
Journal of Object Technology | RESEARCH ARTICLE

Graph Rewriting for Testing Domain-specific Models:
Dynamic Role-Based Access Control

Issam Al-Azzoni∗, Reiko Heckel†, and Zobia Erum‡

∗Al Ain University, United Arab Emirates
†University of Leicester, United Kingdom

‡Birmingham City University, United Kingdom

ABSTRACT Domain-specific languages (DSLs) express requirements or designs through visual abstractions. To support
complex development tasks such as code generation, testing and analysis, DSLs need semantic foundations. This paper
introduces such a semantic framework for DSLs based on graph rewriting.
We apply our framework to a DSL for defining multi-party dynamic role-based access control policies for smart contracts.
Role-based access control models (RBACMs) express constraints on who can access which resources. Dynamic RBACMs
allow a dynamic role membership. Access control policies, in particular for smart contracts, can involve multiple parties such
as members of different groups or organisations, combining complex logical and dynamic constraints, and hence are hard to
design, understand, validate and test at code level.
Our diagrammatic notation supports complex authorisation patterns, including alternatives and multiplicities, to address nuanced
access control requirements. Defining the operational semantics for RBACMs by graph rewriting, we let the Groove model
checker produce traces for actions where access is granted or denied and generate tests for smart contracts in the Digital Asset
Modelling Language (DAML). We validate dynamic access control scenarios generated by ChatGPT for use as test cases or
advising users at runtime. Such scenarios represent business workflows interleaved with operations to add or remove role
members. They are expressed as Groove control programs and are also verified by its model checker.

KEYWORDS Smart Contracts, DAML, Multi-party Role-based Access Control, Domain-specific Languages, Graph Rewriting, Groove, Model-based Testing,

Scenario Validation.

1. Introduction

Smart contracts support workflows of multiple parties with-
out the need for a central authority (Tapscott & Tapscott 2016).
They are used across blockchain platforms for applications in-
cluding commercial and financial transactions, legal processes,
data sharing, and supply chain management (Mougayar 2016).
To secure applications, smart contracts implement platform-

JOT reference format:
Issam Al-Azzoni, Reiko Heckel, and Zobia Erum. Graph Rewriting for
Testing Domain-specific Models: Dynamic Role-Based Access Control.
Journal of Object Technology. Vol. 24, No. 2, 2025. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2025.24.2.a4

specific access control mechanisms, including sophisticated
concepts such as role-based access control (RBAC) and multi-
party authorisation, which are difficult to understand and verify
against security requirements at the code level, leaving appli-
cations open to data leaks and unauthorised access (Vivar et
al. 2020). In this paper, we propose a model-based approach
to testing and validating access control policies (ACPs) while
presenting a recipe for implementing behavioural DSLs based
on graph rewriting as a semantics engine.

1.1. Model-based Access Control for Smart Contracts
Consider a transaction for homework grading authorised by
an individually assigned grader together with either a second
named grader or two members of a role of evaluators. The
first participant may be a member of that role, too, but for the

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.2.a4

authorisation two separate participants are required. This is a
variant of Dynamic Separation of Duty (DSD) where a user may
not function in more than one role during a single authorisa-
tion, particularly relevant if role membership can change over
time (Ultra & Pancho-Festin 2017).

To support such scenarios, we define modelling concepts
for roles, role membership, alternatives, and cardinalities for
authorisation relations. While existing RBAC models are
static (Penelova 2021), we support dynamic RBAC, where ded-
icated role owners can add and remove members at runtime.
An extension of the smart contract modelling language iCon-
tractML 2.0 (Hamdaqa et al. 2022) by RBAC and multi-party
authorisation allows us to create, test and verify ACPs across
platforms. The diagrammatic language helps developers to de-
sign and review RBAC models and we map to the smart contract
languages Solidity and DAML1 to generate and execute tests.
DAML supports multi-party authorisation but no roles nor al-
ternatives. Other languages such as Solidity use assertions for
access control but do not support multi-party authorisations. Our
model-based approach expresses these differences at a higher
level and supports code generation to DAML and Solidity.

Any code implementing critical security properties must be
tested. This also applies to access control code, even if we
can generate such code from the model directly because (1)
patterns and libraries used may not be compatible with technical
requirements, (2) code generation for just one aspect, such
as access control, is necessarily partial, so code will have to
be completed manually and (3) code will be modified during
software maintenance and evolution, introducing the risk of
errors. Moreover, if models are created as documentation for
existing implementations, they need to be confirmed as accurate
through testing. To support model-based testing, we generate
test scripts that include assertions as oracles to run automatically
and fail when encountering access control errors.

We realise this model-based approach to analysing and test-
ing ACPs by modelling the operational semantics of our DSL
as a graph rewriting system.

1.2. Graph Rewriting as Semantic Engine
Our role-based access control models (RBACMs) describe com-
plex requirements for the sets of authorisers that can accept or
reject an access request, subsuming propositional logic over ba-
sic propositions of the form “participant P must authorise action
A” but going beyond this with statements with multiplicities
such as “n members of role R must authorise action A” and
demanding that each participant can only act as authoriser once.
The semantic information, which sets of authorisers are suffi-
cient based on a given model, is obtained from a graph rewriting
system operationalising the process of requesting authorisation
for an action, computing a permissible set of authorisers, al-
lowing them to confirm their authorisation and accepting or
rejecting the request. Accepting or rejecting traces are pro-
duced by the Groove model checker (Ghamarian et al. 2012)
using a start graph and temporal logic formulas derived from
the RBACM. Test scripts in DAML are produced based on a

1 Digital Asset Modelling Language: https://www.digitalasset.com/developers

test model using a Java EMF application and Acceleo templates.
We evaluate the approach and tool chain using model-based
mutation testing: We seed errors in the RBACM, generate im-
plementations and apply our tests to discover the errors. We
detail this process for the Homework Grading model described
above and report on a second case study on managing financial
transactions.

Our tests discover design-level faults in access control code.
Design-level faults are deviations from the access control re-
quirements expressed in an RBACM, that can arise from imple-
menting (correctly) a faulty model, not from arbitrary imple-
mentation errors. This limitation is in line with related work
on testing access control policies (Daoudagh et al. 2015; Mar-
tin & Xie 2007) which must be complemented by code-based
techniques for comprehensive testing.

Dynamic access control is supported by a graph rewriting
model that can add and remove role members at runtime. Apart
from generating test cases, the operational semantics can answer
questions on the model, such as: Who can authorise a transac-
tion if a participant is away? or If a given sequence of actions
cannot be authorised, can I enable the process by adding a new
member to a role? where adding a role member itself requires
authorisation. As a use case, we generate scenarios responding
to such questions using OpenAI’s o1-preview and o1-mini to
validate them with the Groove model checker, combining the
domain knowledge of LLMs with the safety of a formal model.
We demonstrate the generation of complex dynamic test scenar-
ios and discuss an intelligent help function to advise users on
how to work within a given RBAC policy to achieve their goals.

1.3. A Recipe for Behavioural DSLs
While addressing a logically challenging problem, we present
the approach as a blueprint for testing and validation based on
domain-specific languages with complex graph-like structure
and operational semantics. The general recipe is as follows:

1. define DSL using a metamodel and diagrammatic syntax

2. define operational semantics for the DSL by graph rewrite
rules over a type graph extending the metamodel by dy-
namic elements to represent the runtime state

3. translate DSL instances (models) into a start graph (an
instance of the type graph) to be rewritten by the rules

4. use a graph rewriting model checker to generate scenarios
for temporal logic formulas describing the desired test
cases

5. use the model checker to validate scenarios suggested by
LLMs for testing or helping users at runtime

6. create executable tests from validated scenarios through a
test model and code generation

Using metamodels to define and implement DSL is a standard
approach, well supported by tools to create model editors and
compilers. An operational semantics is needed for testing and
behavioural analyses, so it is best to make this semantics explicit
and use it as the engine to generate or validate test scenarios.

