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ABSTRACT Re-engineering of legacy software systems is widely used to improve the maintainability of such systems, by
migrating them to modernised platforms and environments. With increasing concern over the climate change impact of ICT,
there is also a need to consider the energy use of legacy systems, and to identify and remove energy use flaws as part of a
re-engineering process. In this paper we describe how energy use analysis and improvement can be carried out at the software
model level within a model-driven re-engineering (MDRE) process. Our results show that significant improvements in the energy
efficiency of re-engineered applications can be achieved. Additionally, we show that the energy efficiency of the MDRE process
itself can be improved.
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1. Introduction
Legacy software systems often perform the core business opera-
tions of organisations, and re-engineering efforts are therefore
usually carried out with the aim of reducing the ongoing costs
of maintaining such systems, and of ensuring their continued
functioning for the long term (Marco et al. 2018; Khadka et al.
2014; Sneed & Jandrasics 1987; Sneed 2011). Model-driven
reverse/re-engineering (MDRE) (Siala et al. 2024) and model-
driven modernisation (MDM) (Perez-Castillo et al. 2011) aim
to perform re-engineering by reverse-engineering legacy source
code artefacts to higher levels of abstraction, i.e., to models in
UML or other design/specification representations, and then
performing forward-engineering from these models to produce
code for the target platform.

An MDRE process facilitates substantial changes in the struc-
ture and architecture of legacy software systems, for example, to
move from a monolithic architecture deployed on a mainframe,
to a service-oriented architecture for cloud deployment (Fuhr
et al. 2013; Krasteva et al. 2013). There is evidence that such
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MDRE projects can improve system quality and maintainability,
however there has been a lack of investigation of the impact of
MDRE on software sustainability (Naumann et al. 2011), in the
sense of reducing the greenhouse gas (GHG) emissions due to
the energy used by software execution.

In this paper we describe techniques by which energy use
flaws in legacy code can be detected and corrected as part of an
MDRE process. We also consider the energy efficiency of the
MDRE process itself, and how this can be improved.

1.1. MDRE using AgileUML
The MDRE approach of AgileUML (Lano & Siala 2024a) uses
the Concrete Grammar Transformation Language (CGTL) text-
to-text transformation language to abstract program code to a
semantic representation in UML/OCL (Lano, Haughton, et al.
2024), and then applies various code generators to perform for-
ward engineering. The semantic representation uses extensions
of the OCL 2.4 standard (Object Management Group 2014), in
particular a procedural extension of OCL, similar to the SOIL
formalism (Buttner & Gogolla 2014), is used to represent proce-
dural statements. Libraries for common programming data types
and facilities have also been defined (Lano et al. 2022), and map
and function types were added to OCL (Lano & Kolahdouz-
Rahimi 2021). Sorted collections have also been added to OCL.
Details of the semantic representation are given in (Lano &
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Siala 2024b).
An example of VB to Python re-engineering is the following

function from a VB option pricing application:

1 FUNCTION D1(S AS Double , K AS Double , Vol AS
Double , R AS Double , Q AS Double , T AS Double
) AS Double

2 D1 = (WorksheetFunction.Ln(S / K) +
3 (R − Q + Vol ∗ Vol / 2) ∗ T) /
4 (Vol ∗ Sqr(T))
5 END FUNCTION

This is automatically abstracted by AgileUML to the corre-
sponding OCL version:

1 operation D1(S : double ,K : double ,Vol : double ,R
: double ,Q : double ,T : double) : double

2 pre: true post: true
3 activity: var D1 : double;
4 D1 := ((( Excel.Ln((S /(1.0 ∗ K))) +
5 ((((R − Q) + ((Vol ∗ Vol) /(1.0 ∗ 2)))) ∗ T

))) /
6 (1.0 ∗ ((Vol ∗ (T)−>sqrt())))) ;
7 return D1;

Code generation from this model targeted at Python produces
the following Python 3.10 code:

1 class FromVB :
2 def D1(self , S, K, Vol , R, Q, T) :
3 D1 = 0.0
4 D1 = (Excel.Ln(S/(1.0 ∗ K)) +
5 (((R − Q) + (Vol ∗ Vol)/(1.0 ∗ 2)) ∗ T))
6 /(1.0 ∗ (Vol ∗ math.sqrt(T)))
7 return D1

An important characteristic of AgileUML is that the code
generation process produces executable code with the same
structure as the design model procedural OCL. In particular,
the cyclomatic complexity (measured as the number of basic
logical control flow conditions plus 1) of expressions and code
is usually preserved. The operations, parameters and local
variables of the model are also retained in the generated code,
as is the call graph of the model. Therefore analysis of quality
or energy use flaws at the model level based on such structural
features will remain valid for generated implementations.

1.2. Energy use analysis
Identification of potentially wasteful energy usage by a soft-
ware application is critical to improving software sustainability
(Pathania et al. 2023). Energy measurement techniques include
external power meters, internal (on-chip) power sensors, or
energy predictive models based on performance monitoring
counters (Fahad et al. 2019; Noureddine 2022). Tools such as
Green Algorithms (Lannelongue et al. 2021), mlco2 (Lacoste et
al. 2019), Codecarbon1 and Carbontracker (Anthony et al. 2020)
provide estimates of software carbon footprints based on the
usage of computational resources and on the location of such
resources. However, these tools all measure the energy use of
executable code, and for general utility in an MDRE process, it
would be preferable to detect possible energy use flaws at the
software modelling level. This would predict implementation-
level energy use flaws based upon the software models.

1 https://codecarbon.io

Model-based energy analysis is a new area of research, with
only a few published investigations considering this issue (Alves
et al. 2020; Brunschwig & Goaer 2024; Duarte et al. 2019;
Lano, Alwakeel, & Rahman 2024b,a). In (Lano, Alwakeel,
& Rahman 2024b) we introduced the concept of energy use
analysis at the software modelling level in AgileUML, and
described techniques for reducing software potential energy use
by refactorings, choice of data types and optimisation of design
and architectural patterns. In this paper we describe extension
of the energy use flaw analysis and refactoring techniques of
(Lano, Alwakeel, & Rahman 2024b) to consider a wider range of
energy use flaws, and we detail how the detection and correction
of energy use flaws at the model level is carried out in the
AgileUML MDRE process.

