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ABSTRACT Class diagrams are a standard notation for effectively visualizing the structure of a software system in the context
of software design and analysis. In particular, class diagrams are widely used in reverse engineering, the main goal of which is
to reconstruct and analyze the design of a system from a given codebase to understand and improve it. Yet, traditional reverse
engineering tools that generate class diagrams from code often produce cluttered outputs due to their inability to perform
abstraction, that is, leaving out or summarizing nonessential elements in a way human experts would do.
In this paper, we explore the use of large language models, specifically GPT-4, in generating class diagrams from code to
emulate human abstraction. We used an experimental methodology in which we applied GPT-4 to a dataset of five substantial
projects, comprising 4452 code elements and their expert-created abstraction to 338 model elements. Our prompts were
informed by an in-depth manual analysis of the dataset, in which we identified stylistic choices that can lead to different
generation outcomes and, therefore, are useful to include as hints into the prompt to reflect user preferences. To understand
GPT-4’s inherent ability to abstract, we experimented with including hints from the Human Abstraction Framework (HAF), a
previous systematization of human abstraction, into the prompts. Our results shed a promising light on the use of GPT-4
for making abstraction decisions at a fine level of granularity (e.g., the inclusion of attribute- and operation-level and type
information), where mean F1 scores of 91% and 89% could be achieved, respectively, while more coarse-grained abstraction
decisions (especially regarding the representation of relationships) lead to considerably worse F1 scores between 62% and
75%. The inclusion of HAF-based hints into prompts did not significantly affect accuracy, shedding a promising light on GPT-4’s
inherent abstraction ability. Our results emphasize the need for further research on understanding the handling of relationships
during manual abstraction.

KEYWORDS Class Diagrams, Reverse Engineering, Large Language Models

1. Introduction
Class diagrams are an essential tool for the understanding of
software projects. They provide an abstract overview of the
system structure and can be used as an onboarding tool for de-
velopers and maintainers. However, a substantial problem arises

JOT reference format:
Victor Campanello, Shariq Shahbaz, Vladislav Indykov, and Daniel Strüber.
On the Use of GPT-4 in the Reverse Engineering of Class Diagrams. Journal
of Object Technology. Vol. 24, No. 2, 2025. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2025.24.2.a14

due to the low frequency at which the diagrams are updated (Os-
man & Chaudron 2013). This may cause a roadblock since the
efficacy of diagrams relies on the relevance and accuracy of the
codebase representation, and regular manual updates of class
diagrams are laborious and error-prone. A potential response
to this dilemma can be using reverse engineering tools that can
generate class diagrams from code (Siala et al. 2024). However,
the main problem with existing tools is that they cannot perform
abstractions (Koschke 2006), which results in diagrams that
look cluttered.

When creating class diagrams, human experts perform ab-
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straction by making decisions about whether to include certain
information in the diagram or not, and if so, how to include it.
Zhang et al. (Zhang et al. 2023) empirically studied manual
abstraction by categorizing abstraction decisions at the level of
classes, relationships, attributes, and operations. Their study
could inform the development of reverse engineering tools that
mimic human abstraction.

A first step in this direction was made with the previous
approaches by Osman et al. (Osman et al. 2013) and Thung
et al. (Thung et al. 2014), who both used traditional machine
learning techniques to condense reverse-engineered class dia-
grams. They focused on the decision of whether to include or
exclude entire classes from the class diagram, which represents
a coarse-grained understanding of abstraction. However, as
suggested by Zhang et al. (Zhang et al. 2023), the abstractions
performed by developers in practice are more nuanced, and rep-
resent a spectrum from coarse-grained (such as including entire
classes) to fine-grained (such as including specific methods,
operations, and parameters). In addition, while both techniques
were effective in predicting relevant classes, they required a
substantial overhead for users in labeling class diagrams for the
same system to obtain training data.

Hypothetically, the use of Large Language Models (LLM)
could contribute to addressing these issues. There has been a
significant increase in the capabilities of LLMs over the last few
years (Brown et al. 2020), which have shown to have an edge
over traditional machine learning techniques for many tasks.
The ability of modern LLMs to intake large amounts of multi-
modal data and produce useful output makes them a valuable
tool for various industries, in particular for software develop-
ment and documentation. In the context of reverse engineering,
the focus should be on how they handle large codebases as in-
put, as well as their ability to understand the various complex
relationships in the code. Therefore, the purpose of this paper is
to analyze, organize, and fine-tune the output from an LLM to
reproduce existing class diagrams by giving it code as input.

In this study, we focus on the LLM GPT-4 because at the time
of writing it is one of the most accurate LLMs available (Achiam
et al. 2023),(Minaee et al. 2024). GPT-4 is a multi-modal LLM
that outperforms a variety of other LLMs in hallucination and
common-sense reasoning metrics (Minaee et al. 2024).

We address and answer three research questions:

RQ1: How does GPT-4 perform when generating class dia-
grams using only the code as input?
RQ2: How does GPT-4 perform when generating class dia-
grams, using Human Abstraction Framework as input along
with code?
RQ3: How does the inclusion of the Human Abstraction Frame-
work within the prompt affect the outputted diagrams in com-
parison with diagrams created without this framework?

RQ1 and RQ2 both put GPT-4’s abstraction capabilities to
test, as we use it to generate class diagrams from code, and
compare the result to human-created diagrams. The difference
between both questions is that in RQ2, by explicitly including
information from the Human Abstraction Framework (Zhang et
al. 2023) in the prompts, we can study the impact of explicitly

guiding GPT-4 with information about the expected abstractions.
HAF provides a collection of abstraction cases on the level of
classes, attributes, operations, and relationships, describing how
humans typically abstract when they create class diagrams. In
RQ3, we compare the results of the previous two questions to
see what difference the Human Abstraction Framework made
in the diagram generation process.

We answered the research questions via a controlled exper-
iment, comparing the performance of GPT-4 in creating class
diagrams with human abstractions with a set of five class dia-
grams created by five development teams. For answering RQ1
and RQ2, GPT-4’s performance is measured using the metrics
of precision, recall, F1-score (described later in detail) across
three categories of differences (see Table 5).

For answering RQ3, we perform statistical analysis for the
F1-score metrics, quantifying the differences in accuracy met-
rics obtained from RQ1 and R2, of using only code, and both
code and HAF prompt hints as input, respectively. The answers
to these questions will act as a stepping stone for future research
to use these rapidly improving LLMs to streamline the software
documentation and the reverse engineering processes.