2 Al-Azzoni et al.

https://www.digitalasset.com/developers

Our RBACMs define behaviour indirectly by constraints on the
possible actions. Hence their operational semantics is given in
a structure-driven way (enabling actions based on the structure
of the current state) rather than through control or message
flow (deriving traces or transition systems from a program, state
machine, or communication model).

Representing model and runtime states by graphs, we use
graph rewriting to define operational semantics of modelling
languages (Engels et al. 2000; Durán et al. 2017). In particular,
making the model a part of the start graph we achieve two
objectives: Our rules describe a fixed model interpreter that
works across all models, and the model itself can be changed
at runtime, for example by adding or removing role members,
softening the distinction between model and data state.

The innovation in this paper is to use the graphical oper-
ational semantics to generated tests from counterexamples to
LTL formulas that describe the scenarios to be validated through
testing. By repeatedly invoking the model checker with aug-
mented formulas we generate all relevant traces, which are then
translated into test cases by way of an intermediate test model.
This allows for the reuse of tools and offers a justification for the
correctness of the approach, which would be hard to establish
for any ad-hoc generation of test cases from a model.

Hence, while the various languages and tools used for opera-
tional semantics, mappings, and model checking are exchange-
able, they represent a template for a general approach to testing
and behavioural analyses for DSLs with graphical operational
semantics.

We describe the approach in more detail in the next section
before presenting the evaluation results, discussing related and
work and drawing conclusions.

2. Testing from Operational Semantics
This section describes RBACMs, defines their operational se-
mantics by graph rewriting and explains the generation of
DAML tests. To represent RBACMs the iContractML meta-
model (Hamdaqa et al. 2022) was extended by concepts such
as roles and authorisations (Al-Azzoni & Iqbal 2023) including
an extension to the visual notation. Multi-party authorisation
and code generation to Solidity and DAML were added in (Al-
Azzoni & Heckel 2023).

A sample RBACM is shown in Fig. 2. Transactions are rep-
resented by λ symbols with dashed arrows to their contracts and
participants shown as human figures. Roles are black circles
inside white squares, their membership shown by blue arrows
and authorisation relations by red arrows. The latter are labelled
by cardinalities indicating how many members are required to
authorise the transactions. The language also supports alterna-
tive authorisations indicated by a ∨ (or) symbol within a white
square (Al-Azzoni & Heckel 2023; Al-Azzoni & Iqbal 2023).
From an instance of this extended metamodel, we generate test
scripts in DAML as outlined in Fig. 1.

In real RBAC policies, roles can have many members. A
school may have hundreds of homework submitters, and the
membership can change over time. Hence, our RBACMs only
represent sample members for analysing or testing policies.

Figure 1 Outline of our approach

A DAML test script invokes smart contract operations called
choices. To determine the order in which these choices should
be called to realise scenarios ending in (correctly or incorrectly)
granted or rejected access requests, we created a graph rewrit-
ing system specifying the operational behaviour of RBACMs
with basic access control operations such as for participants to
authorise access and requests being granted or rejected based
on the set of authorisers.

The RBACM is translated into a start graph by model-to-
text transformation templates in Acceleo2, generating the graph
in Groove’s textual Graph Exchange Language (GXL)3 repre-
sentation. Templates also generate a set of Linear Temporal
Logic (LTL) formulas to search for particular traces realising
the desired scenarios. To generate all traces satisfying a certain
condition, Groove is invoked repeatedly with augmented LTL
formulas to rule out all traces already generated.

A Java EMF4 application transforms traces in Groove GXL
format into corresponding test cases, adding new test-specific
information to the RBACM. From this test model we generate
the DAML test scripts using another set of Acceleo templates.

All steps are fully automated. Sect. 2.1 presents an RBACM
as an iContractML metamodel instance. Sect. 2.2 discusses
2 Acceleo: https://eclipse.dev/acceleo/
3 GXL: https://userpages.uni-koblenz.de/∼ist/GXL/index.php
4 Eclipse Modeling Framework: https://eclipse.dev/modeling/emf/

Graph Rewriting for Testing Domain-specific Models 3

https://eclipse.dev/acceleo/
https://userpages.uni-koblenz.de/~ist/GXL/index.php
https://eclipse.dev/modeling/emf/

the Groove graph rewriting system, including the start graph
and trace generation. Sect. 2.3 presents the extension to the
iContractML metamodel to support test script generation.

2.1. Access Control Models to Smart Contracts
To demonstrate our approach, we use the RBACM in Fig. 2.
The contract defines who can submit and grade a homework.
For testing purposes there are five sample participants: Alice,
Bob, Chris, Doug, and Emma. The contract defines two roles:
HWSubmitter and HWEvaluator. Authorisation by at least one
member in the HWSubmitter role is required to execute the
submitHW transaction. The gradeHW transaction requires au-
thorisation by Alice in addition to Bob or two members distinct
from Alice of the HWEvaluator role. The requirement that
authorisers from the HWEvaluator role be distinct from Alice
exemplifies the Dynamic Separation of Duty (DSD) principle
where a user may not function in more than one role during an
authorisation (Ultra & Pancho-Festin 2017).

Figure 2 A sample RBACM: The Homework Grading con-
tract

From this RBACM, the following DAML code is created by
our code generation templates, defining the HWEvaluator role.

-- Template defining (and creating) role
-- with list of parties as initial members
template HWEvaluator_Role
with
default_owner : Party -- Initial role owner
owner : Party -- Current role owner
members : [Party] -- Initial members

where
signatory default_owner -- Must create contract
observer owner -- Can observe changes

-- Choice allowing current to assign new owner
choice SetNewOwner_HWEvaluator_Role
: ContractId HWEvaluator_Role

with
newOwner : Party -- Party to be new owner

controller owner -- Current owner can
do
assertMsg "newOwner cannot be equal to owner"
(owner /= newOwner) -- No redundant change

create this with -- Updated contract
owner = newOwner -- with new owner

-- Choice allowing owner to update members
choice SetMembers_HWEvaluator_Role
: ContractId HWEvaluator_Role
with
newMembers : [Party] -- New members list

controller owner -- Current owner can
do
create this with -- Updated contract
members = newMembers -- with new members

A DAML template is similar to a class and its instances
are contracts. The main difference is the explicit handling of
ownership and permissions to observe and control the execution
of choices (operations). To support immutability, whenever a
choice changes the state of a contract, a new version is created.

The signatory default_owner of the contract is the party
that deploys the contract. The owner can be changed by the
choice SetNewOwner_HWEvaluator_Role. The owner can set
the members of the role HWEvaluator_Role through the choice
SetMembers_HWEvaluator_Role, or by setting the contract’s
argument members when the HWEvaluator_Role template is
instantiated.