1.3. Research questions and paper structure
We will investigate to what extent model-based energy use
analysis and improvement can be carried out within an MDRE
process, and if there are clear benefits observed from applying
model-based energy use analysis and improvement. We also
investigate the energy use of MDRE process steps themselves,
and what energy use improvements and tradeoffs are involved.

Thus the research questions which we aim to answer are:

– RQ1 : Can model-based energy use analysis and optimisa-
tion be supported within an MDRE process?

– RQ2 : Can using model-based energy use analysis and
optimisation in an MDRE approach significantly reduce
the energy use of legacy systems?

– RQ3 : Can the energy use of the MDRE process itself be
reduced, and what tradeoffs arise for such reduction?

Section 2 describes different categories of energy use flaw
that can be encountered in legacy code, and how these can be
detected in abstracted models. Section 3 describes refactorings
that can be applied to models to improve energy efficiency prior
to target code synthesis. Section 4 considers the energy use of
MDRE processes themselves, and how these can be reduced.
Section 5 gives a detailed evaluation of energy use reduction
using MDRE using real-world re-engineering cases, Section 6
gives a comparison with related work, and Section 7 limitations
and future work.

2. Energy use flaws in legacy code
Legacy code exists in many different programming languages,
ranging from COBOL (Sammet 1978) and BASIC (Kurtz 1978)
to Python2. COBOL is still in widespread use in legacy business
applications (Kerner 2023). BASIC, in the form of Visual Ba-
sic (VB) and Visual Basic for Applications (VBA) is the main
language for defining auxiliary code modules within MS applica-
tions such as Excel (Microsoft Corp. 2022). Python has become
the principal language used to program machine learning (ML)
applications, and it is also used for computationally-intensive
numeric processing and data analysis in financial applications
and other domains.

2 python.org
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Common problems with legacy systems are (i) unstructured
code; (ii) redundant elements and processing; (iii) use of out-
dated platforms and software/hardware environments. These
problems all have implications for the energy usage of re-
engineered versions of the systems.

2.1. COBOL
COBOL originated in the late 1950’s and early 1960’s, before
the principles of structured programming were widely accepted.
Programs can feature heavy use of GO TO statements (uncondi-
tional jumps). While these may be efficient, problems arise in
translating such coding into energy-efficient structured code in
modern languages such as Java. A statement

GO TO P.

in COBOL source code would typically be abstracted to an
operation call P(), representing the functionality encountered
by a ‘fall-through’ to paragraph or section P, and this call is
then translated to a method call in Java. Recursive P operations
arise when backwards jumps are used to define loops in source
code, for example in the COBOL code:

1 MOVE 1 TO SUB.
2 SUM −AMTS.
3 ADD AMOUNT(SUB) TO TOTAL.
4 ADD 1 TO SUB.
5 IF SUB LESS THAN 13
6 GO TO SUM −AMTS.
7 STOP RUN.

This idiom is commonly used with input file processing in
COBOL. The abstraction of the above code in procedural OCL
is:

1 SUB := 1;
2 self.SUM_AMTS ();

where SUM AMTS is a recursively defined operation:

1 operation SUM_AMTS ()
2 activity:
3 TOTAL := TOTAL + AMOUNT −>at(SUB) ;
4 SUB := SUB + 1 ;
5 if SUB < 13 then self.SUM_AMTS () else skip;
6 OclProcess.exit();

The translation of the operation to Java or another program-
ming language would retain this algorithmic structure and hence
would also be recursive. A similar strategy of translating GO TO
statements to recursive operations is carried out by the approach
of (Sneed 2011).

In general, recursively-defined operations can be energy-
expensive, because computational effort is expended by process-
ing each call to create an activation record (Gries 1971). There
are also memory overheads, with a stack of activation records
being maintained for the recursively-nested calls. Recursive and
mutually-recursive operations can be detected at the model level
by identification of loops within the call-graph of the system.

COBOL business systems typically use batch processing on
sequential file data. Direct translation of such processing to
operations on relational database representations of the data
can result in poor and even infeasible performance (Marco
et al. 2018). Instead, we adopt the approach of loading files

into memory and operating directly upon these (represented as
sequences of records). This strategy has been shown to reduce
performance problems, but also limits the extent of concurrent
processing of the batch files (Marco et al. 2018).

2.2. Visual Basic
Because VB6/VBA also has a GOTO statement, similar control
flow translation problems can arise from VB6/VBA legacy code.
In addition, due to system evolution, legacy VB code may also
contain redundant operation parameters: parameters which are
not actually used in the body of the operation. These can result
in redundant computations – the copying of actual parameter
values to formal parameters, and to additional memory use.
Similarly, there can be unused local variables or operations. As
with recursion, the presence of such flaws can be detected in the
UML/OCL abstraction of the source code.

VBA is often used in financial spreadsheet applications to
define application-specific functions (macros). Poor coding
practices and energy use flaws can arise when these macros are
written by end users who lack formal programming expertise
(Mann 2023). Macro VBA code will also typically utilise calls
to Excel worksheet functions (as in the example of Section 1.1),
and this may result in inefficiencies compared to natively-coded
functionality. The reverse engineering process of AgileUML re-
places worksheet function calls by calls to an OCL library, Excel.
In generated implementations, a natively-coded implementation
of this library is provided.

2.3. Python
Python has a reputation as a language that can be successfully
used by relatively inexperienced programmers. Unfortunately
this ease of use may result in such programmers creating pro-
grams which are simple in structure and easy to understand, but
which are quite inefficient, containing redundant or duplicated
computations.