2. Related Work and Background
Reverse Engineering of Class Diagrams. Reverse engineering
is the process of creating a representation of an already existing
system (Chikofsky & Cross 1990). In the context of model-
driven reverse engineering, software models, especially those
from UML and domain-specific model languages, are used as
the representation of choice (Hughes & Bae 2024; Priefer et al.
2021; Peldszus et al. 2018; Vaupel et al. 2015). A particularly
widely used representation in this context, which is used by
practical reverse engineering tools such as MoDisco (Bruneliere
et al. 2014), are class diagrams. Yet, the automatic creation
of class diagrams from code naturally leads to a cluttered and
hard-to-read representation if it represents the same information
as the code itself.

One of the ways to deal with excessive information in auto-
matically generated diagrams is to use machine learning. Ma-
chine learning is broadly defined as the process of using past
data to create an algorithm to predict future data (Alpaydin
2021). A line of work has used machine learning to address
the problem of condensing reverse-engineered class diagrams
by removing irrelevant information. Osman et al. (Osman et
al. 2013) were the first to apply a collection of traditional ma-
chine learning techniques to label classes as either relevant or
irrelevant, based on statistical metrics such as the number of
attributes and operations, and available labels that were man-
ually created by developers for the same project. Thung et al.
(Thung et al. 2014) improved on this initial work by consider-
ing additional, network-based metrics, while also reducing the
effort for manual labeling by automatically assigning labels to a
subset of unlabelled data. Follow-up work by Yang et al. (Yang
et al. 2016) uses a different combination of machine learning
techniques, in particular, unsupervised and ensemble ones, to
improve the accuracy of the classification.

However, all of these existing approaches focus on the coarse
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Table 1 Definitions of key terms, from Zhang et al. (Zhang et
al. 2023)

Real Abstraction Cases where the model uses elements
that specify more general semantics or
contain fewer details than what can be
found in the source code.

Disagreements Cases where the model uses elements
that specify more specific semantics or
contain more or different details than
what can be found in the source code.

Inaccuracies Differences that cannot be classified as
a difference in level of specificity and
detail, but rather as non-conceptual dif-
ferences in representation.

abstraction task of excluding or including entire classes, which
does not capture the full range of abstraction decisions done
by human experts (see below). In addition, while they are able
to achieve a good accuracy, they all have a remaining effort
for initial manual labeling, which is generally laborious. In
this work, we focus on an approach that can automatically
make abstraction decisions at different levels of granularity, and
avoids the manual labeling effort of traditional machine learning
techniques.

Human Abstractions in Class Diagrams. We based our under-
standing of human abstraction on the empirical study by Zhang
et al. (Zhang et al. 2023), who investigated how developers
create abstractions from code when they create class diagrams.
Zhang et al. manually collected a set of five substantial soft-
ware projects with class diagrams from the Lindholmen Dataset
(Hebig et al. 2016) and performed detailed breakdowns of all
abstractions therein by manually matching 466 classes, 1352
attributes, and 2634 operations from source code to 338 model
elements (Zhang et al. 2023). Zhang et al. broadly categorized
differences between the source code and the diagram into a tax-
onomy of real abstractions, disagreements, and inaccuracies.
These three categories are defined in Table 1. The same authors
later (in parallel to the present work) validated their taxonomy
based on four additional subject projects (Zhang et al. 2025),
where it demonstrated generalizability to larger cases.

From these differences, our focus is on real abstraction.
Zhang et al. identified a number of cases of real abstraction,
which we call Human Abstraction Framework (HAF) in this
paper. We show the definition of these cases in Table 2. Impor-
tantly, abstractions performed in class diagrams go well beyond
the exclusion or inclusion of whole classes, which is a formative
insight for automated approaches to mimic human abstraction.

AI support for class diagram generation. A line of recent
work has analyzed the capability of large language models to
create UML-like models from various data sources. Consider-
ing class diagram generation, which is the focus of our work,
considered sources include requirements descriptions (Wang
et al. 2024; Ferrari et al. 2024), domain descriptions (Chen et

Table 2 Cases of Real Abstraction, from (Zhang et al. 2023)
Classes

Inheritance Structure
Omission

Inheritance structure(s) from the source
code are not presented in the model.

Class Omission Class(es) from the source code of the mod-
eled system part are not presented in the
model.

Class Summary Two or more classes from the source code
are presented as one class in the model.

Attributes

Attribute Omission Attribute(s) from the source code are not
presented in the model.

Attribute Summary Multiple attributes from the source code
are presented as one attribute in the model.

Attribute Type Omis-
sion

The type of attribute(s) from the source
code is not presented in the model.

Default Value Omis-
sion

Attribute(s) from the source code have a
default value not presented in the model.

Operations

Operation Omission Operation(s) from the source code are not
presented in the model.

Operation Summary Multiple operations from the source code
are presented as one operation in the
model.

Parameter Omission Parameter(s) from the source code are not
presented in the model.

Parameter Name Omis-
sion

Parameter name(s) from the source code
are not presented in the model.

Return Type Omission The return type of method(s) from the
source code is not presented in the model.

Collection Type Under-
specification

The types of object(s) that can be stored in
collections are not presented in the model,
or only the types of object(s) are presented
without showing the collection.

Relationships

Relationship Omission Relationship(s) from the source code are
not presented in the model.

Relationship Loosen-
ing

Attribute(s) (i.e., owned elements) from
the source code are modeled as named
associations (and not as compositions or
aggregations).

Relationship Summary For two classes that access each other’s
values indirectly via a third class in the
source code, a direct association is pre-
sented in the model.

al. 2023; Cámara et al. 2023), and images (Conrardy & Cabot
2024). Other related work in this direction focuses on UML use
case enhancement in an interactive, feedback-driven process
(De Vito et al. 2023), and generation of data flow diagrams from
user stories (Herwanto 2024).

Compared to this line of previous work, our study is the
first to consider the creation of class diagrams from code, in the
context of reverse engineering. The specific technical challenges
that arise in this context are the identification of useful cases
for training, the prompt engineering (specifically, deciding how
to present the code information to the LLM), as well as the
performance evaluation of the resulting LLM application in this
particular task.

Large Language Models and PlantUML. There is a vast vari-
ety of large language models available that we found relevant
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Figure 1 Overview of experimental methodology

to consider for our methodology. Image-generating models,
such as DALL-E and Stable Diffusion, output images given text
as input. Newer video-generating models, such as Sora, can
generate videos using text, but given its multimodal nature, it
is also capable of taking in images and videos as input (Brooks
et al. 2024). Text-generating models, such as Gemini and GPT,
can take in a variety of different kinds of input. They are able to
use Natural Language Processing (NLP) techniques to not only
understand but also output text in Natural Language (Achiam
et al. 2023). However, as these models are limited to text as
their output. Hence, we require a textual representations for
class diagrams, ideally one that also allows for easy graphical
visualization. Our solution of choice is PlantUML (Vaughan
& Sundström 2024), which fulfills all of these requirements: it
provides a text-based approach to creating UML diagrams by
following a specific syntax. The LLM can be instructed to pro-
vide its output in the PlantUML syntax (Vaughan & Sundström
2024), which can easily be converted into class diagram images
through PlantText (Vaughan et al. 2024).