The template below implements the Homework_Grading
contract.

template Homework_Grading
with
-- Define contract owner, roles, parties
-- owner creates; parties, role members observe
owner : Party
hWSubmitterRole: HWSubmitter_Role
hWEvaluatorRole: HWEvaluator_Role
alice : Party
bob : Party
chris : Party
doug : Party
emma : Party
comments : Text

where
signatory owner
observer alice,bob,chris,doug,emma,
hWSubmitterRole.members,hWEvaluatorRole.members

-- hWSubmitter can submit homework with comments
choice SubmitHW
: ContractId Homework_Grading
with
hWSubmitter : Party
new_comments : Text

controller hWSubmitter
do
assert (hWSubmitter ‘elem‘ -- Is role member
hWSubmitterRole.members)

create this with -- Update contract
comments = new_comments -- with comments

-- alice and graders in p1 can grade
choice GradeHW
: ContractId Homework_Grading

4 Al-Azzoni et al.

with
p1 : [Party]
new_comments : Text

controller alice, p1
do

let set1 = DA.Set.fromList p1 -- Graders set
let set2 = DA.Set.fromList

(hWEvaluatorRole.members) -- Role set
assert (bob ‘elem‘ p1 || -- Bob or

(DA.Set.isSubsetOf set1 set2 &&
DA.Set.size set1 >= 2)) -- 2+ evaluators

create this with -- Update
comments = new_comments

A choice’s controllers are the parties whose authorisation
is required to exercise the choice. Using DAML assertions, it
is possible to fail the transaction corresponding to the choice
if the assertion’s predicate does not hold. Hence, for example,
the choice SubmitHW requires the authorisation of one member
in the HWSubmitter_Role role. Also, the choice GradeHW
requires the authorisation of Alice, in addition to a list of parties
p1 that should include Bob or at least two members in the role
HWEvaluator_Role. Note that in DAML, if several parties
are listed as controllers for a choice, they have to be distinct,
and set2 is the set of HWEvaluator_Role members to which
Alice does not belong. The effect is that this choice requires
authorisation by Alice in addition to Bob or at least two members
of the HWEvaluator_Role excluding Alice, as specified by the
RBACM.

2.2. Operational Semantics via Graph Rewriting
The operational semantics of an RBACM is defined by trans-
lating it into a graph that, extended to represent runtime state
information, is the start graph for a Groove graph rewrite system.
The type graph for this system is shown in Fig. 3 and a start
graph derived from the RBACM in Fig. 2 is shown in Fig. 4.

Figure 3 Type graph of Groove model

Grey elements derive from the iContractML metamodel, blue
ones represent access control data and red elements are the
runtime state. The start graph shows the Homework_Grading
contract with its two transactions. It assigns access rights for
submitHW to a single (card → 1) member of the HWSubmitter
role. An instance of the contract is shown with Alice as a
signatory. The gradeHW transaction is authorised by Alice and
either Bob or 2 members (card → 2) of the HWEvaluator role.
This applies to type and instance graphs, but not to rules where
colours are used to distinguish pre- and post-conditions.

Figure 4 Start graph of Groove model

The first rule (createAction shown in Fig. 5) can create ac-
tions which, once authorised, will execute a transaction. Autho-

Figure 5 Rule createAction

risations are then computed in two phases. First, a permissibly
subtree is selected of the and/or tree describing the authorisation
requirements of the transaction. Three of the rules implement-
ing this recursive descent are shown in Fig. 6. The selection
works by creating an Auth object for all required parties at the
top level and then moving the party link down to alternatives
and role members.

In Groove’s visual notation for rules, grey elements are re-
quired and preserved, green (with bold orders) represents cre-
ation of nodes or edges or updates of attributes, and blue (dashed
lines or borders) means deletion. The ∀ node linked to the Party
and Auth nodes represents a multi rule, applied once for each
Party node to create a separate Auth node. The red/green-dashed
edge labelled party in the middle rule selectAlternative says that
this edge is only created if it does not already exist. This is
a combination of edge creation with an application condition.
Another negative condition is shown in red in the bottom rule
selectMember, which also uses a ∀ node q to count the number
of role members already assigned as q.count in the Card node.
There is a similar rule selectMember with an attribute condition
card → g.count + 1 that deletes the party edge from the Auth
node, finishing the selection of role members.

Once selection is complete, as shown in Fig. 7, all selected
participants are referenced by party links from Auth nodes. They
then have an option to confirm authorisation, replacing the
party by a conf edge, so we can decide if the action should be
accepted.

Finally, we accept or reject the execution. Note that the rules
in Fig. 9 do not check if the action was authorised correctly
because we want to create traces to test for both correctly and
incorrectly accepted and rejected actions. Correctly rejected
traces do not have authorisation and end in rejection. We also

Graph Rewriting for Testing Domain-specific Models 5

Figure 6 Top to bottom: rules selectAllParties, selectAlterna-
tive and selectMember

need test cases for incorrect behaviours, where authorisation
should be granted but is rejected, and vice versa. Hence our
rewrite system allows correct as well as incorrect behaviours
which are filtered by LTL formulas to generate the desired
traces. For example the following safety condition will generate
incorrect accept traces,

F actionForTransaction("gradeHW") &
G (actionAccepted("gradeHW") ->

allConfirmed("gradeHW"))

while this one represents lifeness, generating incorrect reject
traces.

F actionForTransaction("gradeHW") &
G (allConfirmed("gradeHW") ->
F actionAccepted("gradeHW"))

The use of both lifeness and safety reflects complementary
security properties such as Confidentiality and Authenticity
which are supported by granting access only when correctly
authorised (a safety property), while Availability requires that
that access is always granted if it is correctly authorised (a
lifeness property).

Basic propositions such as actionForTransac-
tion("gradeHW") and actionAccepted("gradeHW") are
implemented as graph patterns, i.e., rules without effect that are
used to label the states of the transition system generated by the
Groove model checker. In particular, allConfirmed("gradeHW")
checks if all authorisation requirements have been satisfied
for the transaction, i.e., there are no pending requirements, as

Figure 7 Sample state graph after selection of authorisers

Figure 8 Rule confirmSelection

expressed by the forbidden Auth node linked to a Party node
via a party edge for its action.

To generate test cases representing correct behaviours, our
LTL formulas are negated to create correct traces as counterex-
amples. The following formula generates correct accept traces.
Using Groove’s model checker, it took 401 milliseconds to
generate a counterexample,

! (F actionForTransaction("gradeHW") &
G (

(actionAccepted("gradeHW") ->
allConfirmed("gradeHW")) &

(allConfirmed("gradeHW") ->
F actionAccepted("gradeHW"))

) &
F allConfirmed("gradeHW")

)

while this one generates correct reject traces in 236 millisec-
onds:

! (F actionForTransaction("gradeHW") &
G (

(actionAccepted("gradeHW") ->
allConfirmed("gradeHW")) &

(allConfirmed("gradeHW") ->
F actionAccepted("gradeHW"))

) &
! F allConfirmed("gradeHW")

)

To generate all traces violating a certain condition, we aug-
ment the LTL formulas so that previously generated traces are
ruled out. At this stage, we are not interested in the order in

6 Al-Azzoni et al.

Figure 9 Top to bottom: rules acceptAction and rejectAction

Figure 10 Top to bottom: patterns actionForTransaction,
allConfirmed, and actionAccepted

which the authorisation requirements are confirmed, so we just
rule out the particular subset of confirmations for each trace.

For example, the last formula above generates the trace
shown in Fig 11 representing a counterexample with confir-
mations by {Emma, Doug, Alice}. To avoid generating this
trace again it is encoded as

F (confirmed(_,"Alice") & confirmed(_,"Emma") &
confirmed(_,"Doug"))

which is added in negated form to the formula to prevent this
counterexample from being returned again. This process is
iterated until there are no further correct reject traces with new
subsets of confirmations. Analogously, all correct accept traces
are generated, while incorrect rejects/accepts are derived from
correct accepts/rejects by swapping the final decision.

