
IEEE 2018 International Conference on Advances in Com-
puting, Communication Control and Networking, ICACCCN
2018, 1032-1037. doi: 10.1109/ICACCCN.2018.8748595

Lewis, C., & Whitehead, J. (2011). The whats and the whys of
games and software engineering. In Proceedings of the 1st
international workshop on games and software engineering
(pp. 1–4).

Mirza-Babaei, P., Moosajee, N., & Drenikow, B. (2016).
Playtesting for indie studios. Proceedings of the 20th In-
ternational Academic Mindtrek Conference. doi: 10.1145/
2994310.2994364

Mirza-Babaei, P., Stahlke, S., Wallner, G., & Nova, A. (2020,
4). A postmortem on playtesting: Exploring the impact of
playtesting on the critical reception of video games. Confer-
ence on Human Factors in Computing Systems - Proceedings.
doi: 10.1145/3313831.3376831

Mulder, M. (2024, June). From behaviours to code : Exploring
behaviour-driven development in unity 3d game creation.
Retrieved from http://essay.utwente.nl/100096/

Murphy-Hill, E., Zimmermann, T., & Nagappan, N. (2014).
Cowboys, ankle sprains, and keepers of quality: How is video

game development different from software development? In
Proceedings of the 36th international conference on software
engineering. doi: 10.1145/2568225.2568226

Nagy, G., & Rose, S. (2018). The BDD books - Discovery -
Explore behaviour using examples. Leanpub. Retrieved from
https://leanpub.com/bddbooks-discovery

Nagy, G., & Rose, S. (2021). The BDD books - Formula-
tion - Document examples with Given/When/Then. Leanpub.
Retrieved from https://leanpub.com/bddbooks-formulation

North, D. (2006). Introducing BDD. Better Software Magazine.
Politowski, C., Guéhéneuc, Y.-G., & Petrillo, F. (2022). To-

wards automated video game testing: still a long way to go. In
Proceedings of the 6th international icse workshop on games
and software engineering: Engineering fun, inspiration, and
motivation (pp. 37–43).

Politowski, C., Petrillo, F., & Guéhéneuc, Y.-G. (2021). A
survey of video game testing. In 2021 ieee/acm international
conference on automation of software test (ast) (pp. 90–99).

Pyshkin, E., Mozgovoy, M., & Glukhikh, M. (2012). On
requirements for acceptance testing automation tools in be-
havior driven software development. Proceedings of the 8th
Software Engineering Conference in Russia (CEE-SECR).

Santos, R. E., Magalhes, C. V., Capretz, L. F., Correia-Neto,
J. S., Silva, F. Q. D., & Saher, A. (2018, 10). Computer
games are serious business and so is their quality: Particu-
larities of software testing in game development from the
perspective of practitioners. International Symposium on
Empirical Software Engineering and Measurement. doi:
10.1145/3239235.3268923

Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017, 12). Scrum
model for agile methodology. Proceeding - IEEE Inter-
national Conference on Computing, Communication and
Automation, ICCCA 2017, 2017-January, 864-869. doi:
10.1109/CCAA.2017.8229928

Strauss, A., & Corbin, J. (1994). Grounded theory methodol-
ogy: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.),
Handbook of qualitative research (p. pp. 273–285). Sage
Publications, Inc.

Unity. (2025). What is Unity? - Unity learn. Retrieved from
https://learn.unity.com/tutorial/what-is-unity

Unity 3D course: Create with code. (2025). Retrieved from
https://learn.unity.com/course/create-with-code (https://learn
.unity.com/course/create-with-code)

Unityspec github page. (2025). Retrieved from https://github
.com/UnitySpec (https://github.com/UnitySpec)

About the authors
Michael Mulder graduated from the master program in Com-
puter Science at the University of Twente (the Netherlands).

Petra van den Bos is assistant professor at the University of
Twente (the Netherlands) and performs research on software
testing. You can contact the author at p.vandenbos@utwente.nl.

14 Mulder and van den Bos

https://github.com/imkira/cukunity
https://gauge.org/index.html
https://gauge.org/index.html
https://helplama.com/game-industry-usage-revenue-statistics/
https://helplama.com/game-industry-usage-revenue-statistics/
https://www.juegostudio.com/blog/what-is-unity-3d-a-comprehensive-guide-to-unitys-features-and-uses
https://www.juegostudio.com/blog/what-is-unity-3d-a-comprehensive-guide-to-unitys-features-and-uses
http://essay.utwente.nl/100096/
https://leanpub.com/bddbooks-discovery
https://leanpub.com/bddbooks-formulation
https://learn.unity.com/tutorial/what-is-unity
https://learn.unity.com/course/create-with-code
https://learn.unity.com/course/create-with-code
https://learn.unity.com/course/create-with-code
https://github.com/UnitySpec
https://github.com/UnitySpec
https://github.com/UnitySpec
mailto:p.vandenbos@utwente.nl?subject=Your paper "Introducing automated testing to video game development via Behaviour-Driven Development"