A good way to effectively utilize these large language models
is with the technique called Chain-of-Thought. Wei et al. (Wei
et al. 2022) accurately describe it as a series of intermediate
reasoning steps that give the answer once each step has been
performed. Wei et al. (Wei et al. 2022) liken it to a large math
problem that needs several smaller steps to solve. The same can
then be applied to a Large Language Model, where you ask it
to write out its answer into a series of intermediate steps that
lead to the final answer. This form of prompting yields better
results than standard prompting, especially for larger and more
complex tasks (Wei et al. 2022) which describes our research
well.

Custom GPTs. ChatGPT, the online platform used to access
GPT-4 allows for the creation of custom GPTs (Tao et al. 2023).
In traditional prompting, the instructions for creating a class
diagram need to be provided in every new prompt created with
the LLM. Custom GPTs, however, allow us to provide the LLM
with a permanent context, allowing repeated prompting without
the need to re-provide the context information. This is a great

utility in research such as ours, where the underlying context
(i.e. creating class diagrams from code in PlantUML) does
not change. It is important to note that the context that is not
unchanging still needs to be provided when the custom GPT is
prompted, e.g., the specific files for the diagram.

3. Methodology

Recall that our goal is threefold: to assess GPT’4 abstraction
ability when provided with just code (RQ1), with both code and
hints from Zhang et al.’s Human Abstraction Framework (RQ2),
and to evaluate the difference between these two approaches
(RQ3). To address this goal, we performed a controlled ex-
periment, following the methodological guidlines provided by
Wohlin et al. (Wohlin et al. 2012). The experiment, illustrated
in the overview in Fig. 1, consists of two treatments, the results
of which provide answers to RQ1 and RQ2: diagrams gener-
ated using the prompt with and without the human abstraction
framework included. Our independent variable is the prompt
used for the experiment (with or without the human abstraction
framework). Our dependent variables are evaluation metrics of
precision, recall, and F1-score. To answer RQ3, we performed
a statistical comparison by applying hypothesis testing to the
results from RQ1 and RQ2.

The data collection process utilized human-generated dia-
grams for comparison to see how well GPT-4 can recreate each
specific diagram. GPT-4 was provided with the code that the
diagram represents as input, along with a specific prompt. This
is followed by automatic comparisons of the GPT-generated
diagrams to the human-generated diagrams, which outputs the
aforementioned evaluation metrics. To evaluate RQ3, concern-
ing the differences in the results between RQ1 and RQ2, i.e. the
difference in output before and after the inclusion of the human
abstraction framework, a statistical analysis is performed. This
is done using standard null hypothesis significance testing.

The justification for the project and LLM selection, as well
as a detailed description of the data collection and analysis, is
described below.
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3.1. Project Selection

To evaluate the capability of GPT-4 to create real abstractions
over class diagrams, existing software projects with class dia-
grams are required. These projects can then be given to GPT-4
as input and their resulting class diagrams can be compared to
the existing one created by humans previously.

This research utilized the same five projects as Zhang et al.
(Zhang et al. 2023), summarized in Table 3. All projects use
Java as their programming language, a language interesting to
consider in combination with class diagrams, since it includes
concepts of classes, fields, and methods, which are also part of
class diagrams, as its key structures. Since the Human Abstrac-
tion Framework is crucial to this project and the framework
has only been analyzed on these projects, the same projects
were chosen. Zhang et al. manually matched 466 classes, 1352
attributes, and 2634 operations from source code to 338 model
elements (Zhang et al. 2023). The aim is to extend the work
done by Zhang et al. by comparing their chosen class diagrams
with the ones produced by GPT-4. This allows for a one-to-one
comparison between human-generated class diagrams and GPT-
4-generated class diagrams using the same projects as input. An
important note with the human diagrams is that Zhang et al.
detected several disagreements and inaccuracies (see Table 1).
To avoid that errors bias our evaluation of abstraction ability, we
recreated the human diagrams in such way that all errors men-
tioned by Zhang et al. (Zhang et al. 2023) in their replication
package were removed.

Importantly, our considered class diagrams differed in sev-
eral stylistic choices. For example, developers made different
decisions about whether to include parameters in methods or
not, and it is impossible to claim if one decision was more valid
than another. An evaluation of an automatic technique for class
diagram extraction should not penalize the use of a different
style preference by the technique compared to a human expert.
To this end, we systematically considered all diagrams to ex-
tract a collection of relevant stylistic choices made, outlined in
Table 4.

Table 3 Projects with information on code and model ele-
ments: classes, operations, attributes

ID Name Code elements Model elements

cl. op. att. cl. op. att.

1 ZooTypers 15 77 52 6 31 16

2 RaiseMeUp 40 545 474 17 59 43

3 EAPLI PL 2NB 60 255 51 8 30 9

4 FreeDaysIntern 92 502 216 8 35 15

5 NeurophChanges 259 1255 559 10 0 0

Projects on GitHub: ZooTypers, RaiseMeUp, EAPLI_PL_2NB,
FreeDaysIntern, NeurophChanges

A further concern is that human abstraction does not necessar-
ily have a single, unique correct outcome - different developers
might create different class diagrams for the same underlying
code base. To address the impact of developer variety, we re-
peated the LLM-based class diagram process 5 times per system
and considered the best-obtained class diagram for our reporting
of evaluation metrics.

Table 4 Stylistic choices and their usage within the projects

Stylistic choices Proj. 1 Proj. 2 Proj. 3 Proj. 4 Proj. 5

Include getters no no yes some no

Include setters yes some yes some no

Include methods some some some some no

Include constructors some no no no no

Include attributes some some some some no

Include attribute types yes yes yes no no

Include return types no yes yes no no

Include access modifiers yes no some yes no

Include relationships yes some some some some

Include parameter
names

yes some no no no

Include parameter types yes yes yes no no

Convert aggregation into
association

no no yes yes no

Convert composition
into association

yes no yes no no

3.2. Large Language Model Selection
Provided the information from subsection Large Language Mod-
els and PlantUML 2, we decided that Image and text-generating
models are the most relevant for the goals of this research due to
the type of their outputs. Another important factor in picking an
LLM is the token limit. Tokenization is the process of "dividing
up the input text, which to a computer is just one long string
of characters, into sub-units, called tokens", as per Grefenstette
(Grefenstette 1999). Tokenization is how NLP models process
their input (Michelbacher 2013), but each model is limited by
the number of tokens it can process, which limits how large an
input the LLM can accept in the prompt. We have eliminated
the possibility of using a deep learning text-to-image model,
such as Dall-E. The reason for this is that these models have a
significantly low token limit (Depue 2023). The low token limit
on these models makes it impossible to use a codebase as input,
as the amount of tokens in the chosen projects far exceeds the
input capabilities of these models.