2.3. Model-based Test Script Generation
We adopt a model-based approach to generate the DAML test
scripts from the traces of the Groove model checker, extending
the RBACM metamodel to support the representation of test
cases as a basis for code generation. In particular, a TestCase
metaclass is added related to a Transaction and composed of
a set of Authorizations which denote the participants or the
number of role members who provide their authorisation for the
execution of the related Transaction.

Instances of the RBACM test metamodel are created by a
Test Generator implemented in Java EMF. The generator can
insert authorisations not present in the traces. This is useful
because the system under test may incorrectly require authorisa-
tion by a different participant than specified in the model, which
corresponds to an incorrect accept trace with that participant

Figure 11 Visualisation of trace generated by Groove

added. We can also create a specified number of permutations
of the required (and additional) authorisations, which should
not produce different results in correct implementation but may
help discover errors if the implementation enforces a certain
order. The DAML scripts are generated from the RBACM test
model by means of Acceleo templates.

Consider a test case for transaction GradeHW and two par-
ticipants, Alice and Bob, who have provided their authorisation
for the transaction. The generated DAML test script is:

-- Collect the required authorisations by Alice
-- and Bob
pending <- submit account1 do
createCmd GradeHW_Attempt with
alreadySigned = [account1]
finalContract = newCrontact
p1 = [account1,account2]

Graph Rewriting for Testing Domain-specific Models 7

pending <- submit account2 do
exerciseCmd pending Sign_GradeHW_Attempt with

signer = account2

-- Invoke the GradeHW transaction
newContractid <- submit account2 do
exerciseCmd pending Finalize_GradeHW_Attempt with

signer = account2
comments = "some comments"
ghcId = newContractid

Note the attempt to instantiate the template GradeHW_Attempt.
This template is also generated by our Acceleo Test Generator
based on the test model (See Fig. 1). This template defines two
choices to implement the Multiple Party Agreement pattern (On-
line Source The Multiple Party Agreement Pattern – DAML)
in DAML by collecting the necessary authorisations. Once all
required authorisations are collected, the choice GradeHW is
invoked via the Finalize_GradeHW_Attempt choice.

The following is an Acceleo code to generate the LTL for-
mulas corresponding to the TestCases of the SContract in an
RBACM to identify the correct accept traces:

[let testcases : OrderedSet(TestCase) = con.testcase]
[for (tc: TestCase | testcases)]
[let t:Transaction = tc.transaction]
! (F actionForTransaction("[t.name/]") &

G (
(actionAccepted("[t.name/]") ->

allConfirmed("[t.name/]")) &
(allConfirmed("[t.name/]") ->

F actionAccepted("[t.name/]"))
) &
F allConfirmed("[t.name/]")

)
[let auths: OrderedSet(Authorization) =
tc.authorization]
[for(auth:Authorization | auths)]
[let parts:OrderedSet(Participant) =
auth.participant]
&
! (
[for(part:Participant | parts)]
F (confirmed(_,"[part.name/]")
[if (i<parts->size())]&[/if]

[/for]
)
[/let]
[/for]
[/let]
)
[/let]
[/for]
[/let]

Note the use of Acceleo control structures such as loops and
if conditions. Variables in Acceleo are declared using the let
blocks. The Acceleo code supports the iterative process to
discover all correct accept traces as described at the end of
Sect. 2.2.

Finally, DAML test scripts are executed against the tem-
plates in DAMLs Sandbox. DAML is a smart contract language
running on a variety of blockchains and database platforms.
The Sandbox is a testing tool included in the DAML SDK. It

simulates a DAML ledger, allowing developers to test their
applications and get quick feedback within DAML Studio.

3. Evaluation

We evaluate the effectiveness of the generated test cases for
discovering design-level faults in access control code. Design-
level faults are defined as deviations from the access control
requirements expressed in a RBACM, that can arise from imple-
menting a faulty (modified) model. The process is illustrated in
Fig. 12.

We generate faulty access control code in the form of DAML
templates by introducing faults into the RBACM used to gener-
ate DAML test scripts in Sect. 2. The resulting RBACM mutants
are input to an Acceleo script generating DAML templates in-
voked when the test scripts are executed by the DAML Sandbox
test ledger. We explain the steps in detail below.

3.1. Model-based Mutation Testing
To validate our ability to detect design-level faults, we use
model-based mutation testing. In mutation testing, the effective-
ness of a test suite is measured by its ability to detect artificial
faults. Such faults (called mutations) are created by introducing
small changes to the original program (Sánchez et al. 2022),
usually directly in the source code (Gómez-Abajo et al. 2021).
Instead, being interested in design-level faults, we modify the
model from which the faulty code (mutant) is generated. The
effectiveness of the test case set (its mutation score) is measured
by the proportion of mutants detected. To kill (uncover) a model
mutation, at least one test case should fail on the generated
source code (D. Xu et al. 2012).

Figure 12 Evaluation process

8 Al-Azzoni et al.

We define the following basic rules for model mutation. They
cover all primitive changes to concepts in the RBAC metamodel.

1. Add or remove a role member.

2. Add or remove a role to/from a transaction.

3. Increase or decrease a role relation cardinality.

4. Add or remove a participant to/from a transaction.

5. Add or remove a participant to/from an OR element.

6. Add or remove a role to/from an OR element.

To help the evaluation we developed a Java application to
create mutants from a given RBACM. It randomly selects appli-
cable elements while applying the specified rule. For example,
for the first mutation rule, a random member in a randomly
selected role is removed. Using this application, we have first
created six mutants (one for each mutation rule):

1. Add participant Frank to role HWSubmitter.

2. Remove participant Doug from role HWEvaluator.

3. Change role cardinality of role HWEvaluator from 2 to 1.

4. Add participant Doug to transaction submitHW. (Hence,
submitHW now requires the authorisation by Doug in addi-
tion to one member of role HWSubmitter.)

5. Add an OR element with participant Bob to transaction
submitHW. (Hence, submitHW now requires the authorisa-
tion by one member in role HWSubmitter or Bob.)

6. Add role HWEvaluator to transaction submitHW. Hence,
submitHW requires the authorisation by one member in
role HWSubmitter in addition to one member in role HWE-
valuator.

For each mutant, we generated the DAML code as described in
Sect. 2. The generated DAML templates compile successfully.

As an example, consider the mutation to the RBACM in
Fig. 2 in which Frank is added to the role HWSubmitter. In the
generated DAML test script, the mutation is implemented as
follows:

hWSubmitter_Role_Proposal <- submit account0 do
createCmd HWSubmitter_Role_Proposal with
hWSubmitter_Role = HWSubmitter_Role with

default_owner = account0
owner = account3
members = [account1,account3,account6]

Note the insertion of account6 which corresponds to Frank as a
new member to the HWSubmitter role.

In addition, we manually created four more mutants by com-
bining multiple mutations on the same contract:

7. Add participant Frank to role HWSubmitter, and remove
participant Chris from the same role.

8. Add participant Doug to transaction gradeHW, and remove
participant Alice from the same transaction.

9. Add an OR element with participant Frank to transaction
gradeHW, and remove the original OR element.

10. Add role HWEvaluator to transaction submitHW, and re-
move the original role HWSubmitter as required authoriser
to the same transaction.

These additional mutants can reveal defects due to incor-
rect access control implementations substituting rather than just
adding or removing authorisation requirements. This can hap-
pen when new code is created by modifying copied existing
code. Hence, the evaluation created a total of 10 mutants, each
tested with a suite of 18 test cases (explained in detail below).
This represents a total of 180 transaction attempts on the de-
ployed contracts. After deploying the contracts on a DAML test
ledger and running the test scripts, the results were examined
using DAML Studio5.