A typical case of redundant computation is where an opera-
tion returns a list or tuple, but only one item from the result is
actually used:

op(pars)[i]

where i is a variable-free expression evaluating to an integer.
The computation of the other elements of the op(pars) result
is therefore redundant. This situation can be detected in the
UML/OCL abstraction of the code, since (in the case i ≥ 0) the
call will be abstracted to

op(apars)->at(i + 1)

in OCL, where apars abstracts pars.
Duplicated computations may also occur, where a complex

expression expr occurs in two or more places within a func-
tion op, and with expr having the same value in each location,
because its variables vars(expr) are not in the write frame of
op:

vars(expr) ∩ wr(op) = ∅

Such a flaw in source code will be abstracted to the same flaw
in UML/OCL, and hence will be detected by AgileUML.
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Another case of duplicated expression evaluation occurs with
loop-constant expressions: complex expressions expr in the
body of a loop s, whose value is the same on each loop iteration:

vars(expr) ∩ wr(s) = ∅

This can also be identified by energy-flaw analysis in the ab-
stracted UML/OCL.

Inexperienced programmers may also use inappropriate
datatypes for variables. A common flaw is to misuse lists as
sets, by always checking membership of an element in a list
before adding it, for example in the Python code:

1 if x in lst :
2 pass
3 else :
4 lst.append(x)

This leads to excessive computational effort compared to a
version using a set. Flawed code of this form abstracts to code
with the same structure and with the same flaw in OCL:

1 if lst −>includes(x)
2 then skip else
3 lst := lst −>including(x)

Thus this flaw in the source code can also be detected in the
abstracted model.

2.4. Case studies
As a COBOL case study, we use the first example of (Gandhi
et al. 2024). As a VB6/VBA re-engineering case, we use a
suite of routines for pricing financial products, which originated
in the 1990’s, but have subsequently been extended and are
still used in an investment bank. These include option pricing
and bond pricing routines. The example of Section 1.1 is an
extract from the option pricing application. As a case study in
Python re-engineering we also consider a numerical processing
application, for bond analysis and pricing, from the finance
domain.

3. Energy use analysis and improvement
Once a source application has been abstracted to UML/OCL, it
can be analysed for specific energy use flaws and refactored or
restructured to remove these flaws. Performing restructuring at
the specification level means that the improved structure applies
to every generated implementation across multiple different
target platforms.

3.1. Model-based energy use analysis
AgileUML analyses UML/OCL specifications to detect spec-
ification quality flaws analogous to ‘code smells’ in the sense
of (Fowler & Beck 2019; He et al. 2016). These can also be
regarded as technical debt indicators (Marinescu 2012). Energy
use flaws can also be identified using different measures and
additional ‘smells’ which indicate potential energy use hotspots
and errors of different levels of criticality (red or amber). Cat-
egory ‘red’ flaws are those which are definitely sub-optimal
and can be optimised by refactoring, whilst category ‘amber’
flaws are potentially non-optimal. Analogously to technical

debt, these flaws can be considered to be indicators of (envi-
ronmental) sustainability debt – i.e., of negative environmental
impact embedded in the code (Betz et al. 2015).

The current version (2.4) of AgileUML incorporates energy
use analysis and improvement at the specification and design
model levels (Lano, Alwakeel, & Rahman 2024b). This involves
the computation of relevant metrics which can serve as indica-
tors of sustainability (energy use) debt, and the identification
of specific ‘bad smells’ that indicate energy use flaws. Because
AgileUML preserves code and expression structure from the de-
sign model level to generated code, these identified model-level
flaws will also predict the existence of flaws in generated code
in multiple target programming languages.

Relevant metrics and sustainability debt indicators are given
in Table 1, adapted from the technical debt indicators of (Rahimi
et al. 2020). The metric c(expr) is the number of identifier
occurrences plus operator occurrences in expr. The specific
thresholds such as c(expr) > 10 for expression clone size can
be varied as appropriate for particular systems.

Specification model elements that have energy flaws can be
refactored for improved energy efficiency using the specific
refactoring techniques given in Table 2. The criticality level of
the flaw facilitates prioritisation of different refactoring actions.

EPL (excessive parameter length) above a threshold value
(such as 5) can result in increased computational cost for invo-
cation of the operation, in addition to poor comprehensibility.
High CC (cyclomatic complexity) and MEL (maximum expres-
sion length) for an operation can result in high computational
cost for execution of the operation, in addition to increasing
testing and maintenance effort. EFO (excessive fan-out) over
a threshold for an operation implies increased resource use by
the operation execution, in addition to maintenance costs due
to high dependencies. CBR2 > 0 (cyclic dependency) implies
the existence of self or mutual recursion between operations.
LCE (loop constant expressions) refers to expressions such as
s→max() in an OCL iterator

col→select(p | p > s→max())

which have the same value for each p ∈ col. These are an
indicator of redundant computations. DEV > 0 or UVA > 0
also imply that there are redundant computations, and may also
impair maintenance and comprehension. OES > 0 implies that
there are expression computations with excessive energy use.
Tables 3 and 4 give some examples of OES flaws.

Relevant OCL optimisation refactorings from (Cabot & Te-
niente 2007; Correa & Werner 2007; Wimmer et al. 2012)
are given in Tables 3, 4. The motivation for replacing the
left hand expression by the right in the cases of Table 3 is
that s→select(P) or s→reject(P) always involves an itera-
tion over all elements of s, whilst evaluation of an expression
s→forAll(P), s→exists(P), s→one(P) or s→any(P) may be
terminated as soon as a counter-example (for →forAll, →one)
or an example of P is found (for →exists, →any).

The cases in Table 4 either reduce the number of iterations,
or remove duplicated expressions. AgileUML uses short-circuit
logical operators &, or, ⇒ to avoid unnecessary computations
in logical formulae.
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Indicator Description Definition

EPL Excessive parameter list Number of operation parameters.

CC High cyclomatic complexity Number of basic control flow conditions in an operation + 1.

EFO Excessive fan-out Number of different operations called from

one operation.

CBR2 Cyclic dependencies Number of operations with self-dependencies

either directly or indirectly in call graph.

MEL Maximum expression length Maximum c(expr) within an operation.

DEV Duplicated expression evaluation Number of cloned expr with c(expr) > 10 and

with unchanged value across clones.

LCE Loop constant expressions Number of iterator body expressions expr with

c(expr) > 10 and expr independent of iterator variables.