A consequence of this choice is that it leaves text-to-text
models as the only option. There are several Large Language
Models available that can be used for evaluating the research
questions, the most prominent ones include Claude, Gemini,
Llama, and GPT-4 (Minaee et al. 2024). The following criteria
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were analyzed when picking the final LLM for this research.
Firstly, Hallucinations are an important metric for the eval-

uation of Large Language Models, as they can be a measure
of the factual correctness of the output (Alkaissi & McFarlane
2023). Within the context of LLMs, a hallucination is defined
as "the generated content that is nonsensical or unfaithful to
the provided source content"(Ji et al. 2023). According to the
Hughes Hallucination Evaluation Model, GPT-4 has the lowest
hallucination rate, leading to the highest factual consistency
(Hughes & Bae 2024). Another important metric is common-
sense reasoning, which is defined as the "ability of the model to
use prior knowledge in combination with reasoning skills" and
is very important in determining an LLM’s capability to reason
(Minaee et al. 2024). A dataset consisting of 70,000 multi-
choice questions called HellaSwag ranked GPT-4 the highest at
95.3 percent correct, 6.44 points above second place (Minaee et
al. 2024).

Provided the above reasoning in combination with the results
from Minaee et al.(Minaee et al. 2024), we decided to use GPT-
4 for our research. This is because GPT-4 is well-balanced in
its reasoning and hallucinates far less often than its competi-
tors. Hence, we determined it to be the best fit for generating
abstracted class diagrams.

3.3. Diagram generation.
The diagram generation process uses a chain of two custom
GPTs, (see Custom GPTs in Sect. 2). The first custom GPT
remains the same for all projects and is responsible for gener-
ating a base diagram based on the provided code in PlantUML
format, including as much detail in the diagram as possible. The
second custom GPT in the chain, which is different for each
project, is responsible for performing abstractions and adhering
to the stylistic choices of each project (see Table 4) and based
only on the PlantUML generated by the first custom GPT in
the chain. We isolated the second GPT from the source code to
focus it entirely on abstraction and stylistic adaptation without
consideration of the specific details from the source.

The second GPT needs to accommodate both the specific
project and whether the human abstraction framework is in-
cluded or not (RQ1 vs. RQ2). Consequently, we created 10
custom GPTs for the second step, two per project, one with
the inclusion of HAF and the other without. An example of
an LLM prompt is presented in Figure 2, while full prompts
for all the projects (with and without HAF) are included in the
Supplementary Artifact (Campanello et al. 2024). Each of the
prompts starts with the same overall goal description and the
same first five steps. Steps 1–2 establish a baseline of what the
diagram should look like, whereas steps 3–5 aim to remove po-
tential variance and errors. The following steps encode stylistic
preferences that are specific to each project, and could generally
be generated from user preferences and general style settings
and themes, based on an automated tool (discussed in Section
5.1).

Based on the cases of real abstraction from Table 2, we de-
veloped hints for including the Human Abstraction Framework
(HAF), which were added before any other prompts in the corre-
sponding experiments. The structure of our HAF-based prompt

hints is presented in Figure 3. This prompt cites the relevant
definitions from the HAF verbatim. Notably, this part of the
prompt is the same for each used project, whereas the basic
prompt (indicated with a reference in the last line) contains
variable parts reflecting user preferences—see above.

The code presented as input to the first custom GPT com-
prises Java class files, provided as attached files, for all classes
that have a counterpart in the human-created baseline diagram.
Providing just a selection, instead of all code files of each
project, is a reasonable assumption for our approach: a class
diagram visualization can generally be useful for any scope of a
larger system, but users are typically understanding in a specific
scope, which we, in the case of our subject projects, identify
via the classes of the human-created diagram file. Nevertheless,
this setup still leaves a considerable design space of abstraction
decisions, from coarse ones such as including particular classes
and relationships or not, to fine ones, such as the specific in-
formation included for class-level elements (explained below),
which forms the basis of our evaluation.

3.4. Evaluation metrics (RQ1 and RQ2)
The chain of custom GPTs was used to generate class diagrams
which were then compared to the available baseline diagrams
created by human experts. For the comparison, we considered
the presence and absence of elements in the two class diagrams,
based on their names. Based on this information, we calcu-
lated seven metrics in total for the comparison, namely: true
positives, false positives, false negatives, precision, recall and
F1-score. These metrics are used for answering RQ1 and RQ2,
and serve as input for the comparisons in RQ3. The experiment
involves performing five trials, for two subgroups (one with the
human abstraction framework in the prompt and one without),
for each of the projects. This leads to two collections of five
diagrams (and their evaluation metric result data) per project.
The metrics calculation was performed through a script that is
publicly available to support repeatable and reliable data collec-
tion (Campanello et al. 2024). Each collection of metrics data
corresponding to a particular subgroup of the experiment (e.g.,
all five trial diagrams corresponding to the group without the
human abstraction framework gathered for project one), was
further processed by another script (Campanello et al. 2024)
for deriving the mean, standard deviation and variance of the
F1-scores for the given collection.

An important consideration for the comparison between hu-
man and GPT diagrams is that not all differences between the
diagrams should be considered as equal. For example, a differ-
ence in the access modifier of an attribute affects the abstraction
quality of a diagram in a different way compared to a difference
in the inclusion/exclusion of a particular class. This leads us
to introduce categories to distinguish differences based on their
granularity, as shown in Table 5.

The elements in each category are grouped based on their
granularity level. It is important to note that the medium cat-
egory is seen as the inclusion of an entire attribute/method,
while the fine category concerns itself with the details of the
attributes/methods.

The automated comparison script calculates the aforemen-
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Figure 2 Custom GPT prompt with no HAF (steps 6–12 are specific to project 2)

Table 5 Granularity categories of element differences

Coarse Classes, Relationships.

Medium Entire Attributes, Entire Methods.

Fine Access Modifiers, Attribute Type, Method Return
Type, Parameter Name, Parameter Type.

tioned 7 metrics: true positives, false positives, false negatives,
precision, recall and F1-score. These metrics are detailed below.

– True Positive (TP): GPT-4 includes an element in the dia-
gram that is included in the human-generated diagram.