3.2. Test Case Generation and Execution
To create the test cases, we employed our tool chain, including
Groove’s model checker to generate the traces and Acceleo to
generate DAML scripts. A total of 18 traces were created that
cover all correct accept and reject scenarios. More test cases
could have been defined by creating different permutations of
the order in which participants authorise actions, or by including
extra (unnecessary) authorisers; however, as the results will
confirm, the 18 test cases were sufficient to kill all mutants.

Table 1 lists the test cases corresponding to the identified
traces. For each mutant, at least one of the test cases listed
in the table failed. For example, for the first mutant in which
participant Frank is added to role HWSubmitter, Test Case 8, in
which the expected outcome is reject, fails since the observed
outcome was accept due to the mutation. The conclusion of the
experiment is that the generated test cases killed all the mutants,
producing a perfect mutation score.

3.3. FTA Case Study
To extend the evaluation, we explored the use of ChatGPT
for generating RBACMs and workflows with dynamic access
control. First, we asked ChatGPT to generate examples of
multi-party RBACMs6. In the prompt, we required that models
reflect real-world scenarios of complex automated workflows
with multiple participants. This produced four models from
which we selected the Financial Transaction Approval (FTA)
model shown in Fig. 13 for further analysis. The RBACM
defines three transactions and four parties, with more compli-
cated authorisation requirements than in the homework grading
RBACM.

Then, based on this model, we asked ChatGPT to create exe-
cutable scenarios in the notation of Groove control programs,
which constrain the order of rule applications for the model
checker. We created a prompt explaining, by means of the
Homework Grading example, the structure and semantics of
RBACMs, provided the Financial Transaction Approval model

5 Test Templates Using DAML Script: https://docs.daml.com/daml/intro/2
_DamlScript.html#run-the-scripts

6 Chat at https://chatgpt.com/share/656532a4-c238-43c0-964e-f8acb2ed507c

Graph Rewriting for Testing Domain-specific Models 9

https://docs.daml.com/daml/intro/2_DamlScript.html#run-the-scripts
https://docs.daml.com/daml/intro/2_DamlScript.html#run-the-scripts
https://chatgpt.com/share/656532a4-c238-43c0-964e-f8acb2ed507c

Table 1 Test Cases assessing correctness of accept and reject
decisions for different transactions and sets of authorisers

Number Transaction Authorizers Expected

Outcome

1 submitHW Chris Accept

2 submitHW Alice Accept

3 gradeHW Alice, Bob Accept

4 gradeHW Alice, Bob, Emma Accept

5 submitHW Doug Reject

6 submitHW Emma Reject

7 submitHW Bob Reject

8 submitHW Frank Reject

9 gradeHW Chris Reject

10 gradeHW Alice Reject

11 gradeHW Bob Reject

12 gradeHW Doug Reject

13 gradeHW Emma Reject

14 gradeHW Doug, Emma Reject

15 gradeHW Doug, Bob Reject

16 gradeHW Alice, Doug Reject

17 gradeHW Alice, Emma Reject

18 gradeHW Frank Reject

Figure 13 The Financial Transaction Approval (FTA) model

and asked for access control scenarios containing certain se-
quences of actions. The responses were inserted into the control
of a Groove model with rules for adding and removing role
members (if authorised by the roles’ owners) to verify if these
scenarios can indeed be executed under the operational seman-
tics of the model. Hence, instead of focussing on individual
actions, we are executing workflows with dynamic role member-
ship. This is a planning problem of finding sequence of actions
to achieve a given outcome.

The results show that o1-preview was able to correctly gener-
ate scenarios with dynamic role membership, while more basic
models such as o1-mini fail to realise the condition that every
participant can only be used once in authorising an action. For
example, we asked: What process do we need to execute if
Dave is on holiday to perform the Approve, Verify, and Finalize
actions? while allowing Bob and Emma to be added as new
members to the Auditor role.7 The reply was in the form of the
Groove control fragment shown below which, when inserted
into the Groove model, was verified by the model checker.

GPT o1-preview:
// Step 1: Add Bob and Emma as Auditors
executeRoleAction("Bob", "Auditor", "addMember");
// authorized by [Carol]
executeRoleAction("Emma", "Auditor", "addMember");
// authorized by [Carol]
// Step 2: Perform Approve Transaction
executeBusinessAction(instance,
"Approve Transaction");

// authorized by [Alice, Bob]
// Step 3: Perform Verify Transaction
executeBusinessAction(instance,
"Verify Transaction");

// authorized by [Carol, Alice, Bob, Emma]
// Step 4: Perform Finalize Transaction
executeBusinessAction(instance,
"Finalize Transaction");

// authorized by [Alice, Carol, Emma, Bob]

The operation Verify Transaction requires approval by, in
logical terms, (Carol ∧ (1, Financial Manager) ∧ (Dave ∨
(2, Auditors))). However, despite being instructed to check for

7 Chat at https://chatgpt.com/share/66fc8bd0-1110-8010-a167-2021a8bd8d3e

10 Al-Azzoni et al.

https://chatgpt.com/share/66fc8bd0-1110-8010-a167-2021a8bd8d3e

duplicates in the prompt, in the generated control code below,
o1-mini used Bob twice as authoriser of Finalise Transaction,
after reusing Carol as authoriser for Verify Transaction.8

GPT o1-mini:
executeRoleAction("Emma", "Auditor", "addMember");
// authorised by [Carol]
executeBusinessAction(instance,
"Approve Transaction");
// authorised by [Alice,Bob] or [Alice,Carol,Emma]
executeBusinessAction(instance,
"Verify Transaction");

// authorised by [Carol, Alice, Carol, Emma]
executeBusinessAction(instance,
"Finalize Transaction");
// authorised by [Alice or Bob, Carol, Emma, Bob]

Both chats had the same prompt, and while o1-preview took
30 seconds to answer, o1-mini needed less than 10 seconds. As
expected, the Groove model checker verified the first scenario
while rejecting the second. This shows that it is feasible to use
LLMs to generate solutions to planning problems in this domain,
but also that such solutions need to be verified by tools relying
on formal (e.g., graphical) representations of the problem.

When applying our methodology to the FTA RBACM, which
features a more complex access control logic, a total of 69 test
cases were generated and executed over 20 created mutants,
resulting in 1380 tests. As the authorisation requirements be-
come more complex, they become harder to satisfy, resulting
in only five correct accept cases (where an action executed is
accepted because its authorisation requirements are met), while
the remaining test cases are all correct rejects. This test set is
sufficient to kill all 20 mutants. The DAML contracts and test
scripts are available in the paper’s GitHub repository9.

3.4. Threats to Validity
The evaluation results indicate that the approach is adequate
for generating test cases to detect faults in the DAML access
control code. The evaluation considered only two RBACMs.
However, they each cover all features of the access control mod-
elling language, so provide a good indication of the functional
correctness of the test case generation process. In the follow-
ing, we discuss the potential limitations of our evaluation in
relation to scalability, the order of authorisations and additional
authorisers, and the level and number of mutants considered for
testing.

3.4.1. Scalability There are three ways in which RBAC
policies could face scalability challenges.

1. The total number of roles, such as, in extreme cases, one
role per access device and operation, or one per employee.

2. The number of role members, such as each employee in a
large organisation.

3. The logical complexity and size of the access control re-
quirement per operation or resource, e.g., where many
layers of authorisation or a majority of the members of a
large role are required.