OES OCL efficiency smell Number of inefficient OCL expressions.

UVA Unused parameters/local variables Number of unused parameters/variables of operation.

Table 1 Sustainability debt indicators.

Flaw Level Refactoring

Self-recursive Red Replace tail-recursion

operation. by iteration; or

make operation

≪cached≫.

Mutually- Red Replace calls

recursive by definition

operations. for one

operation.

Using sq : Sequence Red Replace Sequence by

with tests to Set or SortedSet if no

enforce unique sq indexing used,

membership. otherwise by

OrderedSet.

DEV or LCE Red Replace by new local

of complex constant v

expression. and lookups of v.

Redundant result Red Define specific operations

computation for individual

op(pars)→at(i) results.

OES flaw. Red/ Replace by

Amber optimised version.

Unused operation Amber Remove parameter in

parameter. declaration and calls.

Long chains Amber Replace call of

of method chain end operation

calls. by its definition.

Table 2 Specification energy use flaws and refactorings.

Non-optimal expression Refactored expression

col→reject(P)→size() = 0 col→forAll(P)

col→reject(P)→isEmpty()

col→select(P)→size() = 0 col→forAll(not(P))

col→select(P)→isEmpty()

s→select(P)→size() > 0 s→exists(P)

s→select(P)→notEmpty()

s→reject(P)→size() > 0 s→exists(not(P))

s→reject(P)→notEmpty()

s→select(P)→size() = 1 s→one(P)

s→reject(P)→size() = 1 s→one(not(P))

s→select(P)→exists(Q) s→exists(P & Q)

s→select(P)→forAll(Q) s→forAll(P ⇒ Q)

col→select(P)→any() col→any(P)

col→select(P)→first()

Table 3 OES flaws (red) and refactorings.

Non-optimal expression Refactored expression

col→select(P)→select(Q) col→select(P & Q)

col→reject(P)→reject(Q) col→reject(P or Q)

s→forAll(P) & s→forAll(Q) s→forAll(P & Q)

s→collect(e)→sum() + s→collect(e + f )→sum()

s→collect(f )→sum()

s→collect(e)→prd() ∗ s→collect((e) ∗ (f ))→prd()

s→collect(f )→prd()

if e then a&b else c&b endif (if e then a else c endif ) & b

Table 4 OES flaws (amber) and refactorings.
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Likewise, additional energy use flaws may arise from design
model elements and coding (Table 5). Some example program
reduction transformations are given in Table 6. These refac-
torings may improve design quality in terms of improved com-
prehensibility and reduced complexity, in addition to reducing
energy use.

Flaw Level Refactoring

while loops with Red Ensure termination by

true condition and break, exit or return.

no loop exit.

repeat loops with Red Ensure termination by

false condition break, exit or return.

and no loop exit.

LCE in loop Red Replace by local constant

body. and lookups.

Nested loops. Amber Restrict loop ranges

(Lano et al. 2018);

Optimise inner loop

(Gries 1971).

while or repeat Amber Replace by

loops. bounded loop.

Use of reflection, Amber Replace where

process creation, possible.

remote method calls.

High CC or code Amber Apply program

nesting depth; reduction

Redundant code. (Sun et al. 2018).

Table 5 Design-level energy use flaws and refactorings.

3.2. Refactoring for energy use improvement
Some refactorings from Tables 2, 3, 4, 5 and 6 can be automated
as Java-coded model transformations on AgileUML models.
The implemented specification refactorings are: Replacing re-
cursion by iteration or by caching of operation results; Intro-
ducing a new local constant for cases of DEV or LCE; the OES
refactorings of Table 3; Removing unused operation parameters;
Replacing an operation call by its definition. At the design
level, removal of LCE cases in loop bodies by introducing a
new local constant, and program reduction transformations, are
automated.

For example, the transformation of a tail-recursive operation
in OCL:

1 operation op(fpars) : T
2 activity:
3 C1 ;
4 if E1 then return op(apars) else return value ;

where C1 contains no call of op, to:

1 operation op(fpars) : T
2 activity:
3 while true

Original Refactored

c1; c2 c1

c1 ends with break, exit,

continue or return

if e then c else c c

e has no side-effects

if true then c1 else c2 c1

if false then c1 else c2 c2

if e then c1 else c2 if e then c1 else skip; c2

c1 ends with break, exit,

continue or return.

while false do c skip

repeat c until true c

c has no break, continue

for i : s do r := r + e r := r + s→collect(i | e)→sum()

r ̸∈ vars(e), r ̸= i

for i : s do r := r ∗ e r := r ∗ (s→collect(i | e)→prd())

r ̸∈ vars(e), r ̸= i

Table 6 Program reductions.

4 do
5 (C1 ;
6 if E1
7 then
8 (fpars := apars ; continue)
9 else return value) ;

is a special case of an implemented refactoring rule which re-
places the body of the recursive operation op by a while loop,
and each recursive call of op by the assignment of actual param-
eters to formal parameters, followed by continue. The restruc-
tured code should have lower energy use, because it does not
involve the creation and stacking of activation records. Applied
to the COBOL example of Section 2, this refactoring produces
the improved OCL design:

1 operation SUM_AMTS ()
2 activity:
3 while true
4 do
5 (TOTAL := TOTAL + AMOUNT −>at(SUB) ;
6 SUB := SUB + 1 ;
7 if SUB < 13
8 then continue else skip;
9 OclProcess.exit());

However, some refactorings require manual intervention.
For example, to replace op(pars)→at(i) by a call to a new
specialised operation op i that produces the i’th result of op,
requires manual coding of op i, in general.

It is important to notice that general refactorings for quality-
improvement, such as ‘Extract operation’, may increase energy
use (Sahin et al. 2014), thus only certain specific refactorings
may be used for energy use reduction. Similarly, some OCL
refactorings from (Cabot & Teniente 2007; Correa & Werner
2007; Wimmer et al. 2012), such as removing chained impli-
cations in a formula, or replacing sq→indexOf (x) > 0 by
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sq→includes(x), are intended to improve readability and speci-
fication clarity, and do not necessarily improve energy efficiency.
In this paper we have identified important cases of refactorings
which both improve quality and energy efficiency. There may
also be situations where these goals conflict, and refactorings
such as inlining operation calls could be chosen to improve
energy efficiency, whilst negatively affecting quality.