– False Positive (FP): GPT-4 includes an element in the dia-
gram that is not included in the human-generated diagram.

– False Negative (FN): GPT-4 does not include an element
in the diagram that is included in the human-generated
diagram.

Precision, recall, and F1 score are metrics commonly used to
evaluate the performance of classification models, particularly
in imbalanced datasets, using the formulaes shown below. They

provide insights into the model’s ability to correctly classify
positive instances. Precision allows us to get a measure of how
many of the determined positives are actual positives. Recall
allows us to get a measure of how many of the actual positives
are determined positive. Precision is a useful measure when
the cost of false positives is high. On the other hand, recall is a
good measure when the cost of false negatives is high. We have
determined that the effort to correct false negatives and false
positives of a class diagram is similar, hence we need to find
a balance between the precision and recall scores. We use an
F1-score to achieve this balance. The F1 score is the harmonic
mean of precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2 · Precision · Recall
Precision + Recall

To strengthen the robustness of our findings, we performed
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Figure 3 Custom GPT prompt with HAF hints, based on HAF’s description from (Zhang et al. 2023)

a sanity check1, where we, for one our projects, compared the
F1 scores when only the first GPT is used, to using the chain
of the two GPTs. As expected, we noted a particularly poor
abstraction ability when using just the first GPT, which, as it
does not discard any elements, produces many false positives
(e.g., method return type and attribute type receiving a F1 score
of 0%), which increases to 100% after the second GPT is used).

3.5. Statistical comparison (RQ3)
In RQ3, to support a statistical comparison of the results ob-
tained with and without including the HAF into prompt hints
(from RQ1 and RQ2, respectively), we conduct hypothesis test-
ing. Considering the Coarse, Medium and Fine categories leads
to three datasets consisting of two independent samples, with
five values each. Each value corresponds to a specific diagram
of a given project that performed the best in terms of the metric
in question out of the five trials.

1 Comparison table for sanity check:
http://htmlpreview.github.io/?https://raw.githubusercontent.com/
sh4r10/thesis-autogen-classdiagrams/refs/heads/revision/artefacts/
controlled-experiment/sanity-check/comparison.html
Underlying files:
https://github.com/sh4r10/thesis-autogen-classdiagrams/tree/revision/
artefacts/controlled-experiment/sanity-check

In order to evaluate the hypothesis for RQ3 concerning the
two independent samples, we used a Mann-Whitney U-test
(Mann & Whitney 1947). This particular test was chosen as
the collected data is non-parametric, has one factor, and uses
two treatments (Wohlin et al. 2012). In particular, it is equipped
to deal with small sample sizes (Sijtsma & Emons 2010). We
evaluated the three pairs of null hypotheses and alternative
hypotheses that address the three granularity levels Coarse,
Medium, Fine as per Table 5. We used a standard significance
threshold α of 0.05. Each of the 10 independent samples for
the hypothesis tests had a sample size n = 5. Rejecting each
null hypothesis would provide support for accepting for the
corresponding alternative hypothesis.

H0coarse : F1coarse,with HAF ≤ F1coarse,without HAF (1)
HAcoarse : F1coarse,with HAF > F1coarse,without HAF (2)

H0medium : F1medium,with HAF ≤ F1medium,without HAF (3)
HAmedium : F1medium,with HAF > F1medium,without HAF (4)

H0 f ine : F1 f ine,with HAF ≤ F1 f ine,without HAF (5)

HA f ine : F1 f ine,with HAF > F1 f ine,without HAF (6)
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Table 6 Overview of precision, recall, and F1-scores based on
granularities

Fine Medium Coarse

Project Precis. Recall F1 Precis. Recall F1 Precis. Recall F1

Without HAF

Project 1 1.00 1.00 1.00 0.75 0.95 0.84 0.50 0.86 0.63

Project 2 0.68 0.79 0.73 0.56 0.65 0.60 1.00 0.50 0.67

Project 3 0.83 1.00 0.91 0.66 0.93 0.77 0.67 0.67 0.67

Project 4 1.00 1.00 1.00 0.48 0.91 0.62 1.00 0.89 0.94

Project 5 N/A N/A N/A N/A N/A N/A 0.91 0.77 0.83

With HAF

Project 1 0.98 0.98 0.98 0.52 0.59 0.55 0.50 0.45 0.48

Project 2 0.66 0.72 0.69 0.62 0.86 0.72 0.50 0.47 0.49

Project 3 0.80 1.00 0.89 0.62 0.78 0.69 0.54 0.70 0.61

Project 4 1.00 1.00 1.00 0.48 0.91 0.62 1.00 0.80 0.89

Project 5 N/A N/A N/A N/A N/A N/A 0.59 0.67 0.62

N/A indicates that a metric computation was not possible.

4. Results
To answer RQ1 and RQ2, we selected the best diagram out of
the 5 trials, thus accommodating for possible variety in human-
created abstractions (described above). This was done once
for each of the F1-scores for the Coarse, Medium, and Fine
categories. This results in a collection of 3 datasets, consisting
of two groups (with and without HAF) each and 5 samples
per group. An overview of the results for these datasets can
be found in Table 6. We note that Project 5 does not have any
elements in the medium or fine category hence a value cannot be
calculated. Table 7 shows statistical summary information for
the three datasets, namely, the mean values (µ) and the standard
deviations (σ) when the F1-score, as the metric that balances
the other two metrics of precision and recall, is considered.

4.1. Accuracy without HAF (RQ1)
Considering the abstraction ability of GPT-4 when not including
hints from the HAF in the prompt, Table 6 shows a balance
between precision and recall, with some exceptions depending
on the project in question. The mean µ F1-score values across
the coarse, medium, and fine categories for RQ1 (Without HAF)
are 0.75, 0.70, and 0.91 respectively, see Table 7. To then
answer RQ1, it means that not only GPT-4 (on its own) is
effective at identifying the relevant elements (precision) and
including most of them in the resulting diagram (recall), but it
maintains this balance between precision and recall across the
three categories of differences. Hence we can state that based
on the results of the experiment when generating class diagrams
on its own from the source code, GPT-4 performs well across
all categories when measured on the metrics of precision, recall
and F1-score.

To give a more detailed picture of these results, Table 8
provides an overview of the results of the types of the elements
that are captured by the categories of coarse, medium, and fine,
grouped in the table using horizontal lines.