8 Chat at https://chatgpt.com/share/66fc8ea8-6618-8010-b7f4-78838fcf9101
9 https://github.com/issamma1/Dynamic_Role_Based_Access_Control_Paper

There is evidence that 1 and 2 can be large, but we were unable
to find examples of 3 involving more than 4 authorisers (roles or
individuals per operation).10 This is credible because a single
action requiring more than a handful of authorisation steps
would be difficult to complete in practice. In particular, referring
to the three dimensions of scale above.

1. Our approach handles access control requests per operation
or resource, so the total number of roles in the organisation
matters only for the purpose of visualisation in a graphical
model, not for analysis or testing, as long as they are used
in different access requests.

2. A larger number of members per role can lead to an ex-
plosion in the number of possible authorisation scenarios,
but unless a large number is actually required for authori-
sation, each individual scenario will be small. If a larger
number of role members are involved in approving a single
action (e.g. a majority of board members must approve the
appointment of a new chair), this is a voting system rather
than what would usually be considered access control. In
this paper, our models are used for generating test cases
to validate logical correctness, not the scalability or per-
formance, of the access control implementation. For this
purpose, the use of a small number of role members for
testing is in line with the usual practice of test data.

3. Our FTA case study uses 3 operations with 4 roles of
individuals, each required per operation, which is at the
upper limit of any concrete examples we could find.

3.4.2. Order of authorisations and additional authorisers
We did not consider the order of authorisations for each test
case, nor include authorisers beyond those required, even if both
options are available in the test case generation tool, because
the existing test cases were enough to kill all mutants. This is
partly due to the model-based way mutants are created, i.e., by
introducing faults at model level and generating faulty access
control code, we rely on our code generation templates that
treat the required authorisers as a set rather than an ordered list.
One could go beyond model-based mutation testing, applying
mutations at the code level to incorrectly force a certain order
of authorisation, and then test cases with different permutations
could reveal different results. To avoid an exponential increase
in the number of tests, a random selection of permutations could
be chosen.

3.4.3. Level and number of mutants We apply mutation
operators at model level, hence the generated mutants are not
representative of all errors one could introduce at code level
but only of design-level errors. This limits the scope of our
evaluation, and of our approach, to testing for errors arising
from correctly implementing an erroneous RBACM. This seems
appropriate given the domain-specific nature of our models, and
complementary methods can be used to test smart contracts
comprehensibly at code level. Related work on mutation testing
for access control policies (Daoudagh et al. 2015; Martin & Xie
2007) has similar scope and limitations.

10 See chat: https://chatgpt.com/share/67fa0f46-e9bc-8010-87eb-6b887988069c

Graph Rewriting for Testing Domain-specific Models 11

https://chatgpt.com/share/66fc8ea8-6618-8010-b7f4-78838fcf9101
https://github.com/issamma1/Dynamic_Role_Based_Access_Control_Paper

Another potential factor limiting the validity of the evalua-
tion is the small number of mutants considered. For the purpose
of testing the functional correctness of the test generation pro-
cess and tool chain, this can be seen as sufficient because it
covers all possible elementary changes to the model as well
as some more complex changes. In addition we used a num-
ber of models of increasing complexity to validate separately
both the correctness of the Groove graph rewrite system and
generated LTL formulas, and of the various translations em-
ployed in the process. Hence, the end-to-end evaluation based
on model-based mutation testing addresses the integration of
the tool chain, while individual components have been validated
separately.

It is also worth recalling that the main correctness argument
is based on the fact that we use the operational semantics to
generate the traces. Hence, assuming the correctness of the
Groove model checker, our traces comply with the semantics
of RBACMs by construction: A correct accept trace generated
really represents a scenario where an action is sufficiently au-
thorised and hence executed.

4. Related Work
This section discusses work related to modelling smart contracts
and role-based access control.

4.1. Access Control for Smart Contracts
Model-based development has been proposed as a way to make
smart contracts safer and more reliable in general (Velasco et al.
2023; Sánchez-Gómez et al. 2020) but without offering support
for testing access control policies. In (Heckel et al. 2022; X. Xu
et al. 2019), the authors use UML to model the architecture
and business processes of blockchain applications. The iCon-
tractML language for smart contracts proposed in (Hamdaqa et
al. 2020) is used in (Qasse et al. 2021) together with iContract-
Bot for contract modelling using a chatbot. As domain-specific
language, iContractML supports smart contract structure and
code generation for multiple platforms, including Ethereum,
Microsoft Azure, and Hyperledger Composer using the Ac-
celeo model-to-text transformation language (Hamdaqa et al.
2020; Jurgelaitis et al. 2022). Our approach uses a similar DSL
and suite of tools for representing and translating models but
targets DAML while focussing on access control and testing.
The authors of (Vandenbogaerde 2019; Sánchez-Gómez et al.
2021) present a metamodel and graph-based framework for So-
lidity smart contracts containing elements such as functions,
events, and data structures, without considering other possible
platforms, which support neither access control nor testing.

Several methodologies for model-based development of
smart contracts include access control policies and the sub-
sequent generation of Solidity source code. To model access
control for smart contracts, (Brousmiche et al. 2018; Töberg et
al. 2022; Al-Azzoni & Heckel 2023; Al-Azzoni & Iqbal 2023)
introduce model elements to describe RBAC policies such as
organisations, users, and roles. Permissions are checked at
runtime using additional smart contracts for users and roles to
implement access control. While we use similar concepts to

generate access control code, we go beyond these approaches to
support test case generation and analysis. Other access control
approaches for smart contracts (Achour et al. 2021; Cruz et al.
2018) target Ethereum’s smart contract language Solidity and
are not model-based.

4.2. Graph Rewriting Models for Access Control

Modelling access control policies through graph rewriting, we
benefit from their visual nature and their formal and executable
semantics. Graphs representing resources, agents, access rights,
and constraints enable precise rule-based definitions of autho-
risation processes and can utilise theory and tool support to
analyse such definitions. This approach was first used in (Koch
et al. 2002) to model RBAC policies and was applied to access
control for business workflows in (Wei et al. 2008). We follow
a similar philosophy using graph rewriting as the main semantic
engine but provide a DSL defining multiparty dynamic RBAC
and support testing and analysis based on model checking.

4.3. Dynamic and Multi-party Access Control

RBAC specifies and enforces enterprise security policies that
naturally correspond to an organisation structure (Samarati &
De Vimercati 2000). Access is decided by the roles users have
in the company. These roles represent the different jobs and
responsibilities of individuals. Usually, only the system ad-
ministrator has the right to control system security and assign
roles to users (Kashmar et al. 2021; Boadu & Armah 2014).
We follow this model but, in order to reflect existing features in
DAML and organisational practices, add support for multi-party,
alternatives, and cardinalities for authorisations. Moreover, in
our graph rewrite models, role membership is dynamic, i.e., a
dedicated participant, the owner of a role, is able to add and
remove members. This is an important feature in the workflows
of real organisations facing changes in staff turnover and avail-
ability. In (D. Xu et al. 2012), Petri nets are used to model
RBACs and generate tests. Access control operations are also
into workflows, but there is no support for multi-party RBAC
and role membership is static.

4.4. LLMs for Test Generation

In Sect. 3.3 we describe the use of ChatGPT to generate
RBACMs and test scenarios. Recent research on LLMs for
software testing is surveyed in (J. Wang et al. 2024). (Schäfer et
al. 2024) presents an empirical evaluation of the effectiveness
of LLMs for automated unit test generation without additional
training. In the field of autonomous driving systems, (Chang et
al. 2024) proposes an LLM-driven scenario generation frame-
work designed for training and testing critical modules. The
framework is shown to identify corner scenario cases; a very
important feature to increase the reliability and usability of self-
driving vehicles. Our use of GPT follows the line of (Schäfer
et al. 2024) using a standard LLM with a prompt explaining
the necessary concepts and tasks, in our case the structure of
RBACMs, to generate models and test scenarios.