3.3. Forward engineering
From the abstracted and refactored UML/OCL representation,
code can be generated by AgileUML in multiple target lan-
guages: ANSI C, C++, C#, Java, Go, Swift and Python. The
Java, C++ and C# generators of AgileUML are written in Java.
The C and Python generators are written in a model transfor-
mation (MT) language, UML-RSDS (Lano et al. 2017). The
Go and Swift code generators are written in CGTL and can be
directly configured by end-users.

4. Improvements to the energy-efficiency of
MDRE

A MDRE process typically consists of a chain of several suc-
cessive stages (Deltombe et al. 2012; Lano, Haughton, et al.
2024):

1. Parsing of source code into abstract syntax trees (ASTs).

2. Application of an abstraction transformation to map from
ASTs to a semantic model.

3. Analysis and restructuring of the model.

4. Forward engineering to a target platform.

Each of these steps can potentially be optimised to improve their
energy-efficiency. Steps 1, 2 and 4 are usually automated, step
3 may be interactive.

With regard to step 1, we have adopted ANTLR3 as a rela-
tively efficient and lightweight parsing tool, which is widely-
used and which supports a large number of different source
languages. With regard to step 2, we can consider two alterna-
tives:

1. Explicitly-coded Java transformations abstracting from
ASTs to UML/OCL models;

2. Declarative CGTL transformation specifications of the ab-
straction mappings, which are expressed as rules from the
source concrete syntax to the target concrete syntax.

At present, there are Java-coded abstractors for C, Java and
JavaScript, and CGTL-coded abstractors for Java, Pascal, VB,
COBOL and Python.

In principle, a CGTL script or UML-RSDS transformation
could be used to implement refactoring actions for step 3. How-
ever at present, these are only implemented in Java.

With regard to step 4, there are the following alternatives:

1. Explicitly-coded Java transformations generating code
from UML/OCL models;

3 www.antlr.org

2. Code generators specified in the UML-RSDS MT language
(Lano et al. 2017);

3. Declarative CGTL transformation specifications of code
generation mappings (Lano, Xue, & Haughton 2024).

In Section 5 we compare the energy use of these alternatives for
steps 2 and 4.

5. Evaluation
In this section we provide evidence for RQ1, RQ2, RQ3 in the
context of COBOL, VB6/VBA and Python re-engineering tasks.
All data of the evaluation cases is provided on Zenodo4.

We evaluate software energy use in milli-
Watt hours (mWh) using the calculator at
https://calculator.green-algorithms.org.
The main evaluation configuration used is Windows 10 OS,
with JDK 8, Python 3.10, on a laptop with a 4 core i5-9400
processor, UK location, 8GB available memory. The varying
inputs to the computation are the processing time in ms,
processor utilisation percentage and memory use (in GB). The
average of three energy use values is used for each result, with
the computer in low-power mode and with a stable background
energy use level.

5.1. RQ1, RQ2: Energy use reduction by MDRE
To answer these questions we applied the AgileUML re-
engineering process to three typical re-engineering tasks: (i)
translation of COBOL code to Python; (ii) translation of
VB6/VBA code to Python; (iii) translation of Python code to
Java. In each case energy use analysis, and refactoring for
energy use improvement, were applied to the abstracted code.

According to (Georgiou et al. 2017; Pereira et al. 2017), VB
is somewhat more energy-efficient than Python, whilst Java is
significantly more energy-efficient than Python. However, the
problems considered in (Georgiou et al. 2017) to compare VB
and Python execution do not include the use of VB embedded
in Excel applications. The version of Python used in (Georgiou
et al. 2017) is 2.7, whilst we use version 3.10. A more recent
study, (Marini et al. 2025), found that Python was more than
3 times more energy-expensive than Java for ML training and
inference, although this varied depending on the ML algorithm
being executed.

5.1.1. COBOL Re-engineering We applied AgileUML to
reverse-engineer the first COBOL example of (Gandhi et al.
2024):

1 PROCEDURE DIVISION.
2

3 ACCEPT INP.
4 PERFORM ABLEN TIMES
5 PERFORM VARYING J FROM CUR BY 1
6 UNTIL INP ( J : 1 ) = SPACE
7 END −PERFORM
8 COMPUTE LEN = J − CUR
9 MOVE INP ( CUR : LEN ) TO AB11 ( I )

10 COMPUTE CUR = J + 1
11 ADD 1 TO I

4 zenodo.org/records/14900982
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12 END −PERFORM.
13

14 COMPUTE DIV = AB11 ( 2 ) − AB11 ( 1 ) .
15 MOVE 0 TO S1 .
16 MOVE 1 TO I .
17

18 PERFORM DIV TIMES
19 ADD I TO S1
20 ADD 1 TO I
21 END −PERFORM.
22

23 COMPUTE T = S1 − AB11 ( 2 ) .
24 MOVE T TO ANS .
25 DISPLAY ANS .
26 STOP RUN.

This program is abstracted to an OCL specification, and energy
use analysis applied. Flaws of nested loops and a potential code
reduction are detected, i.e., the second PERFORM TIMES loop
can be replaced by the two assignments

1 S1 := S1 + DIV∗I + (DIV∗(DIV − 1))/2 ;
2 I := I + DIV ;

Applying this code reduction, and then generating Python from
the OCL specification, we obtain:

1 def ABC_099_B(self) :
2 self.INP = getOclFileByPK (" System.in").readLine

()
3

4 for _performTimes in range(1, self.ABLEN +1) :
5 self.J = self.CUR
6 while not (self.INP[(self.J−1):self.J + 1 −

1] == " ") :
7 self.J = self.J + 1
8 self.LEN = self.J − self.CUR
9 self.AB11[self.I −1] = ocl.toInteger(self.INP

[(self.CUR −1):self.CUR + self.LEN − 1])
10 self.CUR = self.J + 1
11 self.I = (self.I + 1)
12 self.DIV = (self.AB11[2 −1] − self.AB11[1 −1])
13 self.S1 = 0
14 self.I = 1
15 self.S1 = self.S1 + self.DIV∗self.I + (self.DIV

∗(self.DIV − 1))//2
16 self.I = self.I + self.DIV
17 self.T = (self.S1 − self.AB11[2 −1])
18 self.ANS = self.T
19 print (("" + str(self.ANS)))

In Table 7 we compare the energy use of the original COBOL
code with the usage of the direct translation of the program to
Python, and the usage of the refactored Python code. The
Python energy use was estimated using execution on the Win-
dows 10 i5-9400 laptop described above, however the COBOL
execution was carried out on a Google cloud server.