Considering the coarse category, remarkably, in all projects

Table 7 The mean and the standard deviation for the F1
scores at 3 granularity levels

Dataset µwithout σwithout µwith σwith

HAF HAF HAF HAF

F1-Coarse 0.75 0.12 0.62 0.15

F1-Medium 0.70 0.10 0.65 0.07

F1-Fine 0.91 0.11 0.89 0.12

and for all considered metrics, we find high values for classes
and low values for relationships. For the case of classes, these
results can be explained with our preselection of classes that
we fed as input to GPT-4 in order to specify the context for the
expected class diagrams. Deviations from perfect scores, such as
project 2 with 91% and project 3 with 75% for recall, indicate an
attempt by GPT-4 to remove classes deemed as irrelevant in that
context. Conversely, for relationships, we observe low numbers,
between F1 scores of 40% and 0%. We generally observed
a low number of relationships present in all diagrams made
by GPT, in the Coarse Category (with and without HAF). By
using a python script (Campanello et al. 2024), we observed that
out of all 50 diagrams, there were 466 relationship differences
between GPT and Human diagrams, with only 8 similarities.
An example of this is shown in Figure 4. Here GPT-4 does
not create the correct inheritance relationship between Upgrade,
Food, and Item; instead adding associations between Upgrade,
Food, and ItemVisitor. Figure 5 shows the corresponding source
code fed as input to GPT-4 that contains the inheritance.

Another insightful example is Project 1 where GPT-4 is asked
to include all relationships and to convert two composition
relationships to association relationships. In this instance, even
traditional reverse engineering techniques that do not rely on
any machine learning algorithms (e.g., IntelliJ class diagram
generator without the work of Osman et al., Thung et al., or Yang
et al.) would perform better than GPT-4, as GPT-4 very likely
fails with all relationships but the traditional reverse engineering
would only fail at abstracting the composition relationships.
This shows a weakness in GPT’s ability to create diagrams, as
the relationships between the classes show a lot of information
regarding the function of the different classes in a given software
project. We speculate that this is because detecting a relationship
between two classes is a harder task compared to attributes
and methods, as there are several different ways a relationship
manifests itself in source code.

In the medium category, we find an F1 score of 70% overall.
Looking at the individual element types, we see that, compared
to classes and elements on the coarse level, there is more varia-
tion among specific types, achieving values between 84% and
55% F1 score for attributes, and between 70% and 80% for
methods. These overall results suggest a lackluster ability of
GPT-4 to emulate human abstraction for medium-granularity
elements.

Finally, in the fine category, the overall score is particularly
high, at 91%. Notably, this finding arises based on only four out
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Table 8 Precision, Recall, and F1-scores for the best diagrams for prompts without HAF (RQ1) and with HAF (RQ2)

Project 1 Project 2 Project 3 Project 4 Project 5

Elements Precis. Recall F1 Precis. Recall F1 Precis. Recall F1 Precis. Recall F1 Precis. Recall F1

Without HAF

Classes 1.00 1.00 1.00 1.00 0.91 0.95 1.00 0.75 0.86 1.00 1.00 1.00 1.00 1.00 1.00

Relationships 0.00 0.00 0.00 1.00 0.15 0.27 0.33 0.50 0.40 0.00 0.00 0.00 0.00 0.00 0.00

Attributes 0.73 1.00 0.84 0.71 0.83 0.77 0.55 0.75 0.63 0.38 1.00 0.55 N/A N/A N/A

Methods 1.00 0.66 0.80 0.51 0.58 0.70 0.70 1.00 0.83 0.63 0.83 0.71 N/A N/A N/A

Access modifiers 1.00 1.00 1.00 1.00 1.00 1.00 0.68 1.00 0.81 1.00 1.00 1.00 N/A N/A N/A

Attribute type 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 N/A N/A N/A

Method return type 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 N/A N/A N/A

Parameter name 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 N/A N/A N/A

Parameter type 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 N/A N/A N/A

With HAF

Classes 1.00 0.83 0.91 0.82 0.82 0.82 1.00 0.75 0.86 1.00 1.00 1.00 1.00 1.00 1.00

Relationships 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.50 0.22 0.00 0.00 0.00 0.00 0.00 0.00

Attributes 0.53 0.67 0.59 0.66 1.00 0.79 0.55 0.75 0.63 0.38 1.00 0.56 N/A N/A N/A

Methods 0.52 0.56 0.54 0.57 0.71 0.63 0.65 0.79 0.71 0.63 0.83 0.73 N/A N/A N/A

Access modifiers 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 N/A N/A N/A

Attribute type 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 N/A N/A N/A

Method return type 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.96 1.00 1.00 1.00 N/A N/A N/A

Parameter name 1.00 1.00 1.00 0.11 0.25 0.15 1.00 1.00 1.00 0.00 0.00 0.00 N/A N/A N/A

Parameter type 0.93 0.93 0.93 0.08 0.08 0.08 1.00 1.00 1.00 0.00 0.00 0.00 N/A N/A N/A

N/A indicates that a metric computation was not possible.

of the five projects, those that include fine-granularity elements.
In the case of project 1, in which all stylistic choices have a value
of either yes or no, we observe perfect accuracy, recall and F1,
which indicates that GPT remained faithful to the specification.
In the projects that had some-entries for stylistic choices, we
still observe examples of high F1 scores, such as method return
type in project 3 at 96% F1.

Considering the N/A entries in Table 8, note that the metric
computation is not possible especially in Project 5, where the
baseline diagram does not contain attributes or methods, render-
ing it infeasible for us to be able to count how many attributes
or methods GPT has correctly removed. Considering instead,
for example, F1 or access modifiers for project 2, we observe
that the baseline diagram for Project 2 does include attributes;
therefore, we are able to count exactly for how many attributes
GPT has correctly removed the access modifiers, leading to the
entry 1.00.

4.2. Accuracy with HAF (RQ2)
When including hints from the HAF into the prompt, the results
obtained, presented in the lower half of Table 6, show a similar
balance between precision and recall, as for RQ1. The mean µ
values across the coarse, medium, and fine categories for RQ2
are 0.62, 0.65, and 0.89. To answer RQ2, given the balance

between precision and recall, we can state that GPT-4 is equally
effective at identifying relevant elements (precision) as it is at
including most of the relevant elements in the resulting diagram
(recall). Furthermore, on the metric of F1-score, it performs
well in the fine (F1 : 0.89) category, slightly worse in the coarse
(F1 : 0.62) and medium (F1 : 0.65) categories. Hence, we can
state that based on the results of the experiment when generating
a class diagram using the human abstraction framework along
with the source code, GPT-4 performs very well in the fine and
mediocre in the medium and coarse categories, when measured
on the metrics of precision, recall and F1-score.