12 Al-Azzoni et al.

4.5. Test case generation for smart contracts
There exist several automated approaches for test case genera-
tion for smart contracts. In (Driessen et al. 2024), the authors
introduce a tool for the automatic generation of test suites for
Solidity smart contracts optimised for branch coverage using
a genetic algorithm or a fuzzing-based approach. The authors
in (X. Wang et al. 2024) propose a test generation approach
based on data flow analysis for Ethereum smart contracts. This
approach can automatically generate smart contract test cases
with high branch coverage. In (Górski 2024), the author presents
a test suite reduction method for smart contracts. Neither of
them specifically test for compliance to access control policies.

5. Conclusion

We presented a method and tool chain to generate test cases
and validate scenarios based on a DSL for multi-party role-
based access control in smart contracts. The approach is driven
by an operational semantics of the DSL defined by a graph
rewriting and uses the Groove model checker to generate and
validate access control traces. Building directly on the opera-
tional semantics of the DSL, we can be confident in generating
traces that comply with this semantics.

The evaluation used model-based mutation testing, introduc-
ing random faults in the model and generating correspondingly
faulty implementations as mutants to be discovered by the test
cases. We applied this approach to two models of moderate
complexity, covering all concepts of the language.

Our methodology for model-based testing is applicable to all
behavioural models whose runtime states and transitions can be
represented by graphs and graph rewriting. We discussed the
features of such languages and outlined the general recipe.

Although all steps in the generation and evaluation are au-
tomated, a more comprehensive assessment requires a larger
collection of models that reflect access control policies in differ-
ent applications. We experimented with ChatGPT to generate
“real-world” RBACMs in different domains. This approach
could be used to generate a set of benchmark models.

The verification of dynamic RBAC scenarios generated by
ChatGPT shows another direction of future work, where such a
facility could be integrated into an application’s help function
to provide verified AI-based advice to users who may struggle
to understand and realise complex access control requirements.

References
Achour, I., Idoudi, H., & Ayed, S. (2021). Automatic gen-

eration of access control for permissionless blockchains:
Ethereum use case. In Proceedings of the IEEE Interna-
tional Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE) (pp. 45–50). doi:
10.1109/WETICE53228.2021.00020

Al-Azzoni, I., & Heckel, R. (2023). Modelling multi-party role-
based access control policies for iContractML smart contracts.
In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering Workshops (ASEW) (pp.
100–104). doi: 10.1109/ASEW60602.2023.00018

Al-Azzoni, I., & Iqbal, S. (2023). Model-driven approach
for generating smart contracts for access control. In Pro-
ceedings of the International Conference on Blockchain
Computing and Applications (BCCA) (pp. 112–115). doi:
10.1109/BCCA58897.2023.10338863

Boadu, E. O., & Armah, G. K. (2014, 09). Role-based ac-
cess control (RBAC) based in hospital management. Inter-
national Refereed Journal of Engineering and Science, 3,
53–67. Retrieved from http://irjes.com/Papers/vol3-issue9/
H395367.pdf

Brousmiche, K.-L., Mercenne, L., & Ben-Hamida, E. (2018).
Blockchain Studio: A role-based business workflows man-
agement system. In Proceedings of the IEEE Informa-
tion Technology, Electronics and Mobile Communication
Conference (IEMCON) (pp. 1215–1220). doi: 10.1109/
IEMCON.2018.8614879

Chang, C., Wang, S., Zhang, J., Ge, J., & Li, L. (2024). LLM-
Scenario: Large language model driven scenario generation.
IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems. doi: 10.1109/TSMC.2024.3392930

Cruz, J. P., Kaji, Y., & Yanai, N. (2018, 03). RBAC-SC: Role-
based access control using smart contract. IEEE Access, PP,
185-197. doi: 10.1109/ACCESS.2018.2812844

Daoudagh, S., Lonetti, F., & Marchetti, E. (2015). Assess-
ment of access control systems using mutation testing. In
Proceedings of the International Workshop on Technical and
Legal Aspects of Data Drivacy and Security (pp. 8–13). doi:
10.1109/TELERISE.2015.10

Driessen, S., Di Nucci, D., Tamburri, D., & van den Heuvel, W.
(2024). SolAR: Automated test-suite generation for Solidity
smart contracts. Science of Computer Programming, 232,
103036. doi: 10.1016/j.scico.2023.103036

Durán, F., Moreno-Delgado, A., Orejas, F., & Zschaler, S.
(2017). Amalgamation of domain specific languages with
behaviour. J. Log. Algebraic Methods Program., 86(1), 208–
235. Retrieved from https://doi.org/10.1016/j.jlamp.2015.09
.005 doi: 10.1016/J.JLAMP.2015.09.005

Engels, G., Hausmann, J. H., Heckel, R., & Sauer, S. (2000).
Dynamic meta modeling: A graphical approach to the op-
erational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent, & B. Selic (Eds.), «UML» 2000 - The
Unified Modeling Language, Advancing the Standard, Third
International Conference, York, UK, October 2-6, 2000,
Proceedings (Vol. 1939, pp. 323–337). Springer. Re-
trieved from https://doi.org/10.1007/3-540-40011-7_23 doi:
10.1007/3-540-40011-7_23

Ghamarian, A. H., de Mol, M. J., Rensink, A., Zambon, E., &
Zimakova, M. V. (2012, February). Modelling and analysis
using GROOVE. International Journal on Software Tools for
Technology Transfer, 14(1), 15–40.

Gómez-Abajo, P., Guerra, E., Lara, J. d., & Merayo, M. G.
(2021). Wodel-Test: a model-based framework for language-
independent mutation testing. Software and Systems Mod-
eling (SoSyM), 20(3), 767–793. doi: 10.1007/s10270-020
-00827-0

Górski, T. (2024). SmarTS: A Java package for smart contract
test suite generation and execution. SoftwareX, 26, 101698.

Graph Rewriting for Testing Domain-specific Models 13

http://irjes.com/Papers/vol3-issue9/H395367.pdf
http://irjes.com/Papers/vol3-issue9/H395367.pdf
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1007/3-540-40011-7_23

doi: 10.1016/j.softx.2024.101698
Hamdaqa, M., Met, L. A. P., & Qasse, I. (2022). iCon-

tractML 2.0: A domain-specific language for modeling and
deploying smart contracts onto multiple blockchain platforms.
Information and Software Technology, 144, 106762. doi:
10.1016/j.infsof.2021.106762

Hamdaqa, M., Metz, L. A. P., & Qasse, I. (2020). iContractML:
A domain-specific language for modeling and deploying
smart contracts onto multiple blockchain platforms. In Pro-
ceedings of the System Analysis and Modelling Conference
(pp. 34–43). doi: 10.1145/3419804.3421454

Heckel, R., Erum, Z., Rahmi, N., & Pul, A. (2022). Visual smart
contracts for DAML. In N. Behr & D. Strüber (Eds.), Graph
transformation (pp. 137–154). Cham: Springer International
Publishing.