This shows a consistent reduction in energy use for the refac-
tored Python version compared to the directly translated version.
Because of the different hardware platform used for execution
of the original COBOL version, it is difficult to compare the
energy use of this version to the re-engineered versions. We
also compared the energy use of COBOL execution using Gnu-
COBOL5 and Python 3.10 on a Linux Mint 22.1 laptop. The
results are shown in Figure 1.

5 https://gnucobol.sourceforge.io

Input Energy use (mWh)

size COBOL Translated Refactored

Python Python

99 0 0.0023 0.0015

999 0 0.0026 0.0014

9999 0.052 0.0067 0.0015

99999 0.104 0.0646 0.0022

Table 7 COBOL to Python evaluation case: energy use reduc-
tions.

Figure 1 Energy use of COBOL case versions

5.1.2. VB6/VBA Re-engineering We consider three parts
of the VBA case study, which is a financial analysis suite:

1. Binary tree estimation of option prices.

2. Routines for computing factorial and combinatorial func-
tions.

3. A routine for binary search.

The first routine is already in an energy-efficient iterative
form, but (2) and (3) are defined recursively rather than itera-
tively. We produce direct translations of the VB programs, and
also refactored Python versions of (2) and (3) to remove the
energy use flaw of recursively-defined operations. In the case
of the factorial function, because it is not tail-recursive, it is
given a cached implementation instead of being replaced by an
iterative version. The source code in VB6 is:

1 FUNCTION Factorial(N AS Integer) AS LongLong
2 IF N <= 1 THEN Factorial = 1 ELSE Factorial =

Factorial(N − 1) ∗ N
3 END FUNCTION

This is abstracted to the OCL design:

1 operation Factorial(N : int) : long
2 pre: true post: true
3 activity:
4 var Factorial : long;
5 if N <= 1 then (
6 Factorial := 1 )
7 else (
8 Factorial := (Factorial ((N − 1)) ∗ N) ) ;
9 return Factorial;
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Refactoring at the model level simply consists of attaching the
stereotype ≪cached≫ to this operation. This has the effect
of producing cached implementations of the operation in each
target programming language. The generated code in Python is:

1 def Factorial(self , N) :
2 if str(N) in self.Factorial_cache :
3 return self.Factorial_cache[str(N)]
4 result = self.Factorial_uncached(N)
5 self.Factorial_cache[str(N)] = result
6 return result
7

8 def Factorial_uncached(self , N) :
9 Factorial = 0

10 if N <= 1 :
11 Factorial = 1
12 else :
13 Factorial = (self.Factorial ((N − 1)) ∗ N)
14 return Factorial

This implementation ensures that the recursive computation of
factorial(n) is only performed once for each n.

Table 8 shows the average energy use of the VBA versions
over a range of inputs, and the average energy use of the directly
translated and re-engineered Python versions for the same inputs.
MS Office version 16 and VBA version 7.1 is used to execute
the VBA code, and Python 3.10 for the Python code.

Case Input Energy use (mWh)

size VBA Translated Refactored

Python Python

Binomial 100 0.16 0.002 –

Option 1000 0.277 0.003 –

Pricing 10000 0.413 0.013 –

Factorial/ 100000 4.25 6.69 2.54

Combinatorial 200000 10.9 14.2 7.47

300000 19.5 24.3 9.96

Binary 1000 0.169 0.0033 0.001

Search 10000 1.22 0.009 0.0023

100000 2.93 0.02 0.007

Table 8 VB6 to Python evaluation cases: energy use reduc-
tions.

These results show a consistent reduction in energy use be-
tween the source and target versions of these systems. However,
these cases have different characteristics. For the first case,
identical algorithms are used in the source and target versions,
and the gain in energy efficiency (by a factor of 30 to 80 times)
appears to be due to the change of programming language and
environment, in particular, the original version uses multiple
calls to Excel worksheet functions, whilst the re-engineered
version instead uses calls to Python library functions (an exam-
ple function of this case is shown in Section 1.1). The second
case involves only numeric processing within VB, and a direct
translation to Python is marginally less efficient. Introducing
caching of Factorial then reduces energy use below the source
program level (Figure 2).

Figure 2 Energy use of Factorial/Combinatorial case versions

The third case involves the processing of large collections
(arrays), and the direct translation is substantially more efficient
than the source (improvement by a factor of over 100 times in
the largest case). This difference could be explicable by the use
of default BYVAL value parameter passing of the arrays in the
VB code (by-value passing is the default in some versions of
VB, but not in VBA). Replacing recursion by iteration further
improves energy efficiency by a factor of 3 (Figure 3).

Figure 3 Energy use of Binary Search case versions

5.1.3. Python Re-engineering The case study for Python
to Java re-engineering is a suite of functions for bond pricing.
These functions contain several energy use flaws, including
computation of redundant operation results (6 instances), and
duplicated complex expression evaluations (12 instances). Of
these 18 flaws, 16 are detected by the flaw analysis, and the
12 cloned expressions are automatically refactored out into
new local constants at the model level, prior to generation of
Java code. The redundant operation result cases are manually
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removed. Table 9 shows the energy use of the original and
re-engineered code, applied to datasets of different sizes.