Although the balance between precision and recall is similar
in RQ2 to RQ1, the table shows that the values for RQ2 tend
to be marginally lower than for RQ1. This is supported by the
mean values discussed above. Furthermore, the median values
for the F1-scores across the categories of differences for the
samples without HAF, are higher than the values for the samples
with HAF,

Considering the fine category, we observe that for cases
where a some-entry was provided as part of the style preferences,
including HAF lead to drastically better results in cases such
as parameter name for project 3, where perfect accuracy, recall
and F1 could now be achieved.
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Figure 4 Snippets from human-created vs. GPT-4-created
class diagrams (trial 3, HAF included) for Project 2

Figure 5 Snippets of source code with inheritance

4.3. Comparison (RQ3)
To accurately determine the significance of differences between
the results from the RQ1 and RQ2 and to answer RQ3, we
performed a Mann-Whitney U-test. The results from the Mann-
Whitney U-tests, showed no statistical significance across the
different categories of fine, medium and coarse, i.e. the p-value
for all hypotheses tested is greater than 0.05. Specifically, we
observe p = 0.97 for the coarse, p = 0.81 for the medium
category p = 0.77 and for the fine category.

Hence, we cannot reject the null hypotheses for any of the
fine, medium or coarse categories. We observed that regard-
less of whether or not the human abstraction framework was
included in the prompt, GPT-4 tends to have a balance between
the precision and recall metrics. In the context of this research,
this means that GPT-4’s ability to include the relevant elements
that are indeed relevant (precision) is on par with its ability
to include most of the actually relevant elements in the dia-
gram (recall). The mean F1-score µ across HAF and Without
HAF is 0.77, which means that overall GPT-4 is quite effective
at determining and including the relevant information in the
diagram.

5. Discussion
We now discuss the implications of our results for tool devel-
opers, our contribution to theory building on automation of
abstraction capabilities, and threats to validity.

Table 9 The mean and the standard deviation for the F1
scores for all element types.

Dataset µwithout σwithout µwith σwith

HAF HAF HAF HAF

Classes 0.96 0.05 0.92 0.07

Relationships 0.13 0.17 0.04 0.09

Attributes 0.70 0.11 0.64 0.09

Methods 0.76 0.06 0.65 0.07

Access modifiers 0.95 0.08 1.00 0.00

Attribute type 1.00 0.00 1.00 0.00

Method return type 0.97 0.03 0.99 0.02

Parameter name 0.5 0.5 0.54 0.47

Parameter type 0.5 0.5 0.50 0.46

5.1. Implications for Tool Developers

Overall, our results shed a promising light on the ability of
LLMs such as GPT-4 to mimic human abstraction. This is
informative for tool developers who want to incorporate LLM-
based abstraction capabilities such as those studied in this paper
into a reverse engineering tool. Especially in the category of
fine-grained abstraction decisions, which were not addressed by
previous machine-learning-based approaches (e.g., (Osman et
al. 2013) (Thung et al. 2014) (Yang et al. 2016)), and where we
observed average F1 scores of 89% and 91%, respectively, we
can maintain a new state-of-the-art based on our study. For more
coarse-grained changes, where we observe lower F1 scores, we
have reported detailed observations regarding potential road-
blocks that should be taken into account. For example, since
the number of included relationships was generally lower than
in human-created diagrams, one can experiment with more ex-
plicit hints about the expected numbers and types of represented
relationships in the prompt.

While our scope deliberately excluded aspects of UI and
user process, it is important to mention that we do not conceive
the user to manually interact with the LLM, including manual
editing of prompts—an effective reverse engineering tool based
on our findings would interact with the LLM “under the hood”.
Such a tool could benefit from our list of stylistic differences
that we created as part of our data collection, based on our
manual analysis of the underlying dataset (see Table 4). To
customize the output class diagrams to the user’s needs, the user
could be presented with a list of stylistic choices from which
they set the options in the same way we did to recreate the
baseline diagrams, to the possible alternatives of no, yes, and
some. Sects of typical choices could be bundled into presets,
further reducing the manual user involvement. As a form of
model-driven prompt engineering (Clarisó & Cabot 2023), the
tool would automatically generate a suitable prompt based on
the choices (comparable to the one in Fig. 2), which is then used
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to create the diagram.
Such a tool could balance some of the identified weaknesses

of LLMs by complementing them with other methods, for ex-
ample, using GPT-4 with the HAF prompt included for the
fine-grained abstraction decisions, where GPT-4 perfoms par-
ticularly well, and a different technique with complementary
strengths for coarse- and medium-grained ones.

5.2. Implications for Theory Building.
Strengths and weaknesses. In RQ1 and RQ2, we found that the
abstraction capability of GPT-4 is vastly different for different el-
ement types. We described in detail the case of relationships, in
which the performance of GPT-4 in emulating was particularly
low, including the syntactic level – correctly representing spe-
cific relationships from the code using appropriate relationship
types – as well as the semantic level – correctly distinguishing
between relevant and irrelevant relationships, where the latter
can be discarded during abstraction. At lower granularity levels,
the obtained results are generally better. This finding highlights
a gap in our understanding of what relationships designers in-
clude and not include when creating class diagrams, which also
seems hard to address with large language models.

To mitigate the issues with abstraction of relationships, we
need to improve our empirical understanding of what makes
relationships relevant. Such insights could be obtained from
dedicated studies, both artifact studies and user studies, focusing
on questions of which relationships are retained and discarded in
practice. Potentially, mathematical techniques from fields such
as information retrieval and machine learning can be useful to
assign importance weights to references based on their names.
Insights from such studies could be included as hints in the
prompt, an idea that our findings prove useful for the case of
fine-grained abstractions.
Absence of significant impact of including HAF. In RQ3,
we found that including hints regarding a conceptual model of
human abstraction did not significantly affect GPT-4’s ability
to create human-like abstractions. There are different possible
implications of this finding to theory building:

The lack of a significant effect could be interpreted in two
ways: as a negative result for this particular prompt engineering
idea, or as a positive result for the inherent abstraction ability
of GPT-4. Towards the former, when considering the setup
of including abstraction hints into the prompt as a form of
prompt engineering, the experiments did not demonstrate the
effectiveness of this approach. Towards the latter, one could
also see this outcome as a positive result demonstrating that
GPT-4 has ingrained knowledge about abstraction, which then
makes the explicit provision of this knowledge superfluous.
This knowledge could either be a reflection of the training data,
or a phenomenon of emergence. Investigating these potential
implications further, based on more comprehensive datasets
– including the additional subject projects from (Zhang et al.
2025) –, is an exciting area for future research.

5.3. Threats to Validity.
External validity. External validity is threatened by our project
selection that affects how our results generalize to other cases.