Jurgelaitis, M., Ceponiene, L., & Butkienė, R. (2022, 01).
Solidity code generation from UML state machines in model-
driven smart contract development. IEEE Access, 10, 3-3.
doi: 10.1109/ACCESS.2022.3162227

Kashmar, N., Adda, M., & Ibrahim, H. (2021, 12). Access
control metamodels: Review, critical analysis, and research
issues. Journal of Ubiquitous Systems and Pervasive Net-
works, 16. doi: 10.5383/JUSPN.16.02.006

Koch, M., Mancini, L., & Parisi Presicce, F. (2002, 08). A
graph-based formalism for RBAC. ACM Transactions on
Information and System Security, 5, 332–365. doi: 10.1145/
545186.545191

Martin, E., & Xie, T. (2007). A fault model and mutation
testing of access control policies. In Proceedings of the
International Conference on World Wide Web (p. 667—676).
doi: 10.1145/1242572.1242663

Mougayar, W. (2016). The business blockchain: Promise, prac-
tice, and application of the next internet technology. Wiley.

Online source. (The Multiple Party Agreement Pattern
– DAML). Retrieved from https://docs.daml.com/daml/
patterns/multiparty-agreement.html

Penelova, M. (2021, 12). Access control models. Cybernetics
and Information Technologies, 21, 77-104. doi: 10.2478/
cait-2021-0044

Qasse, I., Mishra, S., & Hamdaqa, M. (2021). iContractBot: A
chatbot for smart contracts’ specification and code generation.
In Proceedings of the ieee/acm international workshop on
bots in software engineering (botse) (pp. 35–38). doi: 10
.1109/BotSE52550.2021.00015

Samarati, P., & De Vimercati, S. C. (2000). Access con-
trol: Policies, models, and mechanisms. In R. Focardi &
R. Gorrieri (Eds.), International school on foundations of
security analysis and design (pp. 137–196). Springer. doi:
10.1007/3-540-45608-2_3

Sánchez, A. B., Delgado-Pérez, P., Medina-Bulo, I., & Segura,
S. (2022). Mutation testing in the wild: findings from GitHub.
Empirical Software Engineering, 27(6). doi: 10.1007/s10664
-022-10177-8

Sánchez-Gómez, N., Torres-Valderrama, J., García-García, J. A.,
Gutiérrez, J. J., & Escalona, M. J. (2020). Model-based
doftware design and testing in blockchain smart contracts: A
systematic literature review. IEEE Access, 8, 164556–164569.

doi: 10.1109/ACCESS.2020.3021502
Schäfer, M., Nadi, S., Eghbali, A., & Tip, F. (2024). An empiri-

cal evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software Engi-
neering, 50(1), 85–105. doi: 10.1109/TSE.2023.3334955

Sánchez-Gómez, N., Torres, J., RISOTO, M., & Garrido, A.
(2021, 11). Blockchain smart contract meta-modeling. Jour-
nal of Web Engineering, 11. doi: 10.13052/jwe1540-9589
.2073

Tapscott, D., & Tapscott, A. (2016). Blockchain revolution:
How the technology behind bitcoin is changing money, busi-
ness, and the world. Portfolio.

Töberg, J.-P., Schiffl, J., Reiche, F., Beckert, B., Heinrich,
R., & Reussner, R. (2022). Modeling and enforcing ac-
cess control policies for smart contracts. In Proceedings
of the IEEE International Conference on Decentralized Ap-
plications and Infrastructures (DAPPS) (pp. 38–47). doi:
10.1109/DAPPS55202.2022.00013

Ultra, J., & Pancho-Festin, S. (2017). A simple model of separa-
tion of duty for access control models. Computers & Security,
68, 69-80. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0167404817300652 doi: https://doi.org/
10.1016/j.cose.2017.03.012

Vandenbogaerde, B. (2019). A graph-based framework for
analysing the design of smart contracts. In Proceedings of the
ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engi-
neering (pp. 1220–1222). doi: 10.1145/3338906.3342495

Velasco, G., Alves Vieira, M., & Carvalho, S. (2023). Evalua-
tion of a high-level metamodel for developing smart contracts
on the Ethereum Virtual Machine. In Proceedings of the
Anais do VI Workshop em Blockchain: Teoria, Tecnologias e
Aplicações (pp. 29–42). doi: 10.5753/wblockchain.2023.757

Vivar, A. L., Castedo, A. T., Orozco, A. L. S., & Villalba,
L. J. G. (2020). An analysis of smart contracts security
threats alongside existing solutions. Entropy, 22(2), 203. doi:
10.3390/e22020203

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q.
(2024). Software testing with large language models: Survey,
landscape, and vision. IEEE Transactions on Software Engi-
neering, 50(4), 911–936. doi: 10.1109/TSE.2024.3368208

Wang, X., Yang, Y., Liu, L., Chen, Z., & Huang, S. (2024). Test
case generation for Ethereum smart contracts based on cross-
contract data flow analysis. IEEE Transactions on Reliability,
1–14. doi: 10.1109/TR.2024.3494798

Wei, Y., Wang, C., & Peng, W. (2008). Graph transformations
for the specification of access control in workflow. In Pro-
ceedings of the International Conference on Wireless Com-
munications, Networking and Mobile Computing (pp. 1–5).
doi: 10.1109/WiCom.2008.2938

Xu, D., Thomas, L., Kent, M., Mouelhi, T., & Le Traon, Y.
(2012). A model-based approach to automated testing of ac-
cess control policies. In Proceedings of the ACM Symposium
on Access Control Models and Technologies (p. 209—218).
doi: 10.1145/2295136.2295173

Xu, X., Weber, I., & Staples, M. (2019). Blockchain in software
architecture. In Architecture for blockchain applications (pp.

14 Al-Azzoni et al.

https://docs.daml.com/daml/patterns/multiparty-agreement.html
https://docs.daml.com/daml/patterns/multiparty-agreement.html
https://www.sciencedirect.com/science/article/pii/S0167404817300652
https://www.sciencedirect.com/science/article/pii/S0167404817300652

83–92). Cham: Springer International Publishing. Retrieved
from https://doi.org/10.1007/978-3-030-03035-3_5 doi: 10
.1007/978-3-030-03035-3_5

Issam Al-Azzoni is an associate professor in the College of
Engineering at Al Ain University. His research interests include
Model-Driven Engineering (MDE) with applications in software
verification and validation. He has published several articles in
journals and peer-reviewed conferences on MDE. Contact him
at issam.alazzoni@aau.ac.ae, or visit https://aau.ac.ae/en/staff/
issam-al-azzoni.

Reiko Heckel is a leading researcher and professor in soft-
ware engineering at the University of Leicester, with a focus
on graph transformation theory and its applications in model-
based development, software re-engineering, testing, and the
semantics of modeling languages. Heckel has co-authored the
textbook Graph Transformation for Software Engineers and
plays an active role in the academic community through leader-
ship in conferences and associations. His work bridges formal
methods and practical software engineering, advancing the au-
tomation and analysis of complex software systems. Contact
him at rh122@leicester.ac.uk, or visit https://le.ac.uk/people/
reiko-heckel.

Zobia Enum is a Visiting Lecturer at Birmingham City Univer-
sity, where she teaches Web Application Development. She was
previously working as a Project Supervisor at the University
of Leicester. Her research focuses on Model Driven Engineer-
ing (MDE), particularly the visual modelling of DAML smart
contracts using class diagrams and graph transformation. She
has also worked as a software developer, building scalable web
applications aligned with modern industry practices. You can
contact her at erumzobia@gmail.com.

Graph Rewriting for Testing Domain-specific Models 15

https://doi.org/10.1007/978-3-030-03035-3_5
issam.alazzoni@aau.ac.ae
https://aau.ac.ae/en/staff/issam-al-azzoni
https://aau.ac.ae/en/staff/issam-al-azzoni
rh122@leicester.ac.uk
https://le.ac.uk/people/reiko-heckel
https://le.ac.uk/people/reiko-heckel
erumzobia@gmail.com