Case Input Energy use (mWh)

size Python Translated Refactored

Java Java

Bond 1000 0.021 0.058 0.013

Functions 10000 0.33 0.231 0.062

1 100000 3.34 1.87 0.428

Bond 1512 0.03 0.12 0.045

Functions 14112 0.61 0.58 0.16

2 140112 6.49 12.38 1.35

Table 9 Python to Java evaluation cases: energy use reduc-
tions.

The bond functions 1 case consists of date processing func-
tions MaxDate, Prevd, Nextd, which contain multiple duplicated
evaluation and redundant result computation flaws. The func-
tions depend heavily upon basic functions day, month and year,
which are called frequently in the Python source code:

1 def comp(date_str):
2 return date_str.split(’/’)
3

4 def year(date_str):
5 return int(comp(date_str)[2]) # used 6 times
6

7 def month(date_str):
8 return int(comp(date_str)[1]) # used 9 times
9

10 def day(date_str):
11 return int(comp(date_str)[0]) # used 9 times

These functions are abstracted to the following OCL func-
tions:

1 operation comp(date_str : OclAny) : OclAny
2 pre: true post: true
3 activity:
4 return date_str −>split(’/’);
5

6 operation year(date_str : OclAny) : int
7 pre: true post: true
8 activity:
9 return ("" + comp(date_str)−>at(2+1))−>

toInteger ();
10

11 operation month(date_str : OclAny) : int
12 pre: true post: true
13 activity:
14 return ("" + comp(date_str)−>at(1+1))−>

toInteger ();
15

16 operation day(date_str : OclAny) : int
17 pre: true post: true
18 activity:
19 return ("" + comp(date_str)−>at(0+1))−>

toInteger ();

The definitions of year, month and day are recognised as cases
of the ‘redundant operation results’ energy use flaw, and manual
optimisation of these produces the improved OCL definitions:

1 operation year(date_str : String) : int

2 pre: true post: true
3 activity:
4 var lsub : int := date_str −>lastIndexOf ("/");
5 return date_str.subrange(lsub +1) −>toInteger ();
6

7 operation month(date_str : String) : int
8 pre: true
9 post:

10 result = date_str −>after ("/") −>before ("/") −>
toInteger ();

11

12 operation day(date_str : String) : int
13 pre: true
14 post:
15 result = date_str −>before ("/") −>toInteger ();

Translation of the original version to Java results in a small im-
provement in energy efficiency compared to the source program,
while generation of Java from the refactored version improves
energy efficiency over the source by a factor of 7.8 times lower
energy use in the largest test case (Figure 4).

Figure 4 Energy use of Bond Functions 1 versions

Bond functions 2 has similar characteristics, but involves
more complex iterative processing. The Java translation in this
case is more energy-expensive than the source program, but the
refactored version improves energy efficiency compared to the
source by a factor of about 5 in the largest test (Figure 5).

Figure 5 Energy use of Bond Functions 2 versions
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5.1.4. Summary for RQ1, RQ2 For RQ1 we can conclude
from the above cases that enhancing an MDRE process with
model-based energy use analysis and improvement is feasi-
ble. The analysis techniques detected 92% of energy use flaws
present in the case studies, and 72% of the flaws could be auto-
matically corrected (Table 10).

Flaw Count Detected Automatically

refactored

Recursive operations 2 2 2

Redundant operation 6 4 0

results

Duplicate expression 12 12 12

evaluations

Unused operation 3 3 3

parameters

Nested loops 1 1 0

Program reductions 1 1 1

Total 25 23 (92%) 18 (72%)

Table 10 Energy use flaws detected and refactored.

Moreover, for RQ2 we conclude from the cases of Tables 7,
8, 9, that such an enhanced MDRE process can achieve energy
use reductions for the re-engineered versions of legacy systems.
However the degree of improvement varies depending upon the
characteristics of the source program and the extent to which
energy use flaws are present.

5.2. RQ3: Energy use reduction of MDRE processes
To evaluate different MDRE processes, we compare Java-coded
and CGTL versions of program abstractors, and Java-coded,
MT-coded and CGTL versions of code generators. UML-RSDS
has not been applied for code abstraction, so is omitted from the
comparison of Table 11.

For reverse engineering, the Java2UML Java-coded program
abstractor for Java reverse-engineering was compared with the
cgJava2UML.cstl CGTL abstractor script with respect to their
energy use when applied to four Java source programs of varying
size and complexity (Table 11). Input program size is measured
in lines of code (LOC). Each abstractor takes as input a textual
abstract syntax tree representation of the source program, as
produced by the ANTLR Java parser, and generates as output a
textual UML/OCL model.

The Java-coded approach for defining program abstractors
therefore appears to have reduced energy use compared to the
CGTL approach (Figure 6). However, substantially more human
effort is required to create and maintain a Java-coded transforma-
tion, compared to a CGTL transformation (Lano, Haughton, et
al. 2024). In the case of large languages such as VB or COBOL,
writing a Java abstractor would be a substantial multi-person-
year project, whilst CGTL abstractors for these languages were
each developed within a few person months. In addition, it
is possible to verify properties of a CGTL transformation by
inspection of the text-to-text rules. For example, to check that

Java application Size Java2UML cgJava2UML

case (LOC) Java-coded CGTL-coded

AVATAR case 113 34 1.56 13.9

nsapp 132 0.89 11.4

Transcoder case 20 168 4.63 25.9

CDOapp 290 2.8 16.6

Averages 156 2.47 16.95

Table 11 Energy use (mWh) for program abstraction ap-
proaches

Figure 6 Energy use of code abstractor versions

the cyclomatic complexity of the code is not increased by the ab-
straction process. Such verification would require significantly
higher resources for a Java-coded abstractor.

For code generation, the energy use of the Java-coded
UML2Java7 code generator was compared to that of the UML-
RSDS-specified uml2py3 code generator and the CGTL-coded
cgJava8 generator using four input models of different sizes:
mmUML (121 LOC), ocldate (250 LOC), matrixlib (541 LOC)
and Excel (747 LOC). Each code generator takes as input a
UML/OCL model and produces text files of Java or Python
code for the model.