Our selected projects were obtained from an available dataset
obtained from the Lindholmen dataset (Zhang et al. 2023). This
dataset is generally diverse, as projects do not fulfill many re-
quirements beyond containing a class diagram. In consequence,
one strength is that the considered projects span a variety of dif-
ferent application domain. Yet, one restriction is that the project
needs to be available from GitHub. It remains open to which
extent results obtained on GitHub repositories can generalize
to industrial settings. Related threats are that the projects had
relatively short periods of activity spanning between 1 and 28
months, and had less than 10 contributors each.

All considered projects use Java as their programming lan-
guage. The results may generalize to projects in other languages
that have the same object-oriented concepts as class diagrams
and Java, including C++ and C#. For other programming lan-
guages that use entirely different paradigms, we cannot claim
generalizability. The abstraction problem for these languages
seems entirely different, as class diagrams might not be the
notation of choice in these cases.

A potential source of bias is that the projects used in our
study also informed the development of the human abstraction
framework (Zhang et al. 2023), a consequence of the lack of
larger datasets with more alternative projects to choose from.
GPT’s abstraction ability might be lower than observed when
considering projects that use entirely different abstractions than
our subject ones. Still, we argue that such projects might be
rare, as the majority of considered abstraction cases occurred
in multiple of the 5 projects stemming from different domains,
which indicates a reasonable level of generalizability to other
cases.

The prompts used in our experiments are custom-tailored
to the project at hand, based on their stylistic choices (e.g.,
whether getters, setters and constructors should be included or
not). This could be seen as a threat to their generality: for a
new project, the prompt needs to be modified. However, our
effort to systematically identify such stylistic choices allows to
automatically generated such prompts from user preferences
(see Section 5.1). In consequence, we are actually reducing the
impact of bias, namely, the bias from arbitrary stylistic choices,
as compared to actual abstraction ability.
Internal validity. We provide a preselection of classes to Chat-
GPT, which, arguably, could lead to an overestimation of pre-
cision for the coarse category. However, given a large system
with many classes, one can focus on different scopes of the
system to create a class diagram. Without setting a fixed scope,
as we do, a mismatch between GPT’s results and the manual
baseline might not indicate a lack of precision, but a focusing
on a different scope. Hence, we argue that our pre-filtering
is indeed a necessary step to ensure a fair comparison. Our
insights at coarse granularity are not at all positive and highlight
a weakness in dealing with references, where we do observe
a poor abstraction ability, which, we think, is noteworthy and
could be insightful for follow-up research.

A threat to our evaluation metrics is that precision, recall,
and F1-score can only be calculated for a given combination
of granularity and model if the model calculates elements on
that granularity. For the fine and medium granularities, means
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that our overall results only stem from 4 of the total of 5 class
models, since project 5 lacks relevant elements.

Furthermore, our results might not accurately reflect GPT-4
capabilities if our chosen prompt is lackluster, as good prompts
are essential to generate quality output from LLMs (Zamfirescu-
Pereira et al. 2023). To mitigate this risk, we spent a consider-
able amount of testing and iteratively fine-tuning the prompts
(Campanello et al. 2024). We followed best practices from the
relevant literature, such as chain-of-thought (Wei et al. 2022).
One concern with our prompts could be that we mix imperative
and third-person styles. From our experience, this mixing of
styles is unproblematic in GPT-4, which displays a good ability
to abstract from prompt styles. To mitigate this threat, we per-
formed a small additional experiment in which we compared
the output of our used prompt to a revised prompt that uses a
single style2. We found that this change did not significantly
change our results.
Construct validity. We operationalize the ability to emulate
human abstraction by relying on a comparison to a ground truth
of a specific human-created abstraction. However, as there
might be variation how different experts create abstractions for
the same system, there is a risk that we measure the ability
to emulate the specific developer who created the abstraction,
instead of general abstraction ability. To mitigate this risk, we
executed each abstraction task five times and considered the
output that was most similar to the ground truth abstraction.

6. Conclusion
In this paper, we used GPT-4 to generate class diagrams for five
Java software projects, comparing each GPT-generated diagram
to the diagram made by the original project developers. This
process involved the formulation of project-specific prompts,
using techniques such as chain-of-thought, based on the stylistic
choices of the human-generated diagram. We used two treat-
ments, which consisted of the inclusion and exclusion of the
human abstraction framework from the prompt. These prompts
were used to create 5 diagrams per treatment for each project,
to account for variance, resulting in the creation of 50 diagrams.
From the created diagrams, we picked the best diagrams on
the F1-scores for the coarse, medium, and fine categories of
differences, creating four datasets of two independent samples
with 5 values each. After performing the hypothesis tests, we
determined the inclusion of the human abstraction framework
to be statistically insignificant for improving GPT-generated
diagram output quality. However, we can still observe that
GPT-4 is relatively efficient at determining and including the
relevant information in the diagrams, but less efficient at making
abstractions and building relationships.

We see the following directions for future work: First, it
would be worthwhile to conduct further studies with additional

2 Comparison table for prompt style experiment:
http://htmlpreview.github.io/?https://raw.githubusercontent.com/
sh4r10/thesis-autogen-classdiagrams/refs/heads/revision/artefacts/
controlled-experiment/sanity-check/comparison.html
Underlying files:
https://github.com/sh4r10/thesis-autogen-classdiagrams/tree/revision/
artefacts/prompt-style-experiment

projects to either cement or reject our findings. Second, there is
also potential to expand our work into other similar areas. Our
scope focused specifically on class diagrams of Java projects
using GPT-4, but it could be expanded in the future. Importantly,
the technical sphere of LLMs is fast-moving, and it is conceiv-
able that alternative, newer approaches might improve accuracy
and address some of the issues (such as poor ability to abstract
references) reported in this paper. A comprehensive compara-
tive evaluation of several LLMs, including Claude-Sonnet and
DeepSearch, is an important direction for future work. The
research can be expanded upon through the inclusion of other
programming languages that utilize class diagrams, such as
Kotlin, C#, Python, etc. The prompting techniques and insights
can be used to expand the work to diagrams other than class
ones, such as sequence, component, and deployment diagrams.
Using different languages and LLMs could be done using our
scripts (Campanello et al. 2024). Third, it would be of interest
to include the source code in the comparison. This would allow
us to be more detailed in discerning the differences between dif-
ferent kinds of false positives and get a better understanding of
the causes of different false positives. This would be insightful,
as some differences may be caused by hallucinations from GPT
with no connection to the source code while others are elements
that exist in the code but were abstracted away by the human
diagram creators. Fourth, to enable a fully automated approach
for class diagram reverse engineering, we intend to develop a
user-oriented tool that can automate the generation of prompts
like those shown in this paper, based on user preferences and by
integrating with other tools that work particularly well for other
abstractoin decisions than those where GPT-4 excels.
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