Table 12 shows the detailed evaluation data. Only the exe-
cution times of the three transformations are considered, not
including model loading times. The results show that in this
situation the MT-coded transformation has reduced energy use
compared to the Java-coded and CGTL-coded versions (Figure
7). One reason may be the relatively small size (317KB) of the
uml2p3 executable, whilst the other generators execute within
the 5MB AgileUML IDE.

The development, maintenance and verification of code gen-
erators written in CGTL requires less effort than with equivalent
UML-RSDS or Java-coded versions (Lano, Xue, & Haughton
2024).

For RQ3 we can therefore conclude that MDRE energy use
can be reduced in principle by using Java-coded abstraction and
code generation transformations, in preference to CGTL trans-
formations. In addition, MT-coded transformations for code
generation can have reduced energy use compared to Java-coded
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Figure 7 Energy use of code generator versions

Application Size UML2Java7 uml2py3 cgJava8

case (LOC) Java-coded MT-coded CGTL-coded

mmUML 121 0.238 0.07 0.273

ocldate 250 0.438 0.09 6.1

matrixlib 541 0.797 0.05 8.73

Excel 747 1.56 0.39 24.55

Averages 414.8 0.75 0.15 9.91

Table 12 Energy use (mWh) for code generation approaches.

transformations. However, there are tradeoffs with regard to the
development effort and time required for these different transfor-
mation techniques: generally a UML-RSDS transformation is
smaller and easier to maintain compared to a Java-coded equiva-
lent, and a CGTL transformation is further smaller and requires
reduced effort to maintain compared to an equivalent UML-
RSDS transformation (Lano, Haughton, et al. 2024). Indeed it
was considered infeasible to develop Java-coded abstractors for
VB and COBOL because of the size and complexity of these
languages.

6. Related work
The only previous research on this topic was (Cordero et al.
2015), which proposes an energy-measurement strategy to iden-
tify the most energy-expensive components within a Java legacy
system, and hence to prioritise system components for refactor-
ing to reduce energy consumption. In contrast, our approach
is focussed on energy efficiency improvement by analysis and
refactoring of the abstracted system models. The approach of
(Cordero et al. 2015) could be used to select the most critical
legacy system components to be optimised by applying our
approach.

There has been considerable software sustainability research
in the fields of programming languages and program design,
whereby the energy use of different software design and im-
plementation options are considered, including design patterns
(Bree & O’Cinneide 2022; Maleki et al. 2017; Sahin et al. 2012),
refactorings (Sahin et al. 2014), programming language choices

(Georgiou et al. 2017; Marini et al. 2025; Pereira et al. 2017)
and data structure choices (Michanan et al. 2017; Olivera et
al. 2019; Singh et al. 2015). In contrast, only a few research
works consider the estimation and analysis of energy use based
on software models such as class diagrams or state machines
(Alves et al. 2020; Brunschwig & Goaer 2024; Duarte et al.
2019; Lano, Alwakeel, & Rahman 2024b,a).

Addressing software energy use issues at the model level
could enable energy use reduction to be achieved across mul-
tiple target platforms. The proposal of (Brunschwig & Goaer
2024) leverages this concept to identify energy use hotspots for
mobile apps at a platform-independent model level. The work
of (Alves et al. 2020; Duarte et al. 2019) defines techniques to
estimate software energy consumption based on state machine
models at the detailed design level. Some initial ideas on the
use of an MDE process to manage sustainability requirements
have been identified by (Sousa et al. 2024), and analysis of the
general issues involved in using MDE for sustainable microser-
vice architectures is given by (Morais et al. 2024). However,
most MDE toolsets do not provide the necessary tools to support
energy use analysis and improvement, and MDE specification
and design languages such as UML and OCL do not provide
any notations to specify or constrain energy use. The energy ef-
ficiency of MDE processes and tools themselves also need to be
examined, for example, to compare the energy use of different
MDE tooling approaches and different model transformation
(MT) languages, and to compare MT languages to 3GLs as
alternatives for implementing transformations (Lano & Rahimi
2024).

7. Limitations and future work

A significant limitation of the approach presented here is the
need for greater automation in supporting refactorings for en-
ergy use improvement. Several improvement actions, such as
defining separate operations to address redundant result compu-
tation flaws, currently need manual intervention.

There is scope for further automation support of refactorings,
for example, a technique for removing the use of reflection
would be to represent the type structure of the model internally
within the implementation, by pre-initialising maps of reflection
information about the classes and features of a model. The range
of OCL simplifications and program reduction transformations
could also be extended, to include simplifications of expressions
involving maps (such as replacing mp→keys()→includes(k)
by mp→includesKey(k) for map mp) and other OCL extensions
supported by AgileUML.

In Section 5 we encountered problems with comparing the ex-
ecution of COBOL source programs with re-engineered versions
in Python. While running GnuCOBOL on a general-purpose
computer has made the testing of COBOL possible for this
paper, in practice, COBOL is usually run on mainframe sys-
tems dedicated to performing repeated and intensive business
operations. An option for mainframe emulation is Hercules,
an open-source mainframe emulator that can emulate several
IBM mainframe operating systems, specifically those of the Sys-
tem/370, ESA/390 and z/Architecture architectures (Bowler et
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al. 2025a,b). This will be used in future analysis work involving
COBOL.

Here we have used rule-based and deterministic reverse and
re-engineering techniques. Instead, Large Language Models
(LLMs) could be investigated as an alternative approach for
mapping from programs to UML/OCL (Siala & Lano 2025) and
for implementing energy use improvement refactorings. Finally,
improved visualisations of energy use flaws could be added,
including code highlighting, and the range of analyses could be
extended to include the detection of energy-expensive design
patterns such as Visitor or Decorator, and to restructure the
system into more energy-efficient versions without the patterns.

Conclusions

In this paper we have defined techniques for energy use anal-
ysis and improvement as part of model-driven re-engineering
processes, and we have shown that these can be applied to real-
world cases of re-engineering tasks. Energy use flaws can be
detected and corrected by automated refactoring actions, result-
ing in reduced energy use by the re-engineered applications,
compared to the legacy source versions. In addition, we have
shown that the energy use of the MDRE process can itself can
be reduced.
